Permanent index of matrices associated with graphs

Tsai-Lien Wong*
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, Taiwan
tlwong@math.nsysu.edu.tw

Xuding Zhu ${ }^{\dagger}$
Department of Mathematics
Zhejiang Normal University China
xudingzhu@gmail.com

Submitted: Aug 17, 2015; Accepted: Jan 27, 2017; Published: Feb 17, 2017
Mathematics Subject Classifications: 05C50, 05C78

Abstract

A total weighting of a graph G is a mapping f which assigns to each element $z \in V(G) \cup E(G)$ a real number $f(z)$ as its weight. The vertex sum of v with respect to f is $\phi_{f}(v)=\sum_{e \in E(v)} f(e)+f(v)$. A total weighting is proper if $\phi_{f}(u) \neq \phi_{f}(v)$ for any edge $u v$ of G. A $\left(k, k^{\prime}\right)$-list assignment is a mapping L which assigns to each vertex v a set $L(v)$ of k permissible weights, and assigns to each edge e a set $L(e)$ of k^{\prime} permissible weights. We say G is $\left(k, k^{\prime}\right)$-choosable if for any $\left(k, k^{\prime}\right)$-list assignment L, there is a proper total weighting f of G with $f(z) \in L(z)$ for each $z \in V(G) \cup E(G)$. It was conjectured in [T. Wong and X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011), 198-212] that every graph is (2,2)-choosable and every graph with no isolated edge is $(1,3)$-choosable. A promising tool in the study of these conjectures is Combinatorial Nullstellensatz. This approach leads to conjectures on the permanent indices of matrices A_{G} and B_{G} associated to a graph G. In this paper, we establish a method that reduces the study of permanent of matrices associated to a graph G to the study of permanent of matrices associated to induced subgraphs of G. Using this reduction method, we show that if G is a subcubic graph, or a 2-tree, or a Halin graph, or a grid, then A_{G} has permanent index 1. As a consequence, these graphs are (2,2)-choosable.

Keywords: Permanent index, matrix, total weighting

1 Introduction

A total weighting of a graph G is a mapping f which assigns to each element $z \in V(G) \cup$ $E(G)$ a real number $f(z)$ as its weight. Given a total weighting f of G, for a vertex v

[^0]of G, the vertex sum of v with respect to f is defined as $\phi_{f}(v)=\sum_{e \in E(v)} f(e)+f(v)$. A total weighting is proper if ϕ_{f} is a proper colouring of G, i.e., for any edge $u v$ of G, $\phi_{f}(u) \neq \phi_{f}(v)$. A total weighting ϕ with $\phi(v)=0$ for all vertices v is also called an edge weighting. A proper edge weighting ϕ with $\phi(e) \in\{1,2, \ldots, k\}$ for all edges e is called a vertex colouring k-edge weighting of G. Karonski, Łuczak and Thomason [7] first studied edge weighting of graphs. They conjectured that every graph with no isolated edges has a vertex colouring 3 -edge weighting. This conjecture received considerable attention, and is called the 1-2-3 conjecture. Addario-Berry, Dalal, McDiarmid, Reed and Thomason [2] proved that every graph with no isolated edges has a vertex colouring k-edge weighting for $k=30$. The bound k was improved to $k=16$ by Addario-Berry, Dalal and Reed in [1] and to $k=13$ by Wang and Yu in [10], and to $k=5$ by Kalkowski [8].

Total weighting of graphs was first studied by Przybyło and Woźniak in [11], where they defined $\tau(G)$ to be the least integer k such that G has a proper total weighting ϕ with $\phi(z) \in\{1,2, \ldots, k\}$ for $z \in V(G) \cup E(G)$. They proved that $\tau(G) \leqslant 11$ for all graphs G, and conjectured that $\tau(G)=2$ for all graphs G. This conjecture is called the 1-2 conjecture. A breakthrough on 1-2 conjecture was obtained by Kalkowski, Karoński and Pfender in [9], where it was proved that every graph G has a proper total weighting ϕ with $\phi(v) \in\{1,2\}$ for $v \in V(G)$ and $\phi(e) \in\{1,2,3\}$ for $e \in E(G)$.

The list version of edge weighting of graphs was introduced by Bartnicki, Grytczuk and Niwczyk in [6], and the list version of total weighting of graphs was introduced independently by Wong and Zhu in [13] and by Przybyło and Woźniak [12]. Suppose $\psi: V(G) \cup E(G) \rightarrow\{1,2, \ldots$,$\} is a mapping which assigns to each vertex and each$ edge of G a positive integer. A ψ-list assignment of G is a mapping L which assigns to $z \in V(G) \cup E(G)$ a set $L(z)$ of $\psi(z)$ real numbers. Given a total list assignment L, a proper L-total weighting is a proper total weighting ϕ with $\phi(z) \in L(z)$ for all $z \in V(G) \cup E(G)$. We say G is total weight ψ-choosable if for any ψ-list assignment L, there is a proper L-total weighting of G. We say G is $\left(k, k^{\prime}\right)$-choosable if G is ψ-total weight choosable, where $\psi(v)=k$ for $v \in V(G)$ and $\psi(e)=k^{\prime}$ for $e \in E(G)$.

As strengthening of the 1-2-3 conjecture and the 1-2 conjecture, it was conjectured in [13] that every graph with no isolated edges is (1,3)-choosable and every graph is (2,2)choosable. Thes two conjectures received a lot of attention and are verified for some special classes of graphs. In particular, it was shown in [14] that every graph is (2,3)-choosable. A promising tool in the study of these conjectures is Combinatorial Nullstellensatz. For each $z \in V(G) \cup E(G)$, let x_{z} be a variable associated to z. Fix an orientation D of G. Consider the polynomial

$$
P_{G}\left(\left\{x_{z}: z \in V(G) \cup E(G)\right\}\right)=\prod_{e=u v \in E(D)}\left(\left(\sum_{e \in E(v)} x_{e}+x_{v}\right)-\left(\sum_{e \in E(u)} x_{e}+x_{u}\right)\right) .
$$

Assign a real number $\phi(z)$ to the variable x_{z}, and view $\phi(z)$ as the weight of z. Let $P_{G}(\phi)$ be the evaluation of the polynomial at $x_{z}=\phi(z)$. Then ϕ is a proper total weighting of G if and only if $P_{G}(\phi) \neq 0$. Note that P_{G} has degree $|E(G)|$.

An index function of G is a mapping η which assigns to each vertex or edge z of G a
non-negative integer $\eta(z)$ and an index function η is valid if $\sum_{z \in V(G) \cup E(G)} \eta(z)=|E(G)|$. For a valid index function η, let c_{η} be the coefficient of the monomial $\prod_{z \in V \cup E} x_{z}^{\eta(z)}$ in the expansion of P_{G}. It follows from Combinatorial Nullstellensatz [3,5] that if $c_{\eta} \neq 0$, and L is a list assignment which assigns to each $z \in V(G) \cup E(G)$ a set $L(z)$ of $\eta(z)+1$ real numbers, then there exists a mapping ϕ with $\phi(z) \in L(z)$ such that

$$
P_{G}(\phi) \neq 0 .
$$

So to prove a graph G is $\left(k, k^{\prime}\right)$-choosable, it suffices to show that there is a valid index function η with $\eta(v) \leqslant k-1$ for $v \in V(G), \eta(e) \leqslant k^{\prime}-1$ for $e \in E(G)$ and $c_{\eta} \neq 0$.

We write the polynomial $P_{G}\left(\left\{x_{z}: z \in V(G) \cup E(G)\right\}\right)$ as

$$
P_{G}\left(\left\{x_{z}: z \in V(G) \cup E(G)\right\}\right)=\prod_{e \in E(D)} \sum_{z \in V(G) \cup E(G)} A_{G}[e, z] x_{z}
$$

It is straightforward to verify that for $e \in E(G)$ and $z \in V(G) \cup E(G)$, if $e=(u, v)$ (oriented from u to v), then

$$
A_{G}[e, z]= \begin{cases}1 & \text { if } z=v, \text { or } z \neq e \text { is an edge incident to } v \\ -1 & \text { if } z=u, \text { or } z \neq e \text { is an edge incident to } u \\ 0 & \text { otherwise. }\end{cases}
$$

Now A_{G} is a matrix, whose rows are indexed by the edges of G and the columns are indexed by edges and vertices of G. Let B_{G} be the submatrix of A_{G} consisting of those columns of A_{G} indexed by edges. It turns out that $\left(k, k^{\prime}\right)$-choosability of a graph G is related to the permanent indices of A_{G} and B_{G}.

For an $m \times m$ matrix A (whose entries are reals), the permanent of A is defined as

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{m}} \prod_{i=1}^{m} A[i, \sigma(i)]
$$

where S_{m} is the symmetric group of order m, i.e., the summation is taken over all the permutations σ over $\{1,2, \ldots, m\}$. The permanent index of a matrix A, denoted by $\operatorname{pind}(A)$, is the minimum integer k such that there is a matrix A^{\prime} such that $\operatorname{per}\left(A^{\prime}\right) \neq 0$, each column of A^{\prime} is a column of A and each column of A occurs in A^{\prime} at most k times (if such an integer k does not exist, then $\operatorname{pind}(A)=\infty$).

Consider the matrix A_{G} defined above. Given a vertex or edge z of G, let $A_{G}(z)$ be the column of A_{G} indexed by z. For an index function η of G, let $A_{G}(\eta)$ be the matrix, each of its column is a column of A_{G}, and each column $A_{G}(z)$ of A_{G} occurs $\eta(z)$ times as a column of $A_{G}(\eta)$. It is known $[4,13]$ and easy to verify that for a valid index function η of $G, c_{\eta} \neq 0$ if and only if $\operatorname{per}\left(A_{G}(\eta)\right) \neq 0$. Thus if $\operatorname{pind}\left(A_{G}\right)=1$, then G is $(2,2)$-choosable; if $\operatorname{pind}\left(B_{G}\right) \leqslant 2$, then G is $(1,3)$-choosable. The following two conjectures are proposed in [13]:

Conjecture 1. [6] For any graph G with no isolated edges, $\operatorname{pind}\left(B_{G}\right) \leqslant 2$.

Conjecture 2. [13] For any graph G, $\operatorname{pind}\left(A_{G}\right)=1$.
The discussion above shows that Conjecture 1 implies that any graph without isolated edges is (1,3)-choosable, and Conjecture 2 implies that every graph is (2,2)-choosable.

We say an index function η is non-singular if there is a valid index function $\eta^{\prime} \leqslant \eta$ with $\operatorname{per}\left(A_{G}\left(\eta^{\prime}\right)\right) \neq 0$. In this paper, we are interested in non-singularity of index functions η for which $\eta(e)=1$ for every edge e and $\eta(v)$ can be any non-negative integers for any every vertex v. Assume η is such an index function of G. We delete a vertex v, and construct an index function η^{\prime} for $G-v$ from the restriction of η to $G-v$ by doing the following modification: $\eta(v)$ of the neighbours u of v have $\eta^{\prime}(u)=\eta(u)+1$, and all the other neighbours u of v (if any) have $\eta^{\prime}(u)=\eta(u)-1$. We prove that if η^{\prime} is a nonsingular index function of $G-v$, then η is a non-singular index function of G. Applying this reduction method, we prove that Conjecture 2 holds for subcubic graphs, 2-trees, Halin graphs and grids. Consequently, subcubic graphs, 2-trees, Halin graphs and grids are (2,2)-choosable.

2 Reduction to induced subgraphs

To study non-singularity of index functions of G, we shall consider matrices whose columns are linear combinations of columns of A_{G}. Assume A is a square matrix whose columns are linear combinations of columns of A_{G}. Define an index function $\eta_{A}: V(G) \cup E(G) \rightarrow$ $\{0,1, \ldots$,$\} as follows:$

For $z \in V(G) \cup E(G), \eta_{A}(z)$ is the number of columns of A in which $A_{G}(z)$ appears with nonzero coefficient.

It is known [13] that columns of A_{G} are not linearly independent. In particular, if $e=u v$ is an edge of G, then

$$
\begin{equation*}
A_{G}(e)=A_{G}(u)+A_{G}(v) \tag{1}
\end{equation*}
$$

Thus a column of A may have different ways to be expressed as linear combinations of columns of A_{G}. So the index function η_{A} is not uniquely determined by A. Instead, it is determined by the way we choose to express the columns of A as linear combinations of columns of A_{G}. For simplicity, we use the notation η_{A}, however, whenever the function η_{A} is used, an explicit expression of the columns of A as linear combinations of columns of A_{G} is given, and we refer to that specific expression.

It is well-known (and follows easily from the definition) that the permanent of a matrix is multi-linear on its column vectors and row vectors: If a column C of A is a linear combination of two columns vectors $C=\alpha C^{\prime}+\beta C^{\prime \prime}$, and A^{\prime} (respectively, $A^{\prime \prime}$) is obtained from A by replacing the column C with C^{\prime} (respectively, with $C^{\prime \prime}$), then

$$
\begin{equation*}
\operatorname{per}(A)=\alpha \operatorname{per}\left(A^{\prime}\right)+\beta \operatorname{per}\left(A^{\prime \prime}\right) . \tag{2}
\end{equation*}
$$

By using (2) repeatedly, one can find matrices $A_{1}, A_{2}, \ldots, A_{q}$ and real numbers a_{1}, a_{2}, \ldots, a_{q} such that

$$
\operatorname{per}(A)=\sum_{j=1}^{q} a_{j} \operatorname{per}\left(A_{j}\right)
$$

where each A_{j} is a square matrix consisting of columns of A_{G}, with each column $A_{G}(z)$ appears at most $\eta(z)$ times. Thus if $\operatorname{per}(A) \neq 0$, then one of the $\operatorname{per}\left(A_{j}\right) \neq 0$. Thus if $\operatorname{per}(A) \neq 0$, then η_{A} is a non-singular index function of G.

Theorem 3. Suppose G is a graph, η is an index function of G for which $\eta(e)=1$ for every edge e. Let v be a vertex of G. Let η^{\prime} be obtained from the restriction of η to $G-v$ by the following modification: Choose $d_{G}(v)-\eta(v)$ neighbours u of v with $\eta(u) \geqslant 1$, and let $\eta^{\prime}(u)=\eta(u)-1$. For the other $\eta(v)$ neighbours u of v, let $\eta^{\prime}(u)=\eta(u)+1$. If η^{\prime} is a non-singular index function of $G-v$, then η is a non-singular index function of G.

Theorem 3 follows from the following more general statement.
Theorem 4. Suppose G is a graph, v is a vertex of G and $E(v)=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, with $e_{i}=v v_{i}$ for $i=1,2, \ldots, k$. Assume η is an index function of G. Here $\eta(e)$ can be any nonnegative integer. Choose a subset J of $\{1,2, \ldots, k\}$ and integers $1 \leqslant k_{i} \leqslant \min \left\{\eta\left(e_{i}\right), \eta\left(v_{i}\right)\right\}$ such that $\eta(v)+\sum_{i \in J} k_{i}=k$. Let η^{\prime} be the index function of $G^{\prime}=G-v$ which is equal to the restriction of η to $G-v$, except that

1. For $i \in J, \eta^{\prime}\left(v_{i}\right)=\eta\left(v_{i}\right)-k_{i}$.
2. For $i \in\{1,2, \ldots, k\} \backslash J, \eta^{\prime}\left(v_{i}\right)=\eta\left(v_{i}\right)+\eta\left(e_{i}\right)$.

If η^{\prime} is a non-singular index function for G^{\prime}, then η is a non-singular index function for G.

Proof. Assume that η^{\prime} is non-singular. Let $\eta^{\prime \prime} \leqslant \eta^{\prime}$ be a valid index function with $\operatorname{per}\left(A_{G^{\prime}}\left(\eta^{\prime \prime}\right)\right) \neq 0$.

Assume $|E(G)|=m$ and $\left|E\left(G^{\prime}\right)\right|=m^{\prime}=m-k$. By viewing each vertex and each edge of G^{\prime} as a vertex and an edge of $G, A_{G}\left(\eta^{\prime \prime}\right)$ is an $m \times m^{\prime}$ matrix, consisting m^{\prime} columns of A_{G}. First we extend $A_{G}\left(\eta^{\prime \prime}\right)$ into an $m \times m$ matrix A by adding k copies of the column $A_{G}(v)$. The added k columns has k rows (the rows indexed by edges incident to v) that are all 1's (with all these edges oriented towards v), and all the other entries of these k columns are 0 . Therefore $\operatorname{per}(M)=\operatorname{per}\left(A_{G^{\prime}}\left(\eta^{\prime \prime}\right)\right) k$!, and hence $\operatorname{per}(M) \neq 0$.

Starting from the matrix M, for each $i \in\{1,2, \ldots, k\} \backslash J$, remove $\min \left\{\eta\left(e_{i}\right), \eta^{\prime \prime}\left(v_{i}\right)\right\}$ copies of the column $A_{G}\left(v_{i}\right)$ and add $\min \left\{\eta\left(e_{i}\right), \eta^{\prime \prime}\left(v_{i}\right)\right\}$ copies of the column $A_{G}\left(e_{i}\right)$. Denote by M^{\prime} the resulting matrix.
Claim 5. For the matrix M^{\prime} constructed above, we have $\operatorname{per}\left(M^{\prime}\right)=\operatorname{per}(M)$.
Proof. Since by (1), $A_{G}\left(e_{i}\right)=A_{G}\left(v_{i}\right)+A_{G}(v)$, we re-write $\min \left\{\eta\left(e_{i}\right), \eta^{\prime \prime}\left(v_{i}\right)\right\}$ copies of the column $A_{G}\left(e_{i}\right)$ of M^{\prime} as $A_{G}(v)+A_{G}\left(v_{i}\right)$. Then we expand the permanent using its multilinear property (i.e. using (2) repeatedly), to obtain the following equation:

$$
\operatorname{per}\left(M^{\prime}\right)=\operatorname{per}(M)+\sum_{M^{\prime \prime}} \operatorname{per}\left(M^{\prime \prime}\right)
$$

where $M^{\prime \prime}$ are those matrices which contain at least $k+1$ copies of the column $A_{G}(v)$. Since these $k+1$ columns has all 1 's in k rows and 0 in all other entries, we have $\operatorname{per}\left(M^{\prime \prime}\right)=0$ for all $M^{\prime \prime}$, and so $\operatorname{per}\left(M^{\prime}\right)=\operatorname{per}(M)$.

For each $i \in J$, write k_{i} copies of $A_{G}(v)$ in M^{\prime} as $A_{G}\left(e_{i}\right)-A_{G}\left(v_{i}\right)$. Note that this step does not change the matrix, since $A_{G}(v)=A_{G}\left(e_{i}\right)-A_{G}\left(v_{i}\right)$ (by (1)). Now each column of M^{\prime} is a linear combination of columns of A_{G}.

We shall show that, with the linear combination of columns of M^{\prime} given in the above paragraph, $\eta_{M^{\prime}}(z) \leqslant \eta(z)$ for $z \in V(G) \cup E(G)$.

If $z \notin\left\{e_{i}, v_{i}: i=1,2, \ldots, k\right\} \cup\{v\}, \eta_{M^{\prime}}(z)=\eta_{M}(z) \leqslant \eta^{\prime \prime}(z) \leqslant \eta^{\prime}(z)=\eta(z)$. If $i \in\{1,2, \ldots, k\}-J$, then $\eta_{M^{\prime}}\left(e_{i}\right)=\min \left\{\eta\left(e_{i}\right), \eta^{\prime \prime}\left(v_{i}\right)\right\} \leqslant \eta\left(e_{i}\right)$, and $\eta_{M^{\prime}}\left(v_{i}\right)=\eta_{M}\left(v_{i}\right)-$ $\min \left\{\eta\left(e_{i}\right), \eta^{\prime \prime}\left(v_{i}\right)\right\} \leqslant \max \left\{0, \eta^{\prime \prime}\left(v_{i}\right)-\eta\left(e_{i}\right)\right\} \leqslant \eta^{\prime}\left(v_{i}\right)-\eta\left(e_{i}\right)=\eta\left(v_{i}\right)$. If $i \in J$, then $\eta_{M^{\prime}}\left(e_{i}\right)=k_{i} \leqslant \eta\left(e_{i}\right)$ and $\eta_{M^{\prime}}\left(v_{i}\right)=\eta^{\prime \prime}\left(v_{i}\right)+k_{i} \leqslant \eta^{\prime}\left(v_{i}\right)+k_{i}=\eta\left(v_{i}\right)$. Finally, $\eta_{M^{\prime}}(v)=$ $k-\sum_{i \in J} k_{i}=\eta(v)$. As $\operatorname{per}\left(M^{\prime}\right) \neq 0$, we conclude that η is a non-singular index function for G. This completes the proof of Theorem 4.

Theorem 3 follows from Theorem 4 by choosing $k_{i}=1$ and $|J|=d(v)-\eta(v)$. By definition, if $\eta^{\prime \prime}$ is non-singular and $\eta^{\prime} \geqslant \eta^{\prime \prime}$, then η^{\prime} is also non-singular. So the following is equivalent to Theorem 3.

Theorem 6. Suppose G is a graph, η is an index function of G for which $\eta(e)=1$ for every edge e. Let v be a vertex of G. Let η^{\prime} be obtained from the restriction of η to $G-v$ by the following modification: Choose at least $d_{G}(v)-\eta(v)$ neighbours u of v with $\eta(u) \geqslant 1$, and let $\eta^{\prime}(u)=\eta(u)-1$. For the other neighbours u of v, let $\eta^{\prime}(u)=\eta(u)+1$. If η^{\prime} is a non-singular index function of $G-v$, then η is a non-singular index function of G.

We shall apply Theorem 6 repeatedly and delete a sequence of vertices in order. We need to record which vertices are deleted, and when a vertex is deleted, for which neighbours u we have $\eta^{\prime}(u)=\eta(u)+1$. For this purpose, instead of really removing the deleted vertices, we indicate the deletion of v by orient all the edges incident to v from v to its neighbours, and then choose a subset of these oriented edges (to indicate those neighbours u for which $\eta^{\prime}(u)=\eta(u)+1$).

The index function η is changing in the process of the deletion. For convenience, we denote by η_{i} the index function after the deletion of the i th vertex. In particular, $\eta_{0}=\eta$.

Assume a vertex v is deleted in the i th step, for each neighbour u of v (at the time v is deleted), orient the edge as an arc from v to u. After a sequence of vertices are deleted, we obtain a digraph D formed by edges incident to the "deleted" vertices. Let D^{\prime} be the sub-digraph of D formed by those arcs (v, u) with u be the neighbour of v (at the time v is deleted) and for which we have $\eta^{\prime}(u)=\eta(u)+1$.

If u is deleted in the i th step, then $d_{D^{\prime}}^{+}(u) \leqslant \eta_{i-1}(u)$. After the i th step, all edges incident to u are oriented. On the other hand, $d_{D^{\prime}}^{-}(u)$ is the number of indices $j<i$ for which $\eta_{j}(u)=\eta_{j-1}(u)+1$, and $d_{D}^{-}(u)-d_{D^{\prime}}^{-}(u)$ is the number of indices $j<i$ for which $\eta_{j}(u)=\eta_{j-1}(u)-1$. Thus $d_{D^{\prime}}^{+}(u) \leqslant \eta(u)+d_{D^{\prime}}^{-}(u)-\left(d_{D}^{-}(u)-d_{D^{\prime}}^{-}(u)\right)$.

If after the i th step, u is not deleted, then $d_{D^{\prime}}^{+}(u)=0$ and $\eta_{i}(u)=\eta(u)+d_{D^{\prime}}^{-}(u)-$ $\left(d_{D}^{-}(u)-d_{D^{\prime}}^{-}(u)\right) \geqslant 0$.

The following corollary summarize the final effect of the repeated application of Theorem 3.

Corollary 7. Suppose G is a graph, η is an index function of G with $\eta(e)=1$ for all edges e, and X is a subset of $V(G)$. Let $G^{\prime}=G-E[X]$ be obtained from G by deleting edges in $G[X]$. Let D be an acyclic orientation of G^{\prime}, in which each vertex $v \in X$ is a sink. Assume D^{\prime} is a sub-digraph of D such that for all $v \in V(D)$,

$$
\begin{equation*}
\eta(v)+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v) \geqslant d_{D^{\prime}}^{+}(v) \tag{*}
\end{equation*}
$$

Let η^{\prime} be the index function defined as $\eta^{\prime}(e)=1$ for every edge e of $G[X]$ and $\eta^{\prime}(v)=$ $\eta(v)+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)$ for $v \in X$. If η^{\prime} is a non-singular index function for $G[X]$, then η is a non-singular index function for G.

Proof. Assume η^{\prime} is non-singular for $G[X]$. We shall prove that η is non-singular for G. We prove this by induction on $|V-X|$. If $V-X=\emptyset$, then $\eta=\eta^{\prime}$ and there is nothing to prove.

Assume $V-X \neq \emptyset$. Since the orientation D is acyclic, there is a source vertex $v \notin X$. Let $e_{1}, e_{2}, \ldots, e_{k}$ be the set of edges incident to v and $e_{i}=v v_{i}$.

Consider the graph $G-v$. Let $\eta^{\prime \prime}$ be the index function on $G-v$ defined as $\eta^{\prime \prime}=\eta$ on $G-v$, except that for $i=1,2, \ldots, k$, if $e_{i} \notin D^{\prime}$, then $\eta^{\prime \prime}\left(v_{i}\right)=\eta\left(v_{i}\right)-1$, and if $e_{i} \in D^{\prime}$, then $\eta^{\prime \prime}\left(v_{i}\right)=\eta\left(v_{i}\right)+1$.

Let $H=D-v$ and $H^{\prime}=D^{\prime}-v$. We shall show that

$$
\begin{equation*}
\eta^{\prime \prime}(u)+2 d_{H^{\prime}}^{-}(u)-d_{H}^{-}(u) \geqslant d_{H^{\prime}}^{+}(u) \text { for all } u \in V(H) \tag{**}
\end{equation*}
$$

If $u \notin\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then $(* *)$ is the same as $(*)$. If $u=v_{i}$ and $e_{i} \in D^{\prime}$, then $\eta^{\prime \prime}\left(v_{i}\right)=$ $\eta\left(v_{i}\right)+1, d_{H^{\prime}}^{-}\left(v_{i}\right)=d_{D^{\prime}}^{-}\left(v_{i}\right)-1, d_{H}^{-}\left(v_{i}\right)=d_{D}^{-}\left(v_{i}\right)-1$ and $d_{H}^{+}\left(v_{i}\right)=d_{D}^{+}\left(v_{i}\right)$. So ($* *$) follows from (*). If $u=v_{i}$ and $e_{i} \notin D^{\prime}$, then $\eta^{\prime \prime}\left(v_{i}\right)=\eta\left(v_{i}\right)-1, d_{H^{\prime}}^{-}\left(v_{i}\right)=d_{D^{\prime}}^{-}\left(v_{i}\right), d_{H}^{-}\left(v_{i}\right)=$ $d_{D}^{-}\left(v_{i}\right)-1$ and $d_{H}^{+}\left(v_{i}\right)=d_{D}^{+}\left(v_{i}\right)$. Again (**) follows from (*).

Therefore, by induction hypothesis, $\eta^{\prime \prime}$ is non-singular for $G-v$. Apply Theorem 3 to $\eta^{\prime \prime}$ and η, with $J=\left\{i: 1 \leqslant i \leqslant k, e_{i} \notin D^{\prime}\right\}$ and $k_{i}=1$ for $i \in J$, we conclude that η is non-singular for G.

3 Application of the reduction method

Lemma 8. Suppose G is a connected graph, and η is an index function with $\eta(e)=1$ for all $e \in E(G)$. Assume one of the following holds:

- $\eta(v) \geqslant \max \left\{1, d_{G}(v)-2\right\}$ for every vertex v.
- Each vertex v has $\eta(v) \geqslant d_{G}(v)-2$ and at least one vertex v has $\eta(v) \geqslant d_{G}(v)$.

Then η is a non-singular index function of G.
Proof. Assume the lemma is not true and G is a counterexample with minimum number of vertices.

Assume first that $\eta(v) \geqslant \max \left\{1, d_{G}(v)-2\right\}$ for all v. By reducing the value of η if needed, we may assume that $\eta(v)=\max \left\{1, d_{G}(v)-2\right\}$. Let v be a non-cut vertex of G
and let v_{1}, \ldots, v_{k} be the neighbours of v. Consider the graph $G-v$. Let η^{\prime} be the index function of $G-v$ defined as $\eta^{\prime}=\eta$, except that $\eta^{\prime}\left(v_{i}\right)=\eta\left(v_{i}\right)-1$ for $i=1,2, \ldots, k-1$ and $\eta^{\prime}\left(v_{k}\right)=\eta\left(v_{k}\right)+1$. For each $i \in\{1,2, \ldots, k-1\}$, we have $\eta^{\prime}\left(v_{i}\right) \geqslant d_{G-v}\left(v_{i}\right)-2$, and $\eta^{\prime}\left(v_{k}\right) \geqslant d_{G-v}\left(v_{k}\right)$. As $G-v$ is connected, the condition of the lemma is satisfied by $G-v$ and η^{\prime}. By the minimality of G, η^{\prime} is a non-singular index function for $G-v$. By Theorem 3, η is a non-singular index function for G.

Assume each vertex u has $\eta(u) \geqslant d_{G}(u)-2$ and one vertex v has $\eta(v) \geqslant d_{G}(v)$. Let η^{\prime} be the index function of $G-v$ defined as $\eta^{\prime}=\eta$ except that $\eta^{\prime}(u)=\eta(u)+1$ for all neighbours u of v. Note that for all the neighbours u of $v, \eta^{\prime}(u) \geqslant d_{G-v}(u)$. Thus each component of $G-v$, together with η^{\prime}, satisfies the condition of the lemma. By the minimality of G, η^{\prime} is a non-singular index function for $G-v$. Apply Theorem 3 again, we conclude that η is a non-singular index function for G.

A graph G is called subcubic if G has maximum degree at most 3 .
Corollary 9. Conjecture 2 holds for subcubic graphs, i.e., if G is a subcubic graph, then $\operatorname{pind}\left(A_{G}\right)=1$. As a consequence, subcubic graphs are (2,2)-choosable.

Proof. If G has maximum degree at most 3 , then it follows from Lemma 8 that $\eta(z)=1$ for all $z \in V(G) \cup E(G)$ is a non-singular index function.

A graph G is a 2 -tree if there is an acyclic orientation of G (also denoted by G) such that the following hold: (1) there are two adjacent vertices v_{0}, v_{1} with $d_{G}^{+}\left(v_{i}\right)=i(i=0,1)$. (2) every other vertex v has $d_{G}^{+}(v)=2$, and the two out-neighbours of v are adjacent. If $N_{G}^{+}(v)=\{u, w\}$ and (u, w) is an arc, then v is called a son of the arc $e=(u, w)$. For an acyclic oriented graph G, for $v \in V(G)$, let $\rho_{G}(v)$ be the length of the longest directed path ending at v. So if v is a source, then $\rho_{G}(v)=0$.

Theorem 10. Let G be a 2-tree and let η be an index function of G. Assume $\eta(z) \geqslant 1$ for all $z \in E(G) \cup V(G)$, except that possibly there is one arc (u, w) with $\rho_{G}(u) \leqslant 1$, for which $\eta(w) \geqslant 0$ and $\eta(u) \geqslant 2$. Then η is non-singular for G.

Proof. Assume the theorem is not true and G is a counterexample with minimum number of vertices. If the special arc (u, w) specified in the theorem does not exist, then let $e=(u, w)$ be an arc which has at least one son, and with $\rho_{G}(u)=1$. Note that all the sons of e are sources. Let v be a son of (u, w) and let η^{\prime} be the index function of $G^{\prime}=G-v$ which is equal to η, except that $\eta^{\prime}(u)=\eta(u)+1 \geqslant 2$ and $\eta^{\prime}(w)=\eta(w)-1 \geqslant 0$. Then G^{\prime} and η^{\prime} satisfying the condition of the theorem, with e be the special edge (note that $\rho_{G-v}(u) \leqslant \rho_{G}(u)=1$). Hence η^{\prime} is non-singular for G^{\prime}. It follows from Theorem 3 that η is non-singular for G.

Assume the special arc $e=(u, w)$ exists. If u is a source, then delete u, and let η^{\prime} be the index function of $G^{\prime}=G-u$ which is equal to η, except that $\eta^{\prime}(v)=\eta(v)+1$ for neighbours v of u. Then $\eta^{\prime}(v) \geqslant 1$ for each vertex of G^{\prime}, hence G^{\prime} and η^{\prime} satisfying the condition of the theorem. So η^{\prime} is non-singular for G^{\prime}, and it follows from Theorem 3 that η is non-singular for G.

If u is not a source vertex and e has a son v, then v is a source vertex. We delete v and let η^{\prime} be the index function of $G^{\prime}=G-v$ which is equal to η, except that $\eta^{\prime}(u)=\eta(u)-1$ and $\eta^{\prime}(w)=\eta(w)+1$. Then G^{\prime} and η^{\prime} satisfying the condition of the theorem, and hence η^{\prime} is non-singular for G^{\prime}. It follows from Theorem 3 that η is non-singular for G.

If u is not a source vertex and e has no son, then there is an $\operatorname{arc} e^{\prime}=\left(u, w^{\prime}\right)$ which has a son a. Since $\rho_{G}(u) \leqslant 1$, all the sons of e^{\prime} are sources. If e^{\prime} has more than one son, say a, b are both sons of e^{\prime}, then let η^{\prime} be the restriction of η to $G-\{a, b\}$. By the minimality of G, η^{\prime} is non-singular for $G-\{a, b\}$. By Corollary 7 (with D consists of the four arcs incident to a, b and D^{\prime} consists of arcs $\left.a u, b w^{\prime}\right), \eta$ is non-singular for G. Assume e^{\prime} has only one son a. Let η^{\prime} be the restriction of η to $G-\{a, u\}$, except that $\eta^{\prime}(w)=1$. By the minimality of G, η^{\prime} is non-singular for $G-\{a, u\}$. By Corollary 7 (with D consists of the four arcs incident to a, u and D^{\prime} consists of arcs $\left.a w^{\prime}, u w\right), \eta$ is non-singular for G.

Corollary 11. Conjecture 2 holds for 2 -trees, i.e., if G is a 2 -tree, then $\operatorname{pind}\left(A_{G}\right)=1$, and hence is $(2,2)$-choosable.

Theorem 12. If T is a tree with leaves $v_{1}, v_{2}, \ldots, v_{n}$, and G is obtained from T by adding edges $v_{i} v_{i+1}\left(i=1,2, \ldots, n\right.$, with $\left.v_{n+1}=v_{1}\right)$, then $\operatorname{pind}\left(A_{G}\right)=1$, and hence G is $(2,2)$ choosable.

Proof. First we construct an acyclic orientation of G as follows: We choose a non-leaf vertex u of T as the root of T. Orient the edges of the tree from father to son. Then orient the added edges from v_{i} to v_{i+1} for $i=1,2, \ldots, n-1$, and orient the edge $v_{1} v_{n}$ from v_{1} to v_{n}. The resulting digraph is D. Now we choose a sub-digraph D^{\prime} of D as follows: D^{\prime} consists of a directed path P from the root vertex u to v_{1}, and all the edges $v_{i} v_{i+1}$ for $i=1,2, \ldots, n-1$, and the edge $v_{1} v_{n}$. Let η be the constant function $\eta \equiv 1$, let $X=\left\{v_{n}\right\}$ and let $\eta^{\prime}\left(v_{n}\right)=0$, which is an index function of $G[X]$. Then η^{\prime} is a non-singular index function of $G[X]$. To prove that $\operatorname{pind}\left(A_{G}\right)=1$, i.e., η is a non-singular index function of G, it suffices, by Corollary 7 , to show that for each vertex v,

$$
1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v) \geqslant d_{D^{\prime}}^{+}(v)
$$

This is a routine check. Assume first that v is not a leaf of T.

1. If v is not on path P, then $d_{D^{\prime}}^{-}(v)=0, d_{D}^{-}(v)=1$ and $d_{D^{\prime}}^{+}(v)=0$. So $1+2 d_{D^{\prime}}^{-}(v)-$ $d_{D}^{-}(v)=0 \geqslant d_{D^{\prime}}^{+}(v)$.
2. If v is on P, but is not the root u, then $d_{D^{\prime}}^{-}(v)=1, d_{D}^{-}(v)=1$ and $d_{D^{\prime}}^{+}(v)=1$. So $1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)=2 \geqslant d_{D^{\prime}}^{+}(v)$.
3. If $v=u$, then $d_{D^{\prime}}^{-}(v)=0, d_{D}^{-}(v)=0$ and $d_{D^{\prime}}^{+}(v)=1$. So $1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)=1 \geqslant$ $d_{D^{\prime}}^{+}(v)$.

Next, consider the case that v is a leaf of T.

1. If $v=v_{1}$, then $d_{D^{\prime}}^{-}(v)=1, d_{D}^{-}(v)=1$ and $d_{D^{\prime}}^{+}(v)=2$. So $1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)=2 \geqslant$ $d_{D^{\prime}}^{+}(v)$.
2. If $v=v_{i}$, for $1<i<n$, then $d_{D^{\prime}}^{-}(v)=1, d_{D}^{-}(v)=2$ and $d_{D^{\prime}}^{+}(v)=1$. So $1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)=1 \geqslant d_{D^{\prime}}^{+}(v)$.
3. If $v=v_{n}$, then $d_{D^{\prime}}^{-}(v)=2, d_{D}^{-}(v)=3$ and $d_{D^{\prime}}^{+}(v)=0$. So $1+2 d_{D^{\prime}}^{-}(v)-d_{D}^{-}(v)=2 \geqslant$ $d_{D^{\prime}}^{+}(v)$.

A Halin graph is a planar graph obtained by taking a plane tree (an embedding of a tree on the plane) without degree 2 vertices by adding a cycle connecting the leaves of the tree cyclically.

Corollary 13. Conjecture 2 holds for Halin graphs, i.e., if G is a Halin graph, then $\operatorname{pind}\left(A_{G}\right)=1$, and hence is $(2,2)$-choosable.

A grid is the Cartesian product of two paths, $P_{n} \square P_{m}$, with vertex set

$$
V=\{(i, j): 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\}
$$

and edge set

$$
E=\left\{(i, j)\left(i^{\prime}, j^{\prime}\right): i=i^{\prime}, j^{\prime}=j+1 \text { or } i^{\prime}=i+1, j^{\prime}=j\right\} .
$$

Lemma 14. Assume $m, n \geqslant 1$. Let η be an index function of $P_{n} \square P_{m}$, with $\eta(e)=1$ for edges e, and one of the following holds:
$1 \eta(v)=1$ for all vertices v.
$2 \eta(v)=1$ for all vertices v, except that $\eta(n, 1)=0$, and $\eta((n, j))=2$ for $2 \leqslant j \leqslant m$.
Then η is non-singular for G.
Proof. We prove it by induction on the number of vertices of G. The case $n=1$ or $m=1$ is easy and omitted. Assume $n, m \geqslant 2$. If $\eta(v)=1$ for all vertices v, then we delete vertices $(n, 1),(n, 2), \ldots,(n, m)$ in this order. When deleting $(n, 1)$, we increase $\eta(n, 2)$ by 1 and decrease $\eta(n-1,1)$ by 1 . When deleting (n, j) for $j \geqslant 2$, we increase $\eta(n, j+1)$ by 1 and increase $\eta(n-1, j)$ by 1 . After all the vertices $(n, 1),(n, 2), \ldots,(n, m)$ are deleted, we obtain a grid $P_{n-1} \square P_{m}$ and an index function η^{\prime} which satisfies the condition of the lemma and hence is non-singular. By Theorem $3, \eta$ is non-singular.

Assume $\eta(n, 1)=0$ and $\eta(n, j)=2$ for $2 \leqslant j \leqslant m$. We delete vertices $(n, m),(n, m-$ $1), \ldots,(n, 1)$ in this order, and need not to change η except for while deleting ($n, 2$), we increase $\eta(n, 1)$ by 1 . It follows from induction hypothesis that the resulting index function is non-singular for $P_{n-1} \square P_{m}$, and by Theorem 3 that the original index function η is non-singular for G.

Corollary 15. Conjecture 2 holds for grids, and hence grids are (2,2)-choosable.

References

[1] L. Addario-Berry, R.E.L.Aldred, K. Dalal, B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237-244.
[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, A. Thomason, Vertexcolouring edge-weightings, Combinatorica 27 (2007), 1-12.
[3] N. Alon, Combinatorial Nullstellensatz, Combin. Prob. Comput. 8 (1999), 7-29.
[4] N. Alon and M. Tarsi, A nowhere zero point in linear mappings, Combinatorica 9 (1989), 393-395.
[5] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), 125-134.
[6] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009), 242-256.
[7] M. Karoński, T. Łuczak, A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004), 151-157.
[8] M. Kalkowski, A note on 1,2-Conjecture, manuscript.
[9] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3- Conjecture, J. Combin. Theory Ser. B 100 (2010), 347-349.
[10] H. Lu, Q. Yu and C.-Q. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combinatorics 32 (2011), 21-27.
[11] J. Przybyło and M. Woźniak, On a 1-2 conjecture, Discrete Mathematics and Theoretical Computer Science 12 (2010), 101-108.
[12] J. Przybyło and M. Woźniak, Total weight choosability of graphs, Electronic J. Combinatorics, 18(1), \#P112 2011.
[13] T. Wong and X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011), 198-212.
[14] T. Wong and X. Zhu, Every graph is (2, 3)-choosable, Combinatorica 36 (2016), 121127.

[^0]: *Supported by Grant number: MOST 104-2115-M-110 -001 -MY2
 ${ }^{\dagger}$ Supported by Grant numbers: NSF11171310 and ZJNSF Z6110786

