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Abstract

The Moore bound M(k, g) is a lower bound on the order of k-regular graphs
of girth g (denoted (k, g)-graphs). The excess e of a (k, g)-graph of order n is the
difference n −M(k, g). In this paper we consider the existence of (k, g)-bipartite
graphs of excess 4 by studying spectral properties of their adjacency matrices. For
a given graph G and for the integers i with 0 6 i 6 diam(G), the i-distance matrix
Ai of G is an n× n matrix such that the entry in position (u, v) is 1 if the distance
between the vertices u and v is i, and zero otherwise. We prove that the (k, g)-
bipartite graphs of excess 4 satisfy the equation kJ = (A + kI)(Hd−1(A) + E),
where A = A1 denotes the adjacency matrix of the graph in question, J the n× n
all-ones matrix, E = Ad+1 the adjacency matrix of a union of vertex-disjoint cycles,
and Hd−1(x) is the Dickson polynomial of the second kind with parameter k−1 and
degree d − 1. We observe that the eigenvalues other than ±k of these graphs are
roots of the polynomials Hd−1(x) + λ, where λ is an eigenvalue of E. Based on the
irreducibility of Hd−1(x)± 2, we give necessary conditions for the existence of these
graphs. If E is the adjacency matrix of a cycle of order n, we call the corresponding
graphs graphs with cyclic excess; if E is the adjacency matrix of a disjoint union
of two cycles, we call the corresponding graphs graphs with bicyclic excess. In this
paper we prove the non-existence of (k, g)-graphs with cyclic excess 4 if k > 6 and
k ≡ 1(mod 3), g = 8, 12, 16 or k ≡ 2(mod 3), g = 8; and the non-existence of
(k, g)-graphs with bicyclic excess 4 if k > 7 is an odd number and g = 2d such that
d > 4 is even.

Keywords: Cage problem, bipartite graphs, cyclic excess, bicyclic excess

1 Introduction

A k-regular graph of girth g is called a (k, g)-graph. A (k, g)-cage is a (k, g)-graph with
the fewest possible number of vertices, among all (k, g)-graphs. The order of a (k, g)-cage

the electronic journal of combinatorics 24(1) (2017), #P1.40 1



is denoted by n(k, g). The Cage Problem or Degree/Girth Problem calls for finding cages,
and it was considered for the first time by Tutte [17]. It is known that a (k, g)-graph
exists for any combination of k > 2 and g > 3, see Erdős and Sachs [10] and Sachs [15].
However, the orders n(k, g) of (k, g)-cages have only been determined for very limited
sets of parameters, see Balbuena, González-Moreno and Montellano [1], Exoo and Jajcay
[11] and Combinatorics Wiki [5]. A natural lower bound on the order of a (k, g)-graph is
called the Moore bound, and the form of the bound depends on the parity of g, that is,

n(k, g) >M(k, g) =

{
1 + k + k(k − 1) + · · ·+ k(k − 1)(g−3)/2, g odd,
2
(
1 + (k − 1) + · · ·+ (k − 1)(g−2)/2

)
, g even.

(1)

The graphs whose orders are equal to the Moore bound are called Moore graphs. They
are known to exist if k = 2 and g > 3, g = 3 and k > 2, g = 4 and k > 2, g = 5 and
k = 2, 3, 7, or g = 6, 8, 12 and a generalized n-gon of order k − 1 exists, see Bannai and
Ito [2], Damerell [7] and Exoo and Jajcay [11]. The existence of a (57, 5)-Moore graph is
an open question.
The excess e of a (k, g)-graph is the difference between its order n and the Moore bound
M(k, g), that is, e = n −M(k, g). Regarding graphs of even girth we use the following
three results:

Theorem 1 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth g = 2d > 6 and excess e.
If e 6 k − 2, then e is even and G is bipartite of diameter d+ 1.

It is known that these graphs are partially distance-regular. For more information on
almost-distance-regular graphs, see Dalfó, van Dam, Fiol, Garriga and Gorissen [6]. For
the next theorem, let D(k, 2) denote the incidence graph of a symmetric (v, k, 2)-design.

Theorem 2 (Biggs and Ito [4]). Let G be a (k, g)-cage of girth g = 2d > 6 and excess 2.
Then g = 6, G is a double-cover of D(k, 2), and k 6≡ 5, 7(mod 8).

Theorem 3 (Jajcayová, Filipovski and Jajcay [13]). Let k > 6 and g = 2d > 6. No
(k, g)-graphs of excess 4 exist for parameters k, g satisfying at least one of the following
conditions:

1) g = 2p, with p > 5 a prime number, and k 6≡ 0, 1, 2(mod p);

2) g = 4 · 3s such that s > 4, and k is divisible by 9 but not by 3s−1;

3) g = 2p2, with p > 5 a prime number, and k 6≡ 0, 1, 2(mod p) and k even;

4) g = 4p, with p > 5 a prime number, and k 6≡ 0, 1, 2, 3, p− 2(mod p);

5) g ≡ 0(mod 16), and k ≡ 3(mod g).

Motivated by the result in Theorem 3, which was obtained through counting cycles
in a hypothetical graph with given parameters and excess 4, in this paper we address
the question of the existence of (k, g)-graphs of excess 4 using spectral properties of
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their adjacency matrices. The question of the existence of (k, g)-graphs of excess 4 is
wide open, and prior to the publication of Jajcayová, Filipovski and Jajcay [13], no such
results were known. The results contained in our paper extend further our understanding
of the structure of the potential graphs of excess 4. Throughout, we assume that k > 6,
g = 2d > 6 and G is a (k, g)-graph of excess 4 and order n. Due to Biggs’s result stated
in Theorem 1, the restriction of the parameters k, g given above allows us to conclude
that G is a bipartite graph with diameter d+ 1.
For each integer i in the range 0 6 i 6 d + 1, we define the n × n matrix Ai = Ai(G)
as follows. The rows and columns of Ai correspond to the vertices of G, and the entry
in position (u, v) is 1 if the distance d(u, v) between the vertices u and v is i, and zero
otherwise. Clearly, A0 = I, A1 = A, the usual adjacency matrix of G. The last non-zero
matrix is the matrix Ad+1, which we denote E and refer to it as the excess matrix, that
is, E is the adjacency matrix of the graph with the same vertex set V as G such that
two vertices of V are adjacent if and only if they are at distance d + 1. We call this
graph the excess graph of G and we denote it G(E). If J is the all-ones matrix, the sum
of the i-distance matrices Ai, for 0 6 i 6 d, and the matrix E yields

∑d
i=0Ai + E = J .

To apply the last identity, we use Lemma 4 from Jajcayová, Filipovski and Jajcay [13].
Employing the methodology used by Bannai and Ito in [2] and [3], later by Biggs and Ito
in [4], Delorme, Jørgensen, Miller and Villavicencio in [8] and Garbe in [12], we show that
the eigenvalues of G other than ±k are the roots of the polynomials Hd−1(x) + λ. Here,
Hd−1(x) is the Dickson polynomial of the second kind with parameter k − 1 and degree
d − 1, and λ is an eigenvalue of the excess matrix E. Furthermore, for odd k > 7 and
d > 4, we prove that the polynomial Hd−1(x)± 2 is irreducible over Q[x], which leads to
necessary conditions for the existence of (k, g)-graphs of excess 4, see Theorem 10.

We say that a graph G has a cyclic excess if the excess graph G(E) is a cycle of length
n, and a graph G has a bicyclic excess if G(E) is a disjoint union of two cycles. In [9]
Delorme and Villavicencio considered graphs with cyclic defect and excess 2, proving the
non-existence of infinitely many such graphs. The paper describes the cycle structure of
the excess graphs of the known non-trivial graphs of excess 2:

1) The excess graph of the only (3, 5)-graph of excess 2 is a disjoint union of a 9-cycle
and a 3-cycle or a disjoint union of an 8-cycle and 4-cycle.

2) The excess graph of the unique (4, 5)-graph of excess 2 (the Robertson graph) is a
disjoint union of a 3-cycle, a 12-cycle and a 4-cycle.

3) The excess graph of the unique (3, 7)-graph of excess 2 (the McGee graph) is a
disjoint union of six 4-cycles.

We note that no (k, g)-graph of cyclic excess 2 are known, while examples of graphs
with bicyclic excess 2 can be found among the (3, 5)-graphs of excess 2. Proving that
the excess graphs of bipartite graphs of excess 4 form a disjoint union of cycles, while
also inspired by the results in Delorme and Villavicencio [9], in Section 3 we consider the
existence of bipartite graphs of excess 4 with cyclic or bicyclic excess 4. Based on the
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irreducibility of Hd−1(x) ± 2 and Hd−1(x) − 1 over Q[x], we prove the non-existence of
infinitely many such graphs of girth at least 8.

2 Necessary conditions for the existence of graphs of even girth
and excess 4

Let k > 6, g = 2d > 6, and let G be a (k, g)-graph of excess 4. Then G is a bipartite
graph of diameter d+ 1. Let NG(u, i) denote the set of vertices of G whose distance from
u in G is equal to i, for 1 6 i 6 d+ 1. The subgraph of G induced by the set of vertices
of G whose distance from u is at most g−2

2
and whose distance from v is by one larger

than their distance from u induces a tree of depth g−2
2

rooted at u, which we call it Tu.
Also, the subgraph of G induced by the set of vertices of G whose distance from v is at
most g−2

2
and whose distance from u is by one larger than their distance from v induces

a tree of depth g−2
2

rooted at v, which we call it Tv. Since G is of girth g, the trees Tu
and Tv are disjoint and contain no cycles. Since each vertex of G is of degree k, the order
of Tu

⋃
Tv is equal to 2(1 + (k − 1) + (k − 1)2 + · · · + (k − 1)

g−2
2 ). We call the union of

the trees Tu, Tv with the edge f Moore tree of G rooted at f ; it is the subtree of G that is
the basis of the Moore bound for even g. The graph G must contain 4 additional vertices
w1, w2, w3, w4, which do not belong to either Tu or Tv, and whose distance from both u
and v is greater than g−2

2
. We call these vertices the excess vertices with respect to f and

denote this set Xf = {w1, w2, w3, w4}; we call the edges not contained in the Moore tree
of G horizontal edges.

The following lemma restricts the possible ways in which the four excess vertices are
attached to the Moore tree.

Lemma 4 (Jajcayová, Filipovski and Jajcay [13]). Let k > 6 and g = 2d > 6. Let G be
a (k, g)-graph of excess 4, u, v be two adjacent vertices in G, and Xf = {w1, w2, w3, w4}
be the four excess vertices with respect to the edge f = {u, v}. The induced subgraph
G[w1, w2, w3, w4] is isomorphic to 2K2 (two disjoint copies of K2) or P3 (a path of length
3).

Next, let us define the following polynomials:

F0(x) = 1, F1(x) = x, F2(x) = x2 − k;

G0(x) = 1, G1(x) = x+ 1;

H−2(x) = − 1
k−1 , H−1(x) = 0, H0(x) = 1, H1(x) = x;

Pi+1(x) = xPi(x)− (k − 1)Pi−1(x) for


i > 2, if Pi = Fi,
i > 1, if Pi = Gi,
i > 1, if Pi = Hi.

(2)
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Figure 1: The Moore tree and some of the horizontal edges in a potential (4, 6)-graph of
excess 4

In [16], Singleton gives many relationships between these polynomials. We use two of
them. Given any i > 0,

Gi(x) =
i∑

j=0

Fj(x), (3)

Gi+1(x) + (k − 1)Gi(x) = (x+ k)Hi(x). (4)

The above defined polynomials have a close connection to the properties of a graph
G. Namely, for t < g, the element (Ft(A))x,y counts the number of paths of length t
joining vertices x and y of G. It follows from (3) that Gt(A) counts the number of paths
of length at most t joining pairs of vertices in G. All of the preceding claims can be found
in Delorme, Jørgensen, Miller and Villavicencio [8].

The next lemma is based on the structure of G described in Lemma 4.

Lemma 5. Let k > 6 and g = 2d > 6, and let G be a (k, g)-graph of excess 4. If A is the
adjacency matrix of G and E is the excess matrix of G, then

Fd(A) = kAd − AE.

Proof. Let f = {u, v} be a base edge of the Moore tree and let f1 = {w1, w2}, f2 =
{w3, w4} be the edges of the subgraph induced by Xf . Also, let us assume that d(u,w1) =
d(u,w3) = d and d(u,w2) = d(u,w4) = d+ 1. We consider the case when G[w1, w2, w3, w4]
is isomorphic to 2K2, in which case the excess vertices do not share a common neighbour.
The other cases when G[w1, w2, w3, w4] is isomorphic to 2K2 and the excess vertices share
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a common neighbour or the subgraph induced by the excess vertices contains P3 are
analogous. Since there are k− 1 paths of length d from u to w1 and w3, by the definition
of Fi(x), we have (Fd(A))u,w1 = (Fd(A))u,w3 = k − 1. Considering the vertices at distance
d from u, there are also the (k − 1)d−1 leaves of the subtree rooted at v. For 2(k − 1) of
these vertices, there exist k − 1 paths of length d from u to them. Namely, they are the
vertices adjacent to w2 or w4. For all the other leaves, there are k paths between them
and u. Thus, (Fd(A))u,s = 0 if d(u, s) 6= d, (Fd(A))u,s = k if s is a leaf of a branch rooted
at v and not adjacent to w2 and w4, and (Fd(A))u,s = k − 1 if s is w1, w3 or a leaf of
a branch rooted at v and adjacent to w2 or w4. This yields the matrix kAd, such that
(kAd)u,s = k if d(u, s) = d and (kAd)u,s = 0 if d(u, s) 6= d. Now, let s be a vertex of G
such that d(u, s) = d and s is adjacent to w2 or w4. If s = w1 or s = w3, then it is easy
to see that (AE)u,s = 1. On the other hand, since s is adjacent to the subtree rooted at
u through k − 2 different horizontal edges, it follows that, between the k − 1 branches
of the subtree rooted at u, there exists one sub-branch that is not adjacent to s through
a horizontal edge. Let s1 be the root of that sub-branch. Then, d(s, s1) = d + 1 and
d(u, s1) = 1, which implies (A)u,s1 = 1 and (E)s1,s = 1. Let s2 be the other vertex at
distance d+ 1 from s. Because all neighbours of u, except s1, are at distance smaller than
d+ 1 from s, we have (A)u,s2 = 0 and (E)s2,s = 1. Thus (AE)u,s = 1. If s is a vertex of G
such that d(u, s) = d and s is not adjacent to w2 or w4, then the distance between s and
the neighbours of u is d − 1. In this case, (AE)u,s = 0. If d(u, s) 6= d, then the distance
between s and the neighbours of u is different from d+ 1, and therefore (AE)u,s = 0. The
required identity follows from summing up the above conclusions. �

Lemma 6. Let k > 6 and g = 2d > 6, and let G be a (k, g)-graph of excess 4. If A is the
adjacency matrix of G, E is the excess matrix of G and J is the all-ones matrix, then

kJ = (A+ kI)(Hd−1(A) + E).

Proof. By the definition of the polynomials Gi(x) and using the fact that G has diameter
d + 1, we conclude J = Gd−1(A) + Ad + E. The relation (3), setting i = d, asserts
Gd(A) = Gd−1(A) + Fd(A). Substituting this identity in (4), where we fix i = d − 1, we
get kGd−1(A)+Fd(A) = (A+kI)Hd−1(A). Due to Lemma 5 the last identity is equivalent
to kGd−1(A) + kAd + kE = (A + kI)(Hd−1(A) + E). From kJ = kGd−1(A) + kAd + kE
follows kJ = (A+ kI)(Hd−1(A) + E). �

The next theorem gives a relationship between the eigenvalues of the matrices A and E
(this result is an analogue of Theorem 3.1 in Delorme, Jørgensen, Miller and Villavicencio
[8]).

Theorem 7. If µ(6= ±k) is an eigenvalue of A, then

Hd−1(µ) = −λ,

where λ is an eigenvalue of E.
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Proof. Let us suppose that µ is an eigenvalue of A. Since G is a k-regular graph, the
all-ones matrix J is a polynomial in A. This implies that any eigenvector of A is also an
eigenvector of J . From kJ = (A+kI)(Hd−1(A)+E) and sinceHd−1(A) is also a polynomial
in A, we have that E is a polynomial in A, and consequently, every eigenvector of A is an
eigenvector of E. Therefore, the eigenvalues of kJ are of the form (µ+k)(Hd−1(µ)+λ). As
is well known, the eigenvalues of kJ are kn (with multiplicity 1) and 0 (with multiplicity
n − 1). The eigenvalue kn corresponds to µ = k, and so all the remaining eigenvalues,
except for −k, satisfy the above equation. �

Since the eigenvalues of a disjoint union of cycles are known, we are now in a position
to determine the spectrum of A.

Lemma 8. Let k > 6 and g = 2d > 6, and let G be a (k, g)-graph of excess 4. If A and
E are, respectively the adjacency matrix and the excess matrix of G, then:

(1) The matrix E is the adjacency matrix of a graph G(E), consisting of a disjoint
union of c cycles Ci of length li with 1 6 i 6 c. Moreover, if d is odd and V1 and
V2 are the two partition sets of the bipartite graph G, then every cycle in G(E) is
completely contained either in V1 or V2.

(2) The spectrum of A consists of:

(2.1) ±k, c − 2 solutions of Hd−1(x) = −2, and one solution of each equation
Hd−1(x) = −2 cos(2πj

li
), for j = 1, . . . , li − 1, 1 6 i 6 c and d odd.

(2.2) ±k, c−1 solutions of Hd−1(x) = −2, and one solution of each equation (except
one) Hd−1(x) = −2 cos(2πj

li
), for j = 1, . . . , li − 1, 1 6 i 6 c and d even.

Proof. (1) Our proof is analogous to that of Kovács [14] for girth 5, and Garbe’s proof
[12] for odd girth g = 2k+ 1 > 5. Let f = {u, v} be a base edge of a bipartite Moore tree
of G. Lemma 4 asserts that there exist exactly two vertices of G at distance d + 1 from
u. Namely, they are the excess vertices adjacent to the leaves of the subtree rooted at v.
The excess matrix E is the adjacency matrix for the graph G(E) with same vertex set V
as G such that two vertices of G(E) are adjacent if and only if they are at distance d+ 1.
Because, for each vertex u ∈ V (G), there are exactly two vertices at distance d + 1 from
u, every component of G(E) is a cycle. Let c be the number of these cycles and let li, for
i = 1, . . . , c, be the lengths of these cycles ordered in an arbitrary manner. Moreover, if
d is an odd number, any two vertices of G at distance d + 1 lie in the same partite set.
Therefore, any connected component of G(E) is entirely contained either in V1 or V2.
(2) The eigenvalues of an n-cycle are known and are equal to 2 cos(2πj

n
), for j = 0, . . . , n−1.

Therefore the eigenvalues of G(E) are 2 cos(2πj
li

), for j = 0, 1, . . . , li − 1 and 1 6 i 6
c, (see Garbe [12]). Since G is a k-regular bipartite graph, it has (among others) the
eigenvalues k and −k. Let V1 and V2 be the partition sets of G. Hence, the eigenvector of
A corresponding to k consists of the all-ones vector j, and the eigenvector corresponding
to −k is the vector j′ with values 1 on V1 and values −1 on V2. If d is an odd number,
then two vertices of G(E) are adjacent if and only if they are in the same partite set.
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Therefore E · j′ = 2j′, which implies that from the set of c solutions on Hd−1(x) = −2,
we need to subtract two multiplicities for the eigenvalues k and −k. If d is an even
number, then two vertices of G(E) are adjacent if and only if they are in different partite
sets. Thus E · j′ = −2j′. In this case, from the set of c solutions on Hd−1(x) = −2, we
need to subtract one multiplicity for the eigenvalue k and from the set of all solutions on
Hd−1(x) = 2, we need to subtract one multiplicity for the eigenvalue −k. �

Lemma 9. Let k > 6 and g = 2d > 6 and let G be a (k, g)-graph of excess 4. Let c be
the number of cycles of G(E) and c2 be the number of cycles of even length. Then:

(1) If Hd−1(x)− 2 is irreducible over Q[x], then d− 1 divides c− 1 or c− 2.

(2) If Hd−1(x) + 2 is irreducible over Q[x], then d− 1 divides c2 − 1 or c2.

Proof. (1) Combining Theorem 7 and Lemma 8 (2), we obtain that Hd−1(x) − 2 is an
irreducible factor of the characteristic polynomial of A. Realizing that all the roots of
an irreducible factor of a characteristic polynomial of a given rational symmetric matrix
have the same multiplicities, (see Kovács [14]), from Lemma 8 (2) we have the following:
If d is an even number, then the d− 1 roots of Hd−1(x)− 2 have multiplicity c−1

d−1 , which

has to be a positive integer. If d is odd, then the d− 1 roots have multiplicity c−2
d−1 .

(2) This proof follows the same reasoning as (1). �

We can base the testing of irreducibility of Hd−1(x)±2 on the well known Eisenstein’s
criterion that asserts for a polynomial f(x) =

∑n
i=0 aix

i ∈ Z[x] and a prime p that divides
ai for all 0 6 i < n, does not divide an and p2 does not divide a0. Now we are ready for
the main result of this section.

Theorem 10. Let k(> 7) be an odd number and let g = 2d > 8. Let c be the number
of cycles of G(E) and c2 be the number of cycles with even length. If there exists a
(k, g)-graph of excess 4, then:

(1) If d is an odd number, then d− 1 divides c− 2 and c2.

(2) If d is an even number, then d− 1 divides c− 1 and c2 − 1.

Proof. According to Lemma 9, it is enough to prove that the polynomials Hd−1(x) − 2
and Hd−1(x) + 2 are irreducible. We prove, using induction on d > 4, that Hd−1(x) =
xd−1+(k−1)Pd−3(x), where Pd−3(x) is an integer polynomial of degree d−3. We calculate
H3(x) = x3 − 2(k − 1)x. Let us suppose that the above formula holds for Hd−2(x) and
Hd−3(x). That yields

Hd−1(x) = x(xd−2 + (k − 1)Pd−4(x))− (k − 1)(xd−3 + (k − 1)Pd−5(x))=
= xd−1 + (k − 1)Pd−3(x).

Therefore, Hd−1(x)±2 = xd−1+(k−1)Pd−3(x)±2. By the induction hypothesis, it follows

that Hd−1(0) = (−1)
d−1
2 (k − 1)

d−1
2 for an odd d, and Hd−1(0) = 0 for an even d. Hence,
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for an odd d(> 5) |(−1)
d−1
2 (k − 1)

d−1
2 ± 2| is not divisible by 22, and clearly for an even

d(> 4), ±2 is not divisible by 22. Since k − 1 is even, it follows that every coefficient on
Hd−1(x)± 2 except for the coefficient 1 of xd−1 is divisible by 2. Thus, the conditions of
the Eisenstein’s criterion are satisfied, and Hd−1(x)± 2 is irreducible. �

3 The non-existence of bipartite graphs of cyclic or bicyclic
excess

In this section we deal with the same family of graphs considered in Section 2. Again,
let k > 6 and g = 2d > 6, and let G be a (k, g)-graph of excess 4 and order n. Clearly, n
is an even number. We proved that the excess graph G(E) consists of a disjoint union of
c cycles Ci, for 1 6 i 6 c. If c = 1 and G(E) consists of an n-cycle, then G is of cyclic
excess 4, and if c = 2 and G(E) consists of a disjoint union of two cycles, then G is of
bicyclic excess 4. These are the graphs we study in this section. Note that there is no
graph G with cyclic excess 4 if d is an odd number; in this case, we showed that each
cycle of G(E) is completely contained either in V1 or V2.

Let d be an even number and let Ln be an n-cycle formed by the vertices of G(E). If A
′

is the adjacency matrix of Ln, its characteristic polynomial χ(Ln, x) satisfies χ(Ln, x) =
(x − 2)(x + 2)(Rn(x))2, where Rn is a monic polynomial of degree n

2
− 1. Consider the

factorization xn− 1 =
∏

l|n Φl(x), where Φl(x) denotes the l-th cyclotomic polynomial. In
the following paragraph, we summarize the properties of cyclotomic polynomials as listed
in Delorme and Villavicencio [9].
The cyclotomic polynomial Φl(x) has integral coefficients, it is irreducible over Q[x], and
it is self-reciprocal (xφ(l)Φl(1/x) = Φl(x)). From the irreducibility and the self-reciprocity
of Φl(x) follows that the degree of Φl(x) is even for l > 2.
Thus, we obtain the following factorization of Rn(x) : Rn(x) =

∏
36l|n fl(x), where fl is an

integer polynomial of degree φ(l)
2

satisfying xφ(l)/2fl(x+1/x) = Φl(x). Also, fl is irreducible
over Q[x], f3(x) = x + 1, f4(x) = x, f5(x) = x2 + x − 1 and f6(x) = x − 1. Substituting

y = −Hd−1(x) into χ(Ln,y)
(y−2) , we obtain a polynomial F (x) of degree (n− 1)(d− 1), which

satisfies F (A)u = 0 for each eigenvector u of A orthogonal to the all -one vector. Then,
Fl,k,d−1(x) = fl(−Hd−1(x)) yields

F (x) = (−Hd−1(x) + 2)
∏
36l|n

(Fl,k,d−1(x))2.

Lemma 11. Let g = 2d > 6, and l > 3 be a divisor of n. If there is a (k, g)-graph with
cyclic excess 4 and order n, then Fl,k,d−1(x) must be reducible over Q[x].

Proof. The degree of Fl,k,d−1(x) is equal to (d−1)φ(l)
2

. If Fl,k,d−1(x) is irreducible over Q[x],
then all its roots must be eigenvalues of A. Employing Observation 3.1. from Delorme
and Villavicencio [9], we conclude that there are at most φ(l) roots of Fl,k,d−1(x) that are

eigenvalues of A. Thus (d− 1)φ(l)
2

=φ(l), that is, d = 3. This contradicts the assumption
that 2d > 6. �
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Note that deg(Fl,k,d−1(x)) = d − 1 if and only if φ(l) = 2, that is, if and only if
l ∈ {3, 4, 6}.

Lemma 12. Let k > 6 and g = 2d > 6, and let n be the order of a (k, g)-graph with
cyclic excess 4.

(1) If n ≡ 1(mod 3), then Hd−1(x)− 1 must be reducible over Q[x].

(2) If n ≡ 0(mod 4), then Hd−1(x) must be reducible over Q[x].

(3) If n ≡ 0(mod 6), then Hd−1(x) + 1 must be reducible over Q[x].

Proof. It follows directly from Lemma 11, with the additional assumptions f3(x) = x +
1, f4(x) = x and f6(x) = x− 1. �

If n ≡ 0(mod 4), then using the formula for the order of G, d − 1 must be odd. On
the other hand, since H1(x) = x,H3(x) = x3− 2(k− 1)x and Hd−1(x) = xHd−2(x)− (k−
1)Hd−3(x), we see that if d− 1 is an odd number, then x divides Hd−1(x), which implies
that Hd−1(x) is reducible. Therefore, (2) holds.
The irreducibility of the polynomials Hd−1(x) − 1 over Q[x] is examined in Delorme,
Jørgensen, Miller and Villavicencio [8], where it is analytically proven that these polyno-
mials are irreducible for d ∈ {4, 6, 8}; and the paper contains a conjecture that if d > 10,
then Hd−1(x) − 1 is irreducible. From the irreducibility of Hd−1(x) − 1, we obtain the
main non-existence result of our paper.

Theorem 13. If k and g satisfy one of the following conditions, there exists no (k, g)-
graph of cyclic excess 4:

(1) k ≡ 1, 2(mod 3) and g = 8.

(2) k ≡ 1(mod 3) and g = 12.

(3) k ≡ 1(mod 3) and g = 16.

Proof. Because the order of the graphs is equal to

4 + 2
(
1 + (k − 1) + · · ·+ (k − 1)(g−2)/2

)
,

we conclude n ≡ 0(mod 3). Since the polynomial Hd−1(x)− 1 is known to be irreducible
for d ∈ {4, 6, 8}, we get a contradiction to (1) from Lemma 12. �

Remark 14. Since d is an even number, Theorem 10 asserts that d− 1 divides c− 1 and
c2 − 1. This claim is satisfied because c = c2 = 1.

Next, let us consider graphs of bicyclic excess 4. In this case, we can assume an
arbitrary (even or odd) d, as this case does not depend on the parity of d. So, let G(E)
be a graph consisting of a disjoint union of two cycles C1 and C2. If d is an odd number,
then the vertex sets of the cycles C1 and C2 correspond to the partite sets V1 and V2,
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respectively.
If n ≡ 0(mod 4), d is even, each edge of C(E) has endpoints in V1 and V2. Therefore,
each of the cycles has even length, that is, c2 = 2. Furthermore, k − 1 must be odd.
Unfortunately, this will not help us in excluding any family of pairs (k, g) for which G
does not exist. In fact, for an odd d − 1 and an odd k − 1, we cannot conclude the
irreducibility of Hd−1(x) + 2, thus, we cannot employ Lemma 9.
If n ≡ 2(mod 4) and d is odd, then the lengths of C1 and C2 are equal to n

2
(clearly,

n = 2s+ 1 is odd). Therefore c2 = 0, and d− 1 divides c− 2 and c2.
The main result about the non-existence of graphs G with bicyclic excess 4 is given

in the following theorem.

Theorem 15. If k(> 7) is odd and g = 2d > 8, where d is an even integer, then there
exists no (k, g)-graph with bicyclic excess 4.

Proof. We have c = 2. Theorem 10 implies that d− 1 divides c− 1, which is a contradic-
tion. �
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