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Abstract

We determine the Ramsey number of a connected clique matching. That is, we
show that if G is a 2-edge-coloured complete graph on (r2− r− 1)n− r+ 1 vertices,
then there is a monochromatic connected subgraph containing n disjoint copies of
Kr for n sufficiently large. This number of vertices cannot be reduced.

1 Introduction

For a graph G, the Ramsey number R(G) is defined to be the smallest integer N such that
every 2-colouring of the edges of the complete graph on N vertices contains a monochro-
matic subgraph isomorphic to G. The most fundamental problem in Ramsey theory is
determining the order of magnitude of the Ramsey numbers of cliques. An exponential
upper bound was given by Erdős and Szekeres [7], and in an early use of the probabilistic
method Erdős [6] gave an exponential lower bound. In spite of progress being made on
both upper and lower bounds (see [5, 10]) even the size of the exponent is not known
asymptotically. It becomes easier however to look for multiple copies of the cliques.

The Ramsey numbers of multiple copies of graphs were studied in [4] by Burr, Erdős,
and Spencer who determined the Ramsey number of nK3 exactly and of multiple copies
of a general graph G up to a constant depending only on G. In particular they showed
R(nK3) = 5n and for r > 4 that (2r − 1)n− 1 6 R(nKr) 6 (2r − 1)n+ Cr, determining
the Ramsey number of a Kr-matching up to a constant.

The aim of this note is to add a connectivity requirement, studying the Ramsey
numbers of connected copies of cliques. Although not technically a Ramsey number by the
definition given above, we let R(c(nH)) denote the least N such that every 2-colouring of
the edges of KN contains a monochromatic copy of nH in a connected component of the
same colour. This was first studied by Gyárfás and Sárközy [9] who solved the problem
for H = K3 showing R(c(nK3)) = 7n− 2. We solve the problem for all larger cliques.
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Theorem 1. For r > 4 and n > R(Kr) we have

R(c(nKr)) = (r2 − r + 1)n− r + 1 .

The connectivity requirement here proves to be very significant as for large values of r
the Ramsey number of a connected Kr-matching is approximately r/2 times larger than
that of a standard Kr-matching.

The lower bound in Theorem 1 is a special case of the following observation of Burr [3].

Proposition 2. For every connected graph G containing at least one edge

R(G) > (χ(G)− 1)(|G| − 1) + σ(G)

where σ(G) is the smallest size of a colour class over all χ(G)-proper-colourings of G.

To see this partition the vertices of KN , with N = (χ(G) − 1)(|G| − 1) + σ(G) − 1,
into parts X1, . . . , Xχ(G)−1 and Y such that |Y | = σ(G)− 1 and |Xi| = |G| − 1 for each i,
as in Figure 1. Colour all edges within each part with blue and colour all edges between
different parts with red. There cannot be a blue copy of G since all connected components
of blue are too small. There cannot be a copy of G in red since the red edges form a
χ(G)-partite graph where the smallest part is too small.

|G| − 1

|G| − 1

|G| − 1

|G| − 1

|σ(G)| − 1

Figure 1:

This construction led Burr to conjecture that for any ∆, k ∈ N there exists an n0 such
that any connected graph G on n > n0 vertices with chromatic number k and maximum
degree at most ∆ satisfies R(G) = (k − 1)(n − 1) + σ(G). Burr’s conjecture was proven
to be false by Graham, Rödl, and Rucinski [8]. Our result shows that Burr’s conjecture
does hold in the case of connected copies of cliques. We conjecture the following

Conjecture 3. For any graph H there exists n0(H) such that for all n > n0 we have

R(c(nH)) = (χ(H)− 1)(n|H| − 1) + nσ(H) .
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The lower bound holds by Proposition 2.
There is another stronger connectivity requirement on disjoint cliques for which it is

interesting to study the Ramsey numbers. Suppose P and Q are copies of Kr. We say
they are Kr-connected if there exist copies C1, . . . , Ct of Kr such that in the sequence
P,C1, . . . , Ct, Q, consecutive copies of Kr share r − 1 vertices. A construction of Allen,
Brightwell, and Skokan in [1] shows that if we wish to find a monochromatic set of n
disjoint copies of Kr which are Kr-connected in KN we need N > nr2 − 2r + 2. This
construction was given as a lower bound for the Ramsey number R(Cr−1

rn ) where Ck
m is the

m-th power of a cycle, obtained by joining all vertices of Cm at distance at most k. In [2],
with Allen and Skokan we determine the Ramsey number R(C2

m) for large m via studying
the Ramsey numbers of K3-connected copies of disjoint triangles. The difference between
that result and the result of this paper gives some intuition for when Burr’s construction
is best or not. The requirement that cliques are just connected allows Burr’s construction
to be best however if we require a stronger connectivity condition then this is no longer
the case.

2 Proof of Theorem 1

The lower bound for Theorem 1 follows from the construction of Burr given in the previous
section. Before giving a proof of the upper bound we sketch the main ideas.

For r > 4 and n > R(Kr), consider a 2-colouring of G = KN with N = (r2− r+ 1)n−
r + 1. Since in any 2-colouring of a complete graph one of the colours is connected, we
assume G is connected in red and look for either a red copy of nKr or a blue connected
copy of nKr. We then show that G can be partitioned into a maximal set of disjoint red
copies of Kr and a set of r − 1 large blue cliques such that between any two of the blue
cliques all edges are red. We call these blue cliques B1, . . . , Br−1, and the union of their
vertex sets B. We let R denote the maximum set of red copies of Kr, and we let R denote
the vertex set of R. We then consider edges between the red copies of Kr in R and the
sets B1, . . . , Br−1. We show that each clique of R is of one of two types (see claim 4)
with regards to how the edges between that clique and B are coloured. Furthermore each
type gives a way of assigning vertices of the red Kr to some Bi such that almost all of
the edges between the assigned vertex and Bi are blue. For each i = 1, . . . , r − 1, we
let Di denote the union of Bi along with the vertices of R that were assigned to Bi. We
then use an averaging argument to show that there exists an i such that |Di| > rn and
we look for a blue nKr on this Di. Since Bi was a blue clique and vertices assigned to
Bi were connected to Bi in blue, this nKr is connected in blue. If more than (r − 1)n
of the vertices of Di came from Bi we can find the nKr greedily. Otherwise we use more
information coming from the types of red Kr vertices assigned to Bi came from to find
an nKr. There is one special case for which this method fails.

Proof of Theorem 1. For r > 4 and n > R(Kr), let N = (r2−r+1)n−r+1 and consider
a red/blue edge colouring of G = KN . Any 2-colouring of KN is connected in one of the
colour, since if Blue has more than one connected component, Red contains a complete
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multi-partite graph between blue components which connects the graph in red. Without
loss of generality we assume G is connected in red. Consider a maximal set of vertex
disjoint red copies of Kr. We call this set of cliques R and its vertex set R. Note that
|R| 6 r(n − 1), otherwise we would be done. Greedily looking for vertex disjoint blue
copies of Kr on the rest of the graph results in covering all but at most R(Kr)−1 vertices
of the graph with monochromatic copies of Kr. Call this set of uncovered vertices Z.

Let B denote the vertices covered by these blue cliques. We next partition B into blue
connected components.

Between components all edges are red, so there cannot be more than r − 1 such
components or we would have a new red Kr to add to R. This would contradict the
maximality of R. There also cannot be fewer than r− 1 such components, or, since each
component is no larger than r(n− 1), we would have

|B|+ |R|+ |Z| 6 (r− 2)r(n− 1) + r(n− 1) +R(Kr)− 1 = (r2− r)n− r2 + r− 1 +R(Kr),

which is a contradiction, since for n > R(Kr this is less than N . Therefore there must be
exactly r−1 blue components and we call them B′1, . . . , B

′
r−1. If any of these components

contained a red edge we would have another red Kr to add to R, and so each B′i is a blue
clique. Since the blue components are disconnected, each vertex in Z can be adjacent in
blue to vertices of at most one B′i. If any vertex in Z had a red neighbour in each B′i we
would have a new red Kr to add to R. Therefore all vertices in Z are adjacent to r − 2
of the B′i entirely in red and the remaining blue component entirely in blue. For each
i = 1, . . . , r − 1, form Bi by adding to B′i the vertices of Z that are adjacent in blue to
all of B′i. Note that there cannot be any red edges in any Bi or we would have a new red
Kr to add to R and also between any two distinct Bi all edges are red since they are not
blue connected.

We now consider the colour of edges between the cliques ofR and the sets B1, . . . , Br−1.
First, recalling that all vertices in R are adjacent in blue to vertices in at most one Bi,
we say a vertex of R is paired with Bi if it is adjacent in red to all Bj for all j 6= i. The
following claim identifies two possible properties of cliques of R.

Claim 4. Let C be a red Kr from R. Then one of the following holds:

(i) For each Bi there is a vertex in C adjacent in blue to all but at most one vertex
of Bi.

(ii) For all but two values of i there is exactly one vertex of C which is adjacent in blue
to all vertices of Bi. Furthermore there is a j such that the three remaining vertices
of C are adjacent in blue to all of Bj.

Proof. Consider some C ∈ R. Each vertex in C can have blue neighbours in at most one
Bi and so is entirely adjacent in red to the remaining r − 2 blue components.

Suppose firstly that some ci ∈ C is paired with Bi but also has at least one neighbour
in red in Bi. Then if two other vertices cj, c

′
j ∈ C were paired with the same Bj, we could

break up C to make two new red copies of Kr, contradicting the maximality of R. One
of these red cliques uses ci, its red neighbour in Bi and vertices of Bk for k 6= i. The
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other uses cj, c
′
j and vertices of each Bk for k 6= j. Therefore, if such a ci ∈ C exists, all

remaining vertices of C are paired with distinct components Bj. Furthermore, if any of
them has more than one red neighbour in the set they are paired with, we could make
two new red copies of Kr, again contradicting the maximality of R. One of these would
use ci as before, and the other would use the other vertex with red neighbours in the set
it is paired with. Thus, if ci as above exists, (i) holds.

Secondly, suppose all vertices in C are adjacent entirely in blue to the set they are
paired with. There cannot be two vertices ci, c

′
i paired with some Bi and another two

vertices cj, c
′
j paired with some Bj. If there were, we would create two new red copies of

Kr using ci, c
′
i and a vertex from each Bk with k 6= i for one, and cj, c

′
j and a vertex from

each Bk with k 6= j for the other. This would again break the maximality of R. There
also cannot be four or more vertices paired with the same Bi, or we could use two pairs of
them to make two new red copies of Kr along with vertices from Bk for k 6= i. Therefore
we either have some Bi with two vertices of C paired with it and every other Bj has one
vertex paired with them, as in (i), or we have some Bi with three vertices paired with it
and all but one of the remaining components Bj have one vertex paired with them, as in
(ii). �

The next claim tells us that if we have two sets of three vertices from distinct cliques
of R that are paired with the same Bi, then the edges between these two sets are all blue.

Claim 5. Let C and C ′ be cliques of R with vertices x1, x2, x3 ∈ C and y1, y2, y3 ∈ C ′ all
paired with the same Bi. Then all the edges xjyk for j, k ∈ {1, 2, 3} are blue.

Proof. Suppose for contradiction and without loss of generality that x1y1 is red. Then
we could create three new red copies of Kr at the cost of C and C ′, contradicting the
maximality ofR. These three copies of Kr would use the pairs of vertices {x1, y1}, {x2, x3}
and {y2, y3} along with vertices from Bj for j 6= i. �

We now use Claim 4 to partition the red cliques of R depending on which option of
the claim they satisfy. Let S ⊆ R be the set of cliques satisfying (i), and T ⊆ R be the
set of cliques satisfying (ii). For each C ∈ S and each Bi there is at least one vertex of
C which is adjacent in blue to all but at most one vertex of Bi. For each i, construct Si
by selecting one such vertex from each C ∈ S. For each C ∈ T , all vertices are adjacent
entirely in blue to exactly one Bi. For each i, construct Ti by taking the vertices of each
clique of T that are entirely adjacent in blue to Bi. Let Di = Bi ∪ Si ∪ Ti. We further
split up Ti, into sets T ∗i and T∆

i , depending on whether one or three vertices from that
red Kr were added to Ti. Given a vertex u ∈ Ti let C be the clique of T containing u. If u
is the only vertex of C belonging to Ti then u belongs to T ∗i . Otherwise three vertices of
C must belong to Ti in which case all three belong to T∆

i . Observe that |Ti| = |T ∗i |+ |T∆
i |

and n− |Si| − |T ∗i | > 1
3
|T∆
i |+ 1.

We shall find a blue connected copy of nKr on a Di such that either |Di| > rn+ 1, or
|Di| > rn and |T∆

i | = 0. We first proceed to show that such a Di exists.
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Because
⋃r−1
i=1 Di covers all vertices of the graph except for one from each clique of S,

we have

N = (r2 − r + 1)n− r + 1 = |S|+
r−1∑
i=1

|Di| .

By averaging and using |S| 6 n− 1, there exists an i such that

|Di| >
(
r +

1

r − 1

)
n− 1− |S|

r − 1
> rn− 1 +

1

r − 1
.

Since |Di| is an integer it is at least rn. Furthermore if |S| 6 n − r it is at least rn + 1.
Therefore if |S| 6 n−r we can find a suitable Di. If |S| is larger than this, the next claim
shows that either we still have a Di with |Di| > rn+ 1 or we have at least two of size at
least rn. In the latter case, we will find one of these with |T∆

i | = 0.

Claim 6. Suppose |S| = n − ` for some 1 6 ` 6 r − 1. Then either there exist ` values
of i for which |Di| > rn or there exists one value of i for which |Di| > rn+ 1.

Proof. Suppose for contradiction that the `−1 largest sets Di all have at most rn vertices
whilst all others have at most rn− 1. This gives

|S|+
r−1∑
i=1

|Di| 6 n− `+ (`− 1)rn+ (r − `)(rn− 1) = (r2 − r + 1)n− r < N

achieving a contradiction. �

Since |T | 6 n− 1− |S|, we see |T | 6 `− 1 and so if there are at least ` choices of Di

with |Di| > rn then by the pigeon-hole principle at least one must have |T∆
i | = 0.

Our method now will essentially be to cover Si∪Ti with disjoint copies of Kr and then
extend these to cover Bi using that this is a blue clique and the total size of these sets is
big enough.

We begin using only the assumption |Di| > rn. Then

|Bi| > rn− |Si| − |T ∗i | − |T∆
i |

and so |Bi| − (r − 1)(|Si|+ |T ∗i |) > r(n− |Si| − |T ∗i |)− |T∆
i | > ( r

3
− 1)|T∆

i |+ r > 1. The
second inequality follows from n− |Si| − |T ∗i | > 1

3
|T∆
i |+ 1.

Since all vertices of Si ∪ T ∗i are adjacent in blue to all but at most one vertex of Bi,
we can extend all vertices of Si ∪ T ∗i to disjoint blue copies of Kr using Bi. We now look
to find n−|Si|− |T ∗i | disjoint blue copies Kr on the remaining vertices of Bi and T∆

i . Let
B̃i denote the remaining vertices of Bi, noting that |B̃i| > ( r

3
− 1)|T∆

i | + r. Recall that
edges from T∆

i to Bi are blue and between different red triangles of T∆
i edges are blue.

If |T∆
i | = 0, then since Bi is a blue clique we can find the remaining blue copies of Kr

entirely on the rest of Bi.
Remembering that |T∆

i | is a multiple of three, suppose |T∆
i | > 6. If |T∆

i | > 3r, we
first take blue copies of Kr on T∆

i such that the vertices of T∆
i that are not covered by
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these blue cliques consist of t red triangles with 2 6 t 6 r − 1. We then cover the rest of
T∆
i with blue copies of Kr by greedily taking one vertex from each of the t red triangles

and extending this set of t vertices to a blue Kr using vertices from B̃i. In this process
three blue copies of Kr use both vertices of T∆

i and B̃i, one for each vertex of the red
triangles, and each such blue Kr used r − t vertices from B̃i. So long as |B̃i| > 3(r − t),
this greedy procedure is successful. Since we have |B̃i| > ( r

3
− 1)|T∆

i | + r, we also have

|B̃i| > 3t( r
3
− 1) + r, which is at least 3(r− t) for t > 2. If t = 1 then it must be the case

that |T∆
i | > 3(r + 1) and so |B̃i| > ( r

3
− 1)3(r + 1) + r > 3(r − t).

Finally, suppose |T∆
i | = 3. Using Claim 6 we may assume |Di| > rn + 1. We have

that |B̃i| > rn+ 1− (r − 1)(|Si|+ |T ∗i |) >
(
r
3
− 1
)
|T∆
i |+ r + 1 = 2(r − 1), and so we can

extend two of the vertices of T∆
i to blue copies of Kr using B̃i. If necessary we then cover

the rest of B̃i with more copies of Kr. This completes the proof.
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