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Abstract

In Homogeneous permutations, Peter Cameron [Electronic Journal of Combi-
natorics 2002] classified the homogeneous permutations (homogeneous structures
with 2 linear orders), and posed the problem of classifying the homogeneous n-
dimensional permutation structures (homogeneous structures with n linear orders)
for all finite n. We prove here that the lattice of ∅-definable equivalence relations
in such a structure can be any finite distributive lattice, providing many new im-
primitive examples of homogeneous finite dimensional permutation structures. We
conjecture that the distributivity of the lattice of ∅-definable equivalence relations
is necessary, and prove this under the assumption that the reduct of the structure
to the language of ∅-definable equivalence relations is homogeneous. Finally, we
conjecture a classification of the primitive examples, and confirm this in the special
case where all minimal forbidden structures have order 2.

Keywords: countable homogeneous; Fraisse theory; infinite permutations

1 Introduction

In [1], Cameron classified the homogeneous permutations, which he identified with homo-
geneous structures consisting of two linear orders. He then posed the problem of classify-
ing the homogeneous structures consisting of n linear orders for any n [1, §6, Problem 1],
which we call n-dimensional permutation structures. The first step toward a classification
is the production of a catalog, or census, of examples occurring “in nature.” We begin
that project here.

The homogeneous permutations are of three kinds. The main distinction is between
imprimitive (where there is a non-trivial definable equivalence relation) and primitive,
but we subdivide further.
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• Imprimitive: Lexicographic orderings (more naturally viewed as equipped with a
single order and an equivalence relation)

• Primitive:

– Degenerate: The orders agree, up to reversal

– Fully generic in the sense of the Fräıssé theory of amalgamation classes (see
Appendix A.1)

The only known primitive homogeneous finite dimensional permutation structures are
a straightforward mix of these two types. We note here that Appendix A.1 contains
a brief introduction to homogeneity, while Appendix A.2 contains contains information
about the amalgamation diagrams that appear throughout this paper.

Conjecture 1 (Primitivity Conjecture). Every primitive homogeneous finite dimensional
permutation structure can be constructed by the following procedure.

1. Identify certain orders, up to reversal.

2. Take the Fräıssé limit of the resulting amalgamation class, getting a fully generic
structure, probably in a simpler language.

As far as the primitive case is concerned, this is a satisfying catalog of all known
examples. As we will show below, the imprimitive case is more complicated. The first
question that must be addressed is the following.

Problem. Describe all possible lattices of ∅-definable equivalence relations in homoge-
neous finite dimensional permutation structures.

We propose the following.

Conjecture 2. A finite lattice is isomorphic to the lattice of ∅-definable equivalence rela-
tions in some homogeneous finite dimensional permutation structure iff it is distributive.

In the case of homogeneous permutations (n = 2), the only lattices seen are linear of
order at most 3. But the following shows the class of possible lattices must be enlarged
to include distributive lattices.

Theorem 3.1 (Representation Theorem). Let Λ be a finite distributive lattice. Then there
is a homogeneous finite dimensional permutation structure whose lattice of ∅-definable
equivalence relations is isomorphic to Λ.

So the question remains, whether distributivity is necessary. In this direction, we have
the following.

Theorem 4.6. Let Λ be the lattice of ∅-definable equivalence relations in a homogeneous
finite dimensional permutation structure M. If the reduct of M to the language of equiv-
alence relations from Λ is homogeneous, then Λ is distributive.
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A sharper statement may be given in terms of the infinite index property, defined as
follows.

Definition 4.1. Let M be a structure with a transitive automorphism group.

1. For ∅-definable equivalence relations F ⊂ E on M, set

[E : F ] = |C/F |

for C any E-class, and call this the index of F in E.

2. Let Λ be the lattice of ∅-definable equivalence relations on M. Then Λ has the
infinite index property (IIP) if whenever F ⊂ E for E,F ∈ Λ, [E : F ] is infinite.

Theorem 1.1.

1. If M is a homogeneous permutation structure, then the lattice of ∅-definable equiv-
alence relations on M has the IIP.

2. If M is a homogeneous structure consisting of a set equipped with a finite lattice Λ
of equivalence relations with the IIP, then Λ is distributive.

The Representation Theorem provides a large variety of new examples of homogeneous
permutation structures, but the associated amalgamation classes have a surprisingly sim-
ple form: the minimal forbidden substructures all have order 3 or less.

Question. Can a homogeneous finite dimensional permutation structure have a minimal
forbidden substructure of order greater than 3?

In the last section, we consider homogeneous permutation structures in which all mini-
mal forbidden substructures are of order 2. Such a structure is necessarily primitive, since
defining equivalence relations requires forbidding 3-types, and the Primitivity Conjecture
predicts its form, which is confirmed in this special case by the following proposition.

Proposition 5.1. Let K be an amalgamation class of n-dimensional permutation struc-
tures. If no 3-type compatible with the allowed 2-types is forbidden, then the forbidden
2-types collectively specify that certain orders agree up to reversal.

2 Λ -Ultrametric Spaces

In this section, we set up a language that will be more convenient for our amalgamation
arguments than the language of equivalence relations.

Definition 2.1. Let Λ be a lattice. A Λ-ultrametric space is a metric space where the
metric takes values in Λ and the triangle inequality uses the join rather than addition.
Analogous to a pseudometric space, we also define a Λ-ultrapseudometric space as a Λ-
ultrametric space without the requirement that the metric assign non-zero distance to
distinct points.
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As in metric spaces, quotienting out the relation d(x, y) = 0 in a Λ-ultrapseudometric
space yields a Λ-ultrametric space, and we also have a path variant of the the triangle
inequality: d(x, y) is no greater than the join of the distances between points on any path
from x to y.

Theorem 2.2. For a given finite lattice Λ, there is an isomorphism between the category
of Λ-ultrametric spaces and the category of structures consisting of a set equipped with a
family of equivalence relations, closed under taking meets in the lattice of all equivalence
relations on the set, and labeled by the elements of Λ in such a way that the map from Λ
to the lattice of equivalence relations is a homomorphism. Furthermore, the functors of
this isomorphism preserve homogeneity.

Although we do not prove this theorem here, we will define the functors giving this
isomorphism.

Given a system of equivalence relations as specified above, we get the corresponding
Λ-ultrametric space by taking the same universe and defining d(x, y) =

∧
{λ ∈ Λ|xEλy}.

In the reverse direction, given a Λ-ultrametric space, we get the corresponding structure of
equivalence relations by taking the same universe and defining Eλ = {(x, y)|d(x, y) 6 λ}.

There is a well known amalgamation strategy for metric spaces, and we here give the
analog for Λ-ultrametric spaces.

Definition 2.3. Consider an amalgamation diagram of Λ-ultrametric spaces with base B.
Let x and y be extension points in different factors, and for each bi ∈ B let d(x, bi) = ei
and d(y, bi) = e′i. Pre-canonical amalgamation is the amalgamation strategy assigning
d(x, y) =

∧
i(ei ∨ e′i). Canonical amalgamation is the strategy of pre-canonical amalga-

mation, followed by identifying x and y if d(x, y) = 0.

Two-point pre-canonical amalgamation is shown in Figure 2.1 (for guidance on the
interpretation of amalgamation diagrams in this paper, see Appendix A.2). Note that
by the triangle inequality, we must have d(x, y) 6 ei ∨ e′i for each i. Thus pre-canonical
amalgamation makes d(x, y) maximal while respecting these instances of the triangle
inequality. The next proposition provides a condition on when this is sufficient to ensure
the resulting diagram satisfies the triangle inequality.

x�
∧
i(ei ∨ e′i) �y

©
B

e
′
i

e
i

Figure 2.1

Proposition 2.4. Let Λ be a distributive lattice, and let K be the class of all finite Λ-
ultrametric spaces. Then K is an amalgamation class, and any amalgamation diagram
can be completed by canonical amalgamation.
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Proof. It suffices to check that pre-canonical amalgamation in a 2-point diagram produces
a Λ-ultraspeudometric space. In other words, we check that Figure 2.1 satisfies the triangle
inequality, given distributivity. Fix some bi ∈ B and consider the corresponding triangle.

We have d(x, y) =
∧
j(ej ∨ e′j) 6 (ei ∨ e′i) = d(x, bi) ∨ d(bi, y), so this side satisfies the

triangle inequality by definition.
The remaining two sides are handled symmetrically, so we only check d(bi, y) 6

d(bi, x) ∨ d(x, y). We have d(bi, x) ∨ d(x, y) = ei ∨ (
∧
j(ej ∨ e′j)) =

∧
j(ei ∨ ej ∨ e′j).

We now use the path variant of the triangle inequality, which the diagram satisfies even
before the distance between x and y is determined. Going from bi to y, we get that for
each j, ei ∨ ej ∨ e′j > e′i (see Figure 2.2), giving d(bi, x) ∨ d(x, y) >

∧
j e
′
i = d(bi, y).

bj•

x�

e j

�y

e ′
j

•
bi

e
′
i

e
i

Figure 2.2

3 The Representation Theorem

3.1 Preliminaries

Our goal is now the following:

Theorem 3.1 (Representation Theorem). Let Λ be a finite distributive lattice. Then there
is a homogeneous finite dimensional permutation structure whose lattice of ∅-definable
equivalence relations is isomorphic to Λ.

However, we proceed by stages. The first and main stage is the following:

Theorem 3.2 (Representation Theorem, Part I). Let Λ be a finite distributive lattice in
which 0 is meet-irreducible. Then there is a homogeneous finite dimensional permutation
structure whose lattice of ∅-definable equivalence relations is isomorphic to Λ.

The idea of the proof is to take the homogeneous universal Λ-ultrametric space, viewed
as a homogeneous structure in the language (Eλ : λ ∈ Λ), and to first expand it to a
homogeneous structure M by the addition of finitely many linear orders, in such a way
that the meet-irreducible Eλ become <-convex for one of the adjoined orders, in the
following sense.

Definition 3.3. If E is an equivalence relation and < a linear order, we say that E is
<-convex if its equivalence classes are convex for the specified order.
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Having done so, it is then easy to reinterpret the structure M obtained as a finite
dimensional permutation structure by a definable change of language. Since the second
step is much easier than the first, we begin with that.

Lemma 3.4. LetM be a homogeneous structure in a finite relational language consisting
of symbols of two kinds.

• Symbols for equivalence relations (Ei | i ∈ I).

• Symbols for linear orders (<j | j ∈ J).

Suppose in addition that for every equivalence relation Ei, there is an ∅-definable linear
order < such that Ei is <-convex.

Let L be the set of ∅-definable linear orders on M and Mlin the reduct to L. Then

(a) Mlin is a homogeneous finite dimensional permutation structure.

(b) The lattice Λ′ of ∅-definable equivalence relations in Mlin contains the Ei for i ∈ I,
and is contained in the lattice Λ of ∅-definable equivalence relations on M.

In particular, if (Ei | i ∈ I) generates Λ, then Λ′ = Λ.

Proof. There are finitely many ∅-definable linear orders onM, soM is a finite dimensional
permutation structure.

(a) To see that Mlin is homogeneous, it is sufficient to check that the relations given
onM are quantifier-free definable inMlin. Since the relations <j are included among the
relations ofMlin, we consider an equivalence relation Ei. Fix an ∅-definable order < such
that Ei is <-convex. Let <′ be the order which agrees with < on M/Ei but is the reversal
of < on each Ei-class. Then <,<′ are in the language ofMlin, and Ei is ∅-definable from
<,<′.

We have proved the first part of (b), and the second part holds simply because Mlin

is a reduct.
The final remark is clear.

It is an interesting problem to determine the minimum number of additional orders
required. We will return to this point in section 3.4.

For the application of this lemma, we have in mind the case in which I is the set of
meet-irreducible elements in a given finite distributive lattice Λ, that is, elements which
are not the meet of two larger elements. More precisely, we are interested in the meet-
irreducible elements of Λ\{0, 1}, since 0 is equality, and 1 is trivial, so both are ∅-definable
without quantifiers in any structure.

3.2 The Main Construction

We aim now at the following.
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Proposition 3.5 (Main Construction). Let Λ be a finite distributive lattice in which 0 is
meet-irreducible, and let MΛ be the universal homogeneous Λ-ultrametric space, viewed
as a structure in the language

(Eλ |λ ∈ Λ)

Then there is an expansion M of MΛ by a finite set of linear orders with the following
properties.

• M is homogeneous;

• The lattice of ∅-definable equivalence relations in M is (Eλ |λ ∈ Λ).

• Every equivalence relation Eλ with λ ∈ Λ \ {0, 1} meet-irreducible is <-convex, for
some ∅-definable linear order of M.

We first complete the proof of Theorem 3.2 modulo Proposition 3.5.

Proof of Theorem 3.2. We begin with a finite distributive lattice Λ in which 0 is meet-
irreducible and we apply the construction of Proposition 3.5 to the universal homogeneous
Λ-ultrametric space MΛ, getting an expansion M as described, in a language consisting
of the equivalence relations (Eλ |λ ∈ Λ), and some additional linear orders.

Let I be the set of meet-irreducible elements of Λ0 = Λ \ {0, 1}, and view M as a
structure in the language (Ei | i ∈ I) together with some linear orders. This structure
remains homogeneous since all Eλ are quantifier-free definable from the (Ei | i ∈ I).

The hypotheses of Lemma 3.4 apply to the modified version ofM, and by Proposition
3.5 (Eλ |λ ∈ Λ) is the full lattice of ∅-definable equivalence relations onM, so by Lemma
3.4 the reduct Mlin is a homogeneous permutation structure with the same lattice of
∅-definable equivalence relations.

Thus it will suffice to carry out the main construction. We prepare for this construction
with the following.

Lemma 3.6. Let A ⊆ B be structures for a relational language specifying a set L of
nested equivalence relations. Let <A be an ordering on A with respect to which all the
relations E ∈ L, as interpreted in A, are convex (i.e., their classes are <A-convex). Then
there is an ordering <B of B with respect to which all the relations E ∈ L, as interpreted
in B, are also convex.

Proof. By a logical compactness argument, we may suppose that the set L is finite, and
proceed by induction on |L|.

Let E ∈ L be minimal. By induction, the induced relation <A/E on A/E can be
extended to an ordering <B/E of B/E making each of the induced relations F/E for
F ∈ L convex (this is trivially true for E/E).

Then the relation R(x, y) on B defined by

x <A y or x/E <B/E y/E

is easily seen to be a partial order, and any extension to a linear order on B will suffice.
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Proof of Proposition 3.5. Recall Λ is a finite distributive lattice, and 0 is meet-irreducible.
Let Λ0 be the set of meet-irreducible elements of Λ \ {0, 1}. Let L be a set of chains

in Λ0 (i.e., linearly ordered subsets) which covers Λ0. Although L might consist simply of
the sets {λ} for λ ∈ Λ0, the number of orders required by our construction at this stage
will be |L|, and when Λ is finite we will prefer (in practice) to minimize this number, as
well as the additional number of orders needed in the proof of Lemma 3.4.

Let MΛ be the Fräıssé limit of all finite Λ-ultrametric spaces. The expansion M of
MΛ will also be obtained as a Fräıssé limit, as follows.

Let L be the language {Eλ |λ ∈ Λ} and let A = AΛ be the amalgamation class of all
finite Λ-ultrametric spaces. Via the correspondence with relational structures, we view
each A ∈ A as an L -structure.

Expand L to a language L ∗ by adding binary relations <L indexed by L ∈ L.
Consider the classA∗ of L ∗-expansions A∗ of structures A inA which satisfy the following
conditions.

• Each <L is a linear order;

• For L ∈ L and λ ∈ L, the equivalence relation Eλ is <L-convex.

We will show that A∗ is an amalgamation class and that its Fräıssé limit M is the
desired structure.

We restate the points to be proved.

(a) A∗ is an amalgamation class; then its Fräıssé limit may be denoted M.

(b) The reduct ofM to the language L = (Eλ |λ ∈ Λ) is isomorphic toMΛ; soM may
be viewed as an expansion of MΛ.

(c) If λ ∈ Λ \ {0, 1} is meet-irreducible and λ ∈ L (with L ∈ L) then Eλ is <L-convex.

(d) The lattice of ∅-definable equivalence relations in M is (Eλ |λ ∈ Λ).

As point (a) requires a detailed verification, we prefer to treat this point as an inde-
pendent technical lemma, below. For now we assume this point and complete the proof
of points (b, c, d).

(b) The issue here is similar to the one treated in Proposition 5.2 of [2] in a very similar
setting.

In order to show that the reductML ofM to the language L is isomorphic toMΛ,
it suffices to show thatML is homogeneous, and thatML andMΛ have the same finite
substructures.

The finite substructures of MΛ are the finite Λ-ultrametric spaces. Given such a
structure A ∈ A, if we apply Lemma 3.6 to the pair ∅ ⊆ A and each set L, it gives an
expansion of A which lies in A∗.

It remains to check the homogeneity of ML , which is the point at which we rejoin
Proposition 5.2 of [2]. It suffices to check the extension property for ML :
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If A is a finite substructure of ML , and B a finite extension of A in A,
then there is an embedding of B into ML over A.

We let A∗ be the substructure of M whose reduct is A. Applying Lemma 3.6 to A and
all L ∈ L we get an expansion B∗ of B containing A∗, with B∗ ∈ A∗. Then B∗ embeds
into M over A∗, so B embeds into ML over A.

(c) Given the definition of M as a Fräıssé limit, the last point is built into the con-
struction.

(d) Calculating the lattice of ∅-definable equivalence relations in M requires closer
attention.

We consider a 2-type p realized inM. This is the orbit of an ordered pair (a, b) under
the automorphism group ofM; by homogeneity, it may also be viewed as the isomorphism
type of that pair taken in order, and is encoded by the data (Ep, plin) where Ep = Ed(a,b)

and plin is the type of (a, b) in the language restricted to the linear orders <L, which
records whether a <L b or b <L a, for each L ∈ L.

We may consider such a 2-type as a minimal nontrivial ∅-definable binary relation on
M. Let E ′p denote the smallest equivalence relation containing the relation p: i.e., the
transitive and reflexive closure of the symmetrized type p ∪ pop, where pop is the type of
(b, a).

Claim. Let p be a 2-type realized in M. Then

E ′p = Ep

Given the claim, consider an arbitrary ∅-definable equivalence relation E onM. This
is the union of the 2-types p contained in E, and hence is the join of the equivalence
relations E ′p generated by those types. Since E ′p = Ep, this join lies in Λ.

So to verify point (d) it suffices to check the claim.
If a = b then Ep and E ′p are both equality. So suppose a 6= b, so that for each linear

order L we have either a <L b or b <L a.
Since the pair (a, b) satisfies Ep, it follows that E ′p ⊆ Ep.
Conversely, suppose that we have a pair c, d satisfying Ep(c, d). Let q be the type of

(c, d). We extend (c, d) to a triangle (a, c, d) by setting type(a, c) = type(a, d) = p. If
this triangle belongs to A∗, then by homogeneity it embeds intoM over (c, d), so E ′p(c, d)
holds and we are done. (And the proof shows Ep = p ◦ pop.)

So let us check on the triangle (a, c, d) belongs to A∗, which amounts to checking the
following three conditions.

c•
(Eq, qlin)

- •d

•
a

(E
p
, p
lin

)
-

�
(E
p , p

lin )

Figure 3.1
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1. The Λ-metric triangle inequality holds.

The metric labels are (Ep, Ep, Eq) where Eq = d(c, d) 6 Ep. The triangle inequality
requires that Eq 6 Ep ∨ Ep and Ep 6 Eq ∨ Ep, which are both immediate.

2. The relations <L are linear orders.

We only need to check transitivity. Since type(a, c) = type(b, d), for each L we have
a <L c, d, or c, d <L a, this is clear.

3. For L ∈ L and λ ∈ L, each relation Eλ is <L-convex.

If Ep 6 Eλ then all points (a, c, d) lie in the same Eλ-class and there is no issue.

If Ep 66 Eλ then the only two points which can lie in the same Eλ-class are (c, d). But
because type(a, c) = type(a, d), a does not lie between these points in the order <L.

Thus (a, c, d) ∈ A∗ and the claim is proved. Thus condition (d) holds as well.

We have unfinished business, corresponding to point (a) above. We state this explicitly.

Lemma 3.7 (Amalgamation Lemma). Let Λ be a finite distributive lattice in which 0
is meet-irreducible. Let Λ0 be the poset of meet-irreducibles of Λ \ {0, 1}, and let L be
a collection of linearly ordered subsets of Λ0. Let A∗ be the class of finite structures
(A, d, (<L |L ∈ L)) satisfying the following conditions.

• (A, d) is a Λ-ultrametric space.

• Each <L is a linear order.

• For L ∈ L and λ ∈ L, the relation Eλ is <L-convex.

Then A∗ is an amalgamation class.

Since our amalgamation strategy on A∗ will extend canonical amalgamation on A, we
will require the following lemma, which is independent of our amalgamation strategy for
the orders.

Lemma 3.8. Under the hypotheses of Lemma 3.7, consider a two-point amalgamation
problem in A∗ with extension points a1 and a2. If, after canonical amalgamation, a1 and
a2 are in the same Eλ-class, with λ ∈ L, then no point in the base in a distinct Eλ-class
lies between them in <L.

Proof. Fix L ∈ L a chain in Λ0, and let canonical amalgamation assign d(a1, a2) 6 λ
for some λ ∈ L. Let b be in the base, with d(a1, b), d(a2, b) 66 λ. Then we must show
a1 <L b⇔ a2 <L b.

In a distributive lattice, with λ meet-irreducible, the relation∧
λi 6 λ
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entails
λi 6 λ

for some i. Namely, we have ∧
(λ ∨ λi) = λ ∨

∧
λi = λ

λ ∨ λi = λ some i

In view of the definition of d(a1, a2) in the canonical amalgam, we conclude that for
some x in the base, we have

d(a1, x) ∨ d(a2, x) 6 λ

d(a1, x), d(a2, x) 6 λ

Then a1, a2, x lie in the same Eλ-class, and b in another. Therefore

a1 <L b ⇐⇒ x <L b ⇐⇒ a2 <L b

as required.

We also require an analogue of the above lemma for when the relevant equivalence
relation is equality.

Lemma 3.9. Under the hypotheses of Lemma 3.7, pre-canonical amalgamation is canon-
ical amalgamation.

Proof. Consider a two-point amalgamation problem in A∗, with extension points a1 and
a2. Suppose d(a1, a2) = 0 in the pre-canonical Λ-metric amalgam. In this case, since 0 is
meet-irreducible, the formula for d(a1, a2) produces an element x ∈ A satisfying

d(a1, x) ∨ d(a2, x) = 0

d(a1, x) = d(a2, x) = 0

a1 = x = a2

Thus both extension points are actually in the base, and so this situation is impossible.

Proof of Lemma 3.7. It suffices to show that A∗ contains solutions to all two-point amal-
gamation problems A∗0 ⊆ A∗1, A

∗
2, A∗i = A∗0 ∪ {ai} for i = 1, 2.

Let A0, A1, A2 be the underlying Λ-ultrametric spaces of A∗0, A
∗
1, A

∗
2, respectively, and

let A be their canonical amalgam. We define a structure A∗ as follows.

1. Perform canonical amalgamation to determine d(a1, a2).

2. For each L ∈ L, complete all triangles forced by transitivity constraints. There are
two types of transitivity constraints. If there is some x ∈ A∗0 such that:

(a) a1 <L x <L a2, then set a1 <L a2.

the electronic journal of combinatorics 23(4) (2016), #P4.44 11



(b) a2 <L x <L a1, then set a2 <L a1.

3. For each L ∈ L, and each λ ∈ L, complete all triangles forced by convexity con-
straints. There are four types of convexity constraints. If there is some x ∈ A∗0 such
that:

(a) x <L a2, and d(a1, x) 6 λ and d(a2, x) 66 λ, then set a1 <L a2

(b) a2 <L x, and d(a1, x) 6 λ and d(a2, x) 66 λ, then set a2 <L a1

(c) x <L a1, and d(a2, x) 6 λ and d(a1, x) 66 λ, then set a2 <L a1

(d) a1 <L x, and d(a2, x) 6 λ and d(a1, x) 66 λ, then set a1 <L a2

4. If <L does not yet hold between a1 and a2, it may be determined arbitrarily in a
single direction.

Note that step (3), together with Lemma 3.8, will ensure that all convexity conditions
are satisfied, and Lemma 3.9 ensures that we don’t have to worry about points being
identified. It remains to check that <L is still a linear order after amalgamation, i.e. that
it is still asymmetric and transitive. It is well known that step (2) produces an asymmetric
and transitive relation. Thus we must check that step (3) does not ruin this asymmetry
by assigning the opposite direction to <L on a triangle already completed from step (2)
or on a triangle completed earlier in step (3).

Note that, although there are four types of convexity constraints, there is only one up
to swapping the extension points and reversing the orders. Since these symmetries simply
require a change of notation in our amalgamation proofs, we may always assume that one
of the contradictory triangles is of type (3a). In the following cases, we fix an L ∈ L, and
have λ ∈ L.

(i) We first check that no triangle from step (3) contradicts a triangle from step (2).
Assuming the triangle from step (3) is of type (3a), there is only one possibility,
which is shown in Figure 3.2 (in this figure,and all figures for the remainder of the
proof,the label on the edge (p1, p2) is d(p1, p2), and an arrow from a point p1 to p2

indicates p1 <L p2; if there is no arrowhead, the direction is irrelevant).

x2•

a1�
�

e
′

�a2

�
f ′

•
x1

f
66
λ
-

e 6
λ

Figure 3.2
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Note that transitivity requires x1 <L x2. For the first case, assume d(x1, x2) 6 λ.
Then x1 <L a2 <L x2 violates convexity. Now assume d(x1, x2) 66 λ. Then x1 <L

x2 <L a1 violates convexity.

(ii) We now check that triangles from step (3) cannot contradict each other. Assuming
one of the triangles is of type (3a), there are two possibilities. The first case is given
in Figure 3.3, where the bottom triangle is of type (3a), and the top of type (3b).

x2•

a1�
e
′ 6

λ

�a2

� f ′66
λ

•
x1

f
66
λ
-

e 6
λ

Figure 3.3

Note that transitivity requires x1 <L x2. We have d(x1, x2) 6 λ. Then x1 <L a2 <L

x2 violates convexity.

The second possible diagram is given in Figure 3.4, where the bottom triangle is
of type (3a), and the top of type (3c).

x2•

a1�
�
e
′ 66

λ

�a2

f ′
6
λ

•
x1

f
66
λ
-

e 6
λ

Figure 3.4

We have e′ 6 e ∨ d(x1, x2), so we must have d(x1, x2) 66 λ. If x1 <L x2, then
x1 <L x2 <L a1 violates convexity. If x2 <L x1, then x2 <L x1 <L a2 violates
convexity.

This concludes Lemma 3.7, hence Proposition 3.5, hence Theorem 3.2.
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3.3 The General Case

We now prove the Representation Theorem, reducing the case of a general finite distribu-
tive lattice to one where 0 is meet-irreducible.

Proposition 3.10. Let Λ be a finite distributive lattice. Then there is a homogeneous
structure of the form

M = (M, (Eλ |λ ∈ Λ), (<i | i ∈ I))

where I is finite, each Eλ is an equivalence relation, and each <i is a linear order, satis-
fying the following conditions.

• The set of ∅-definable equivalence relations on M is (Eλ |λ ∈ Λ).

• The map λ 7→ Eλ is a lattice isomorphism.

• For each meet-irreducible λ ∈ Λ, there is an i ∈ I such that Eλ is <i-convex.

We begin with a very general observation.

Lemma 3.11. Let M be a structure of the form

(M, (E |E ∈ Λ), (<i | i ∈ I))

with Λ a finite sublattice of the lattice of equivalence relations on M and

(<i | i ∈ I)

a set of linear orders, such that

• For each meet-irreducible E ′ ∈ Λ, there is an i ∈ I such that E ′ is <i-convex.

Then for any E ∈ Λ, any meet-irreducible E ′ > E, and any order <E′ such that E ′ is <E′-
convex, there is a linear order <E which is quantifier-free definable without parameters,
such that E and E ′ are <E-convex, and <E, <E′ induce the same order on M/E ′.

Proof. Write E as an intersection E1 ∩ · · · ∩ En with Ei ∈ Λ meet-irreducible. Let i′ ∈ I
be chosen so that Ei is <i′-convex. Let <∗i be the order induced by <i′ on M/Ei, and let
<∗E′ be the order induced by <E′ on M/E ′. Via the embedding

M/E ↪→M/E ′ ×M/E1 × · · · ×M/En

let <∗ be the ordering induced on M/E by the lexicographic product of <∗E′ , <∗1, . . . , <
∗
n.

Let <E be a lifting of <∗ to M using some fixed order within E-classes (any of the given
<i will do).

Then E is <E-convex and definable from E ′, the Ei, and the various <i′ without
quantification.
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Proof of Proposition 3.10. Form Λ′ = Λ∪{0′} with 0′ < Λ. Then Λ′ is a finite distributive
lattice whose minimal element is meet-irreducible.

Let M′ = (M ′, E ′λ, <
′
L)λ∈Λ′,L∈L′ be the structure afforded by the Representation The-

orem for Λ′.
We write 0 for the minimal element of Λ (so 0 > 0′). Let 0 = E1 ∧ · · · ∧ En with Ei

meet-irreducible.
Recall that the language of M′ consists of (E ′λ |λ ∈ Λ′) and a set of orders (<′L |L ∈

L′) with L′ a covering of the meet-irreducible elements other than 0′ or 1 by linearly
ordered sets L. For each L ∈ L′, let E ′L = E ′inf L, and for each L ∈ L′, using Lemma 3.11,
let <∗L be a ∅-definable ordering of M′ for which E ′0 and E ′L are <∗L-convex, and which
agrees with <′L on M′/E ′L.

Define M =M′/E0, Eλ = E ′λ/E0 for λ ∈ Λ, and <L=<∗L /E0. Note that M is not a
quotient of the structure M′ in its original language, but a quotient of the reduct M′

0 of
M′ to the language (E ′λ, <

∗
L)λ∈Λ,L∈L′ .

Any ∅-definable relation inM pulls back to one inM′, so the ∅-definable equivalence
relations on M are the relations (Eλ |λ ∈ Λ), with E0 being equality. For λ ∈ L, Eλ is
<L-convex.

As the map λ 7→ E ′λ (λ ∈ Λ′) is an isomorphism, and Λ is a sublattice of Λ′, the map
λ 7→ Eλ (λ ∈ Λ) is an isomorphism. We are left with one key claim.

Claim 1. The structure M is homogeneous.

We prefer to rephrase the claim in a more explicit form

Claim 2. Let A be a finite substructure of M, and <A an arbitrary ordering of A. Then
there is a lifting of A to a set of representatives A′ in M′ such that the isomorphism
type of A′, with respect to the relations (E ′λ, <

′
L)λ∈Λ′,L∈L′ , is completely determined by

the induced structure on A and the ordering <A.

Let us first note that Claim 2 implies Claim 1. If A,B are isomorphic finite substruc-
tures of M, we fix an isomorphism f : A → B. We take an arbitrary ordering <A of A
and the corresponding ordering <B of B. Then (A,<A) ∼= (B,<B) via f , so by our claim
this isomorphism induces an isomorphism

f ′ : A′ → B′

in M′. By homogeneity there is an automorphism α of M′ inducing the map f ′. In
particular α preserves the relations E ′λ and <∗L, hence induces an automorphism of the
quotient M carrying A to B.

So fix (A,<A) and let Â = {â | a ∈ A} be an arbitrary set of representatives for A in
M′. We wish to specify a structure Â ∪ A′ up to isomorphism, meeting the constraints
on finite substructures of M′. Then, by homogeneity, we may embed some structure
isomorphic to Â ∪A′ into M′ over Â, and the image of the A′ part of that structure will
give the desired lifting A′. Thus, we specify Â ∪ A′ as below.

• E ′0(a′, â).

• E ′λ(a′, b̂) iff E ′λ(â, b̂) for λ ∈ Λ.
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• E ′λ(a′, b′) iff Eλ(a, b) for λ ∈ Λ; E ′0′(a′, b′) iff a = b.

• If a, b ∈ A and ¬EL(a, b), then a′ <′L b
′ iff a <L b, and a′ <′L b̂ iff a <L b.

• If a, b ∈ A and EL(a, b), then b̂ <′L a
′, and a′ <′L b

′ iff a <A b.

We now must check that Â∪A′ satisfies the constraints on finite substructures ofM′,
i.e. (a) that the E ′λ are equivalence relations respecting the structure of Λ′, (b) that the
<′L are linear orders, and (c) that for every L ∈ L and every λ ∈ L, the corresponding
equivalence relation E ′λ is <′L-convex.

(a) Since Â is a substructure of M′, the E ′λ are equivalence relations on Â. Then, the
E ′λ on A′ mirror the E ′λ on Â, and E ′λ(a

′, â) holds for every λ ∈ Λ. Thus, the E ′λ are
equivalence relations on Â ∪ A′.

(b) Fix an L ∈ L. Between E ′L-classes <′L agrees with <L. Thus E ′L is <′L-convex, and
so any cycle must appear within a single E ′L-class. In a given E ′L class, Â is already
ordered, A′ is ordered by <A, and we then put the elements of Â below those of A′.
Thus <′L will be a linear order.

(c) Fix an L ∈ L. For Eλ ∈ L, <′L agrees with <L between distinct E ′λ-classes, so there
is nothing to check for convexity.

3.4 The Number of Orders Needed for the Representation Theorem

Although we have finished the proof of the Representation Theorem, the homogeneous
structure we have produced via Lemma 3.4 consisted of all linear orders definable from
the main construction of Proposition 3.5. Before continuing to the other direction of
Conjecture 2, we take this section to provide a better bound on the number of orders
required.

Proposition 3.12. Let {Ei} be a chain of equivalence relations of height at most 2n− 1,
and let < be a linear order such that each Ei is <-convex. Then there exist n linear
orders {<j}, such that each <j is quantifier-free definable in ((Ei), <), and each Ei is
quantifier-free definable in (<, (<j)).

Proof. We may suppose the chain has height exactly 2n−1, and does not contain equality
or the universal relation, since those are already definable. Extend the chain to length
2n + 1 by letting E0 be equality, and E2n be the universal relation. In the language
(<, (<j)

n
j=1), where the <j are binary relations, enumerate the non-trivial quantifier-free

2-types containing the formula x < y (and so these 2-types merely specify whether x <j y
for each j) as (pi : 1 6 i 6 2n). We will use each pairing pi∪popi to produce an equivalence
relation.

Define the relation Rj(x, y) ⇔
∨
{i|(x<jy)∈pi}(Ei(x, y) ∧ ¬Ei−1(x, y)). We now define

<j to be the canonical irreflexive, asymmetric extension of (x < y) ∧ Rj(x, y), that is,
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x <j y ⇔ ((x < y) ∧ Rj(x, y)) ∨ ((y < x) ∧ ¬Rj(y, x)). Thus each <j is quantifier-free
definable from ((Ei), <).

Conversely, we see x(Ei\Ei−1)y ⇔ (x < y∧type(x, y) = pi)∨(y < x∧type(x, y) = popi ),
so each Ei is quantifier-free definable from (<, (<j)).

It remains to check that the relations <j are actually linear orders. Clearly <j is
irreflexive and asymmetric, so it suffices to check that it is total and has no cycle. To see
it is total, first assume x < y. Then if x 6<j y, we must have ¬Rj(x, y). But then y <j x.

We now show there is no cycle. Suppose x <j y <j z <j x. Up to a change of
notation (cyclically permuting the variables, and reversing < if needed), we may assume
x < y < z. Let d(x, y) = min(Ei : Ei(x, y)), and define d(x, z) and d(y, z) similarly. By
the <-convexity of the Ei, we have d(x, y), d(y, z) 6 d(x, z), and so the triangle inequality
gives either d(x, z) = d(x, y) or d(x, z) = d(y, z). In the first case, our definition of <j

gives x <j z iff x <j y, since type(x, z) = type(x, y) in the language (Ei), <), and similarly
in the second case it gives x <j z iff y <j z.

Qn with the lexicographic order can naturally be expressed in a language of one order
< and a chain of n−1 <-convex equivalence relations Ei, 1 6 i 6 n−1, given by xEiy iff x
and y agree in the first i coordinates. The lexicographic Q2 requires two orders to define,
and the lexicographic Q3 requires three. One might expect each new convex equivalence
relation to require an additional order, but we already see the exponential growth implied
by the above proposition by the lexicographic Q4, which also only requires three orders.

Corollary 3.13. Let Λ be a finite distributive lattice, Λ0 the poset of meet-irreducibles
of Λ\ {0, 1}, and L a set of chains covering Λ0. Then the dimension of the permutation
structure needed for the representation theorem is at most |L|+

∑
L∈L dlog2(|L|+ 1)e.

Proof. First, assume 0 is meet-irreducible. Then the intermediate structure produced
by the main construction has |L| linear orders, and each L ∈ L, considered with the
order <L, satisfies the hypotheses of Proposition 3.12. Thus, for each L ∈ L, the equiva-
lence relations labeled by elements of L are definable after the addition of dlog2(|L|+ 1)e
linear orders, and so all the meet-irreducibles of Λ0 are definable after the addition of∑

L∈L dlog2(|L|+ 1)e linear orders, and all of Λ is definable from the elements of Λ0.
The quantifier-free-definability conditions from Proposition 3.10 ensure that the struc-
ture obtained by adding these linear orders and removing the equivalence relations is still
homogeneous, and so we obtain the bound of the statement.

In the case where 0 is not meet irreducible, let Λ′ be the lattice obtained by adding a
new element 0′ below 0, and let Λ′0 be the meet-irreducibles of Λ\ {0′, 1}. Then Λ0 = Λ′0,
and so no additional orders are needed.

Consider Q2 with two equivalence relations, each given by equality in one of the
coordinates. There are no further non-trivial ∅-definable equivalence relations, and so the
above corollary gives a bound of four orders to define this structure, which is in fact the
number needed. We do not know if the bound of Corollary 3.13 is tight in general.
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4 Towards the Necessity of Distributivity

We start by recalling some definitions from the introduction.

Definition 4.1. Let M be a structure with a transitive automorphism group.

1. For ∅-definable equivalence relations F ⊂ E on M, set

[E : F ] = |C/F |

for C any E-class, and call this the index of F in E.

2. Let Λ be the lattice of ∅-definable equivalence relations on M. Then Λ has the
infinite index property (IIP) if whenever F ⊂ E for E,F ∈ Λ, [E : F ] is infinite.

Lemma 4.2. Given a homogeneous permutation structure M, let Λ be the lattice of ∅-
definable equivalence relations. Then Λ satisfies the IIP.

Proof. Let E,F ∈ Λ with F < E, and let p be a 2-type of orders that is realized in E\F .
Then p is an intersection of linear orders, and so gives a partial order on a given E-class.
Since the structure’s automorphism group is transitive, this partial order has no maximal
elements, and so contains an infinite linear order L. The 2-type between any pair of
elements of L is p, and thus every pair is E-related but not F -related. Thus [E : F ] > |L|
is infinite.

The following lemma is reminiscent of Neumann’s lemma that a group cannot be
covered by finitely many cosets of subgroups of infinite index. We generalize from the
group-theoretic setting, replacing the equivalence relations induced by subgroups with
equivalence relations in some lattice, but impose the stronger condition that this lattice
must satisfy the IIP.

Lemma 4.3. Let Λ be a finite lattice of equivalence relations satisfying the IIP, and let
E ∈ Λ with C an E-class. Let {Bi}i∈I be a finite set of equivalence classes of certain
equivalence relations in Λ such that for each of the corresponding equivalence relations
Ei ∈ Λ, Ei 6> E. Then there exists some c ∈ C\

⋃
i∈I Bi.

Proof. We proceed by induction on the height of E in the lattice. In the base case, E is
equality, and the claim is vacuous.

Now assume E is higher up. We wish to work entirely below E, so we replace each Bi

with Bi ∩ C, and replace each Ei with Ei ∩E. Let E ′ be a maximal equivalence relation
strictly below E. Then, for any Ei, we cannot have Ei > E ′ unless Ei = E ′. Since we
are trying to avoid finitely many equivalence classes, and by the IIP there are infinitely
many E ′-classes in C, we may pick an E ′-class C ′ ⊂ C that is not equal to any of the Bi.
Then, letting I ′ = {i ∈ I|Ei 6= E ′}, by induction we can find a c ∈ C ′\

⋃
i∈I′(Bi ∩ C) ⊆

C\
⋃
i∈I Bi.
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We now use the above lemma to prove a one-point extension property for homogeneous
Λ-ultrametric spaces where Λ satisfies the IIP. However, we restate the property using
amalgamation classes and diagrams.

Lemma 4.4. Let K be an amalgamation class of Λ-ultrametric spaces with Fräıssé limit
M, and suppose the lattice of ∅-definable equivalence relations in M satisfies the IIP. Let
S ∈ K, b ∈ S, e ∈ Λ, and B = {b, y} with d(b, y) = e. Then the canonical amalgam of
S and B is in K. (Alternatively, the below amalgamation diagram, with arbitrary first
factor, a single point in the base, and a single extension point in the second factor, can
be completed by canonical amalgamation.)

X© �y

•
b

e
{e
i }

Figure 4.1

Proof. Let X = S\ {b}, and identify the elements of Λ with the corresponding ∅-definable
equivalence relations inM. We choose y ∈M using Lemma 4.3 with E = e, C the e-class
containing b, and {Bi} the set of equivalence classes containing b for every equivalence
relation below e, as well as, for every xi ∈ X, the equivalence classes containing xi for
equivalence relations not above e. Note that the first group of Bi ensures that d(b, y) = e.

Now fix an xi ∈ X, let d(xi, b) = ei, and let d(xi, y) = e′. From the second group
of Bi, we have e 6 e′. Thus, using the triangle inequality for the upper bound, we have
e 6 e′ 6 e ∨ ei. Then, ei 6 e′ ∨ e = e′, so ei 6 e′ as well. Thus e′ = e ∨ ei.

Lemma 4.5. Let M be a homogeneous structure consisting of a set of equivalence rela-
tions from a finite lattice Λ of equivalence relations satisfying the IIP. Then Λ is distribu-
tive.

Proof. Let K be the amalgamation class corresponding to M, viewed as a class of Λ-
ultrametric spaces.

Claim 1. Suppose both factors of the amalgamation diagram shown in Figure 4.2 are
contained in an amalgamation class of Λ-ultrametric spaces, for every e, f, g ∈ Λ. Then
Λ is distributive.

x� �y

v•
e ∨ f

e
e

•w
f

f

(e∨g)∧(f∨g)

•
u

f
∨ g

e ∨
g g

Figure 4.2
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Let d(x, y) = h in the completed diagram. Then h 6 e and h 6 f by the triangle
inequality. Going from x to u via y, the triangle inequality gives (e∨g)∧(f ∨g) 6 h∨g 6
(e ∧ f) ∨ g, and so the claim follows.

Claim 2. K contains both factors of the amalgamation diagram shown in Figure4.2, for
every e, f, g ∈ Λ.

Because Λ satisfies the IIP, we may use the one-point extension property in Lemma
4.4 to build the factors of Figure 4.2 one point at a time. For the second factor (omitting
x), we start with y as a base point, and proceed as in Figure 4.3, adding v, w, and u, in
order.

v� v�
e ∨ f

�w w�

y•

e

y•
fe

v�

e ∨ f
e ∨ g

�u

f ∨ g

y•

f

ge

Figure 4.3

The construction of the first factor proceeds similarly, starting with x as a base point,
but in the step corresponding to the last diagram of Figure 4.3, we put d(x, u) = (e ∨
g) ∧ (f ∨ g) instead of d(x, u) = g. Since the diagram is then completed by canonical
amalgamation, in we must check that f∨((e∨g)∧(f∨g)) = f∨g and e∨((e∨g)∧(f∨g)) =
e ∨ g. Since the arguments are identical, we will only consider the first identity.

Clearly, f ∨ ((e ∨ g) ∧ (f ∨ g)) 6 f ∨ g, and f ∨ ((e ∨ g) ∧ (f ∨ g)) > f ∨ g, since
(e ∨ g) ∧ (f ∨ g) > g.

Theorem 4.6. Let Λ be the lattice of ∅-definable equivalence relations in a homogeneous
finite dimensional permutation structure M. If the reduct of M to the language of equiv-
alence relations from Λ is homogeneous, then Λ is distributive.

Proof. By Lemma 4.2, Λ satisfies the IIP. Thus, we may apply Lemma 4.5 to conclude.

5 Forbidden 2-Types

In Cameron’s homogeneous permutations, whenever a 2-type is forbidden it forces one
order to be equal to another, up to reversal. This need not always be the case in higher
dimensional homogeneous permutation structures. Consider Q4 as a lexicographic order.
As discussed following Proposition 3.12, this structure can be defined using 3 orders. Since
each ∅-definable equivalence relation is separated by a single 2-type and its opposite,
forbidding a 2-type and its opposite causes one equivalence relation to collapse to one
beneath it, and the resulting structure is the lexicographic Q3. Since we only forbid one
pair of 2-types, we cannot have made one order equal to another, up to reversal.

We know two ways to forbid 2-types in homogeneous n-dimensional permutation struc-
tures: collapse one order to another, up to reversal, or collapse one equivalence relation
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to another. In the second case, we must forbid some 3-types compatible with the allowed
2-types, i.e. 3-types such that the restriction to any 2 variables is an allowed 2-type, and
transitivity constraints are respected. The following result suggests these two construc-
tions may be typical to some degree.

Proposition 5.1. Let K be an amalgamation class of n-dimensional permutation struc-
tures. If no 3-type compatible with the allowed 2-types is forbidden, then the forbidden
2-types collectively specify that certain orders agree up to reversal.

Proof. First, assume that no two orders are equal up to reversal, since otherwise we could
pass to a reduct in which this is the case. We will use the notation [n] = {1, . . . , n} and
let
(

[n]
k

)
denote the set of k-subsets of [n]. Given 2-types p and q and X ⊂ [n], we say

p is an X-approximation to q if p and q agree on the orders indexed by elements of X.
Given a 2-type t, we will prove t is realized using induction on the size of approximations
to t. By assumption, given any X ∈

(
[n]
2

)
, there is a non-forbidden X-approximation to t;

otherwise the orders in X would have to be equal up to reversal.
Before proceeding to the inductive step, we consider the following amalgamation dia-

gram, where p, q, r are 2-types realized in K, and the type of (x3, x1) is q. (In this diagram
and the next, the label on an arrow from a point p1 to p2 gives the 2-type of (p1, p2).)

x3•

a1�
p
-

p
-

•x2

q
? r

- �a2

q

-

•
x1

q
?

r

-

q -

Figure 5.1

Claim 1. Both factors of Figure 5.1 are in K.
We consider only the first factor, since there is a symmetric argument for the second

factor. First, note that by transitivity of 2-types, the first factor is the unique amalgam
of two triangles, as shown in the following diagram:

x3
�

a1•
p
-

p
-

•x2

q
?

�
x1

q
?

q -

Figure 5.2

the electronic journal of combinatorics 23(4) (2016), #P4.44 21



Both factors of this diagram are in K because no 3-types compatible with the allowed
2-types are forbidden, so the only constraint is transitivity. However, because each triangle
has two equal sides pointing from or to the same point, all transitivity constraints are
satisfied.

Claim 2. There is a unique solution to the diagram in Figure 5.1, given by a1 <i a2 iff <i

is true in at least two of p, q, and r.
Note that every pair of p, q, and r appears on a path of length two from a1 to a2. Thus

if <i is true in some pair, the path containing that pair will force a1 <i a2, and vice versa
if <i is false in some pair.

We are now ready to treat the inductive step of our argument. Suppose the 2-type
t has a non-forbidden X-approximation for every X ∈

(
[n]
k

)
. Fix Y ∈

(
[n]
k+1

)
. Without

loss of generality, we may assume Y = [k + 1]. Let p be a {1, . . . , k}-approximation
to t, q a {1, . . . , k − 1, k + 1}-approximation to t, and r a {k, k + 1}-approximation to
t. Then, by Claim 2, the solution to the corresponding diagram in Figure 5.1 will be a
Y -approximation to t.

As mentioned in the introduction, this confirms a special case of the Primitivity Con-
jecture.

A Homogeneity Background

A.1 Fräıssé’s Theorem

For this appendix, let L be a countable language of relations and M a countable L-
structure, although the notions introduced here can be defined in greater generality.

Definition A.1. M is homogeneous if any isomorphism between finite substructures of
M extends to an automorphism of M .

Let Age(M) be the class of finite L-structures isomorphic to a substructure of M .
Note Age(M) satisfies the following properties:

(i) Age(M) is closed under isomorphism and substructure

(ii) Age(M) has countably many isomorphism types

(iii) Given, B1, B2 ∈ Age(M), there is a C ∈ Age(M) such that B1, B2 embed in C

Definition A.2. A class K of finite L-structures has the amalgamation property (and will
be called an amalgamation class) if, given A,B1, B2 ∈ K with embeddings fi : A → Bi,
there exist a C ∈ K and embeddings gi : Bi → C such that g1 ◦ f1 = g2 ◦ f2.

Theorem (Fräıssé). (a) Let M be homogeneous. Then Age(M) has the amalgamation
property.
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(b) Let K be a collection of finite L-structures satisfying (i)− (iii) from above as well as
the amalgamation property. Then, up to isomorphism, there is a unique countable,
homogeneous L-structure M with Age(M) = K.

The structure M with Age(M) = K from part (b) is called the Fräıssé limit of K. Part
(b) of the above theorem provides a way to construct homogeneous structures.

Example. Let K be the class of all finite n-dimensional permutation structures, for some
n. Since linear orders can be amalgamated, and the amalgamation strategies can be
carried out independently, K is an amalgamation class. Thus it has a Fräıssé limit, called
the fully generic n-dimensional permutation structure.

For more about homogeneity, see Macpherson’s survey [3], from which the above ma-
terial is largely taken.

A.2 Amalgamation Problems and Amalgamation Diagrams

In an amalgamation problem, one is asked to verify the amalgamation condition for specific
structures A,B1, B2, and embeddings fi : A ↪→ Bi. This problem can be represented by
an amalgamation diagram.

In these diagrams, the points of the base A are represented by points, while the
points of Bi\A, which we call “extension points”, are represented by circled points. We
sometimes wish to depict an arbitrary finite set, in which case we use a large circle instead
of individual points. The extension points of the first factor B1 are placed on the left side
of the diagram, while those of the second factor B2 are placed on the right side.

Since we are only considering binary languages, the relations are given by putting an
edge between any pair of points in one of the Bi and labeling it with the 2-type between
these points; a solution to the problem consists of determining the 2-types between the
extension points in distinct Bi, which may then be placed on a dotted line between the
points.

Examples of amalgamation diagrams, both with and without solutions, may be found
throughout the paper.

It is worth noting that in order to verify that some class satisfies the amalgamation
property, it suffices to verify a weaker form called 2-point amalgamation, in which each
Bi contains one extension point. Although this is true in general, the proof is particularly
simple for the cases in this paper since:

• The languages we consider are binary.

• In amalgamation strategies we consider, to determine the 2-type between two ex-
tension points, only those extension points and the base are used.

By the first point, a general amalgamation problem only requires determining the 2-types
between extension points in separate factors. By the second point, each of these 2-types
can be determined independently by solving the 2-point amalgamation problem containing
the same base and the two relevant extension points.
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