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Abstract

We introduce a square root map on Sturmian words and study its properties.
Given a Sturmian word of slope α, there exists exactly six minimal squares in its
language (a minimal square does not have a square as a proper prefix). A Sturmian
word s of slope α can be written as a product of these six minimal squares: s =
X2

1X
2
2X

2
3 · · · . The square root of s is defined to be the word

√
s = X1X2X3 · · · . The

main result of this paper is that
√
s is also a Sturmian word of slope α. Further, we

characterize the Sturmian fixed points of the square root map, and we describe how
to find the intercept of

√
s and an occurrence of any prefix of

√
s in s. Related to the

square root map, we characterize the solutions of the word equation X2
1X

2
2 · · ·X2

n =
(X1X2 · · ·Xn)2 in the language of Sturmian words of slope α where the words X2

i

are minimal squares of slope α.
We also study the square root map in a more general setting. We explicitly

construct an infinite set of non-Sturmian fixed points of the square root map. We
show that the subshifts Ω generated by these words have a curious property: for all
w ∈ Ω either

√
w ∈ Ω or

√
w is periodic. In particular, the square root map can

map an aperiodic word to a periodic word.

Keywords: Sturmian word; standard word; optimal squareful word; word equation;
continued fraction
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1 Introduction

Kalle Saari studies in [17, 18] optimal squareful words which are aperiodic words contain-
ing the least number of minimal squares (that is, squares with no proper square prefixes)
such that every position starts a square. Saari proves that an optimal squareful word
always contains exactly six minimal squares, and he characterizes these squares; less than
six minimal squares forces a word to be ultimately periodic. Moreover, he shows that
Sturmian words are a proper subclass of optimal squareful words.

We propose a square root map for Sturmian words. Let s be a Sturmian word of
slope α, and write it as a product of the six minimal squares in its language L(α):
s = X2

1X
2
2X

2
3 · · · . The square root of s is defined to be the word

√
s = X1X2X3 · · · . The

main result of this paper is that the word
√
s is also a Sturmian word of slope α. More

precisely, we prove that the square root of the Sturmian word sx,α of intercept x and slope
α is sψ(x),α where ψ(x) = 1

2
(x + 1− α). In addition to proving that the square root map

preserves the language of a Sturmian word s, we show how to locate any prefix of
√
s

in s. We also characterize the Sturmian words of slope α which are fixed points of the
square root map; they are the two Sturmian words 01cα and 10cα where cα is the infinite
standard Sturmian word of slope α. The majority of the proofs of results on Sturmian
words rely heavily on the interpretation of Sturmian words as rotation words. Continued
fractions and results from Diophantine approximation theory play a key role in several
proofs.

Solutions of the word equation X2
1 · · ·X2

n = (X1 · · ·Xn)2 where the words X2
i are

among the six minimal squares in L(α) for some fixed irrational α are closely linked to
the square root map. The study of these solutions to this word equation arises naturally
from the study of fixed points of the square root map. The Sturmian fixed points of the
square root map are fixed because they have arbitrarily long prefixes X2

1 · · ·X2
n which

satisfy the word equation. We characterize these specific solutions, i.e., those primitive
words w such that w2 ∈ L(α) and w2 can be written as a product of minimal squares
X2

1 · · ·X2
n satisfying the word equation. On the circle [0, 1), the interval [w] of such a word

w can be seen to satisfy the square root condition ψ([w2]) ⊆ [w], so we instead study and
characterize the primitive words satisfying this square root condition. The result is that
the specific solutions to the word equation (or, equivalently, the primitive words satisfying
the square root condition) are the reversals of standard and semistandard words of slope
α (see Subsection 2.3 for a definition) and the reversed standard words with the first
two letters exchanged. In particular, all of these specific solutions are nonperiodic. It
was known that the word equation (X2

1 · · ·X2
n) = X2

1 · · ·X2
n has nonperiodic solutions

[7], but according to our knowledge no large families of nonperiodic solutions have been
identified until our result. Word equations of the type Xk

1 · · ·Xk
n = (X1 · · ·Xn)k have

been considered by Štěpán Holub [6, 7, 8].
The final central topic of this paper concerns the square root map in a more general

setting. The square root map can be defined not only for Sturmian words but for any op-
timal squareful word. We construct an infinite family of non-Sturmian, linearly recurrent
optimal squareful words Γ with properties similar to Sturmian words. The words Γ are
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fixed points of the square root map. They are constructed by finding non-Sturmian solu-
tions of the word equation X2

1 · · ·X2
n = (X1 · · ·Xn)2 and by building infinite words having

arbitrarily long squares of such solutions as prefixes. The subshifts Ω generated by the
words Γ exhibit behavior similar to Sturmian subshifts. The square root map preserves
the language of several but not every word in Ω. Curiously, if the language of a word in Ω
is not preserved under the square root map, then the image must be periodic. This result
is very surprising since it is contrary to the plausible hypothesis that the square root of
an aperiodic word is aperiodic.

The paper is organized as follows. In Section 3 we prove that the square root map
preserves the language of a Sturmian word. As a corollary we obtain a description of those
Sturmian words which are fixed points of the square root map. In Section 3 we observe
that the intervals of the minimal squares in L(α) satisfy the square root condition. In
Section 4 we characterize all words w2 ∈ L(α) satisfying the square root condition. The
result is that w2 with w primitive satisfies the square root condition if and only if w
is a reversed standard or semistandard word or a reversed standard word with the first
two letters exchanged. Section 5 contains a proof of the characterization of the specific
solutions of the word equation X2

1 · · ·X2
n = (X1 · · ·Xn)2 mentioned earlier. We show that

a primitive word w satisfies the square root condition if and only if w2 can be written as
a product of minimal squares satisfying the word equation. In Section 6 we show how to
locate prefixes of

√
s in s. As an important step in proving this, we provide necessary

and sufficient conditions for a Sturmian word to be a product of squares of reversed
standard and semistandard words. We give a formula describing the square root of the
Fibonacci word in Section 7. Section 8 is devoted to constructing the non-Sturmian fixed
points Γ mentioned above and to demonstrating that the languages of the words in their
subshifts are preserved or they are mapped to periodic words. We conclude the paper by
giving some remarks on possible generalizations in Section 9 and by discussing a few open
problems in Section 10.

A short version of this paper was published as an extended abstract in the proceedings
of WORDS 2015 [14]. This work is also a part of the first author’s Ph.D. dissertation [13].

2 Notation and Preliminary Results

In this section we review notation and basic concepts and results of word combinatorics,
optimal squareful words, continued fractions, and Sturmian words. Most of the definitions
and results provided here about words can be found in Lothaire’s book [11].

An alphabet A is a finite non-empty set of letters, or symbols. A (finite) word over A
is a finite sequence of letters of A obtained by concatenation. The concatenation of two
words u = a0 · · · an−1 and v = b0 · · · bm−1 is the word u · v = uv = a0 · · · an−1b0 · · · bm−1.
In this paper we consider only binary words, that is, words over an alphabet of size two.
Most of the time we take A to be the set {0, 1}. The set of nonempty words over A is
denoted by A+. We denote the empty word by ε and set A∗ = A+ ∪ {ε}. A nonempty
subset of A∗ is called a language. Let w = a0a1 · · · an−1 be a word of n letters. We denote
the length n of w by |w|; by convention |ε| = 0. The set of proper powers of a word w is
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denoted by w+.
An infinite word w over the alphabet A is a function from the nonnegative integers

to A. We write concisely w = a0a1a2 · · · with ai ∈ A. The set of infinite words over A is
denoted by Aω. An infinite word w is said to be ultimately periodic if we can write it in
the form w = uvω = uvvv · · · for some words u, v ∈ A∗. If u = ε, then w is said to be
periodic, or purely periodic. An infinite word which is not ultimately periodic is aperiodic.
The shift operator T acts on infinite words as follows: T (a0a1a2 . . .) = a1a2 · · · .

A finite word u is a factor of the finite or infinite word w if we can write w = vuz
for some v ∈ A∗ and z ∈ A∗ ∪ Aω. If v = ε, then the factor u is called a prefix of w. If
z = ε, then we say that u is a suffix of w. The set of factors of w, the language of w, is
denoted by L(w). If w = a0a1 · · · an−1, then we let w[i, j] = ai · · · aj whenever the choices
of positions i and j make sense. This notion is extended to infinite words in a natural
way. An occurrence of u in w is a position i such that w[i, i + |u| − 1] = u. If such a
position exists, then we say that u occurs in w.

A positive integer p is a period of w = a0 · · · an−1 if ai = ai+p for 0 6 i 6 n− p− 1. If
the finite word w has period p and |w|/p > α for some real α such that α > 1, then w is
called an α-repetition. An α-repetition is minimal if it does not have an α-repetition as
a proper prefix. If w = u2, then w is a square with square root u. A square is minimal
if it does not have a square as a proper prefix. A word w is primitive if it is of the form
zn if and only if n = 1. Equivalently, a word w is primitive if and only if w occurs in w2

exactly twice. The primitive root of w is the unique primitive word u such that w = un

for some n > 1. Let w = vω be a periodic infinite word. The minimal period of w is
defined to be the primitive root of v.

Let w = a0a1 · · · an−1 be a word. The reversal w̃ of w is the word an−1 · · · a1a0. If
w = w̃, then we call w a palindrome. Let C be the cyclic shift operator defined by the
formula C(a0a1 · · · an−1) = a1 · · · an−1a0. The words w,C(w), C2(w), . . . , C |w|−1(w) are
the conjugates of w. If u is a conjugate of w, then we say that u is conjugate to w.

An infinite word w is recurrent if each of its factors occurs in it infinitely often. Let
(in)n>1 be the sequence of consecutive occurrences of a factor u in a recurrent word w.
The return time of u is the quantity

sup{ij+1 − ij : j ∈ {1, 2, . . .}},

which can be infinite. The factors w[ij, ij+1 − 1], j > 1 are the returns to u in w. If
the return time of each factor of w is finite, then the word w is uniformly recurrent.
Equivalently, w is uniformly recurrent if for each factor u of w there exists an integer R
such that every factor of w of length R contains an occurrence of u. If there exists a
global constant K such that the return time of any factor u of w is at most K|u|, then we
say that w is linearly recurrent. Clearly a linearly recurrent word is uniformly recurrent.
The index of a factor u of an infinite word w is defined to be

sup{n : un ∈ L(w)}.

If w is uniformly recurrent and aperiodic, then the index of every factor of w is finite.
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A subshift Ω is a subset of Aω such that

Ω = {w ∈ Aω : L(w) ⊆ L}

for some language L such that L ⊆ A∗. If we set above L = L(w) where w is an infinite
word, then we say that the subshift Ω is generated by w. Subshifts are clearly shift-
invariant. If every word in a subshift is aperiodic, then we call the subshift aperiodic.
A subshift is minimal if it does not contain nonempty subshifts as proper subsets. A
nonempty subshift is minimal if and only if it is generated by a uniformly recurrent word.

2.1 Optimal Squareful Words

In [18] Kalle Saari considers α-repetitive words. An infinite word is α-repetitive if every po-
sition in the word starts an α-repetition and the number of distinct minimal α-repetitions
occurring in the word is finite. If α = 2, then α-repetitive words are called squareful
words. This means that every position of a squareful word begins with a minimal square.
Saari proves that if the number of distinct minimal squares occurring in a squareful word
is at most 5, then the word must be ultimately periodic. On the other hand, if a square-
ful word contains at least 6 distinct minimal squares, then aperiodicity is possible. Saari
calls the aperiodic squareful words containing exactly 6 minimal squares optimal squareful
words. Further, he shows that optimal squareful words are always binary and that the
six minimal squares must take a very specific form:

Proposition 1. Let w be an optimal squareful word. If 10i1 occurs in w for some i > 1,
then the roots of the six minimal squares in w are

S1 = 0, S4 = 10a,

S2 = 010a−1, S5 = 10a+1(10a)b, (1)

S3 = 010a, S6 = 10a+1(10a)b+1,

for some a > 1 and b > 0.

The optimal squareful words containing the minimal square roots of (1) are called
optimal squareful words with parameters a and b. For the rest of this paper we reserve
this meaning for the symbols a and b. Furthermore, we agree that the symbols Si always
refer to the minimal square roots (1).

Saari completely characterizes optimal squareful words [18, Theorem 17].

Proposition 2. An aperiodic infinite word w is optimal squareful if and only if (up to
renaming of letters) there exists integers a > 1 and b > 0 such that w is an element of
the language

0∗(10a)∗(10a+1(10a)b + 10a+1(10a)b+1)ω = S∗1S
∗
4(S5 + S6)ω.
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2.2 Continued Fractions and Rational Approximations

In this section we review results on continued fractions and best rational approximations
of irrational numbers needed in this paper. Good references on these subjects are the
books of Khinchin [9] and Cassels [2].

Every irrational real number α has a unique infinite continued fraction expansion

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(2)

with a0 ∈ Z and ak ∈ N for all k > 1. The numbers ai are called the partial quotients
of α. We focus here only on irrational numbers, but we note that with small tweaks
much of what follows also holds for rational numbers, which have finite continued fraction
expansions.

The convergents ck = pk
qk

of α are defined by the recurrences

p0 = a0, p1 = a1a0 + 1, pk = akpk−1 + pk−2, k > 2,

q0 = 1, q1 = a1, qk = akqk−1 + qk−2, k > 2.

The sequence (ck)k>0 converges to α. Moreover, the even convergents are less than α and
form an increasing sequence and, on the other hand, the odd convergents are greater than
α and form a decreasing sequence.

If k > 2 and ak > 1, then between the convergents ck−2 and ck there are semiconver-
gents (called intermediate fractions in Khinchin’s book [9]) which are of the form

pk,`
qk,`

=
`pk−1 + pk−2

`qk−1 + qk−2

with 1 6 ` < ak. When the semiconvergents (if any) between ck−2 and ck are ordered
by the size of their denominators, the sequence obtained is increasing if k is even and
decreasing if k is odd.

Note that we make a clear distinction between convergents and semiconvergents, i.e.,
convergents are not a specific subtype of semiconvergents.

A rational number a
b

is a best approximation of the real number α if for every fraction
c
d

such that c
d
6= a

b
and d 6 b it holds that

|bα− a| < |dα− c| .

In other words, any other multiple of α with a coefficient at most b is further away
from the nearest integer than bα is. The next important proposition shows that the best
approximations of an irrational number are connected to its convergents (for a proof see
Theorems 16 and 17 of [9]).

Proposition 3. The best rational approximations of an irrational number are exactly its
convergents.
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We identify the unit interval [0, 1) with the unit circle T. Let α ∈ (0, 1) be irrational.
The map

R : [0, 1)→ [0, 1), x 7→ {x+ α},
where {x} stands for the fractional part of the number x, defines a rotation on T. The
circle partitions into the intervals (0, 1

2
) and (1

2
, 1). Points in the same interval of the

partition are said to be on the same side of 0 and points in different intervals are said to
be on the opposite sides of 0. (We are not interested in the location of the point 1

2
.) The

points {qkα} and {qk−1α} are always on the opposite sides of 0. The points {qk,`α} with
0 < ` 6 ak always lie between the points {qk−2α} and {qkα}; see (4).

We measure the shortest distance to 0 on T by setting

‖x‖ = min{{x}, 1− {x}}.

We have the following facts for k > 2 and for all ` such that 0 < ` 6 ak:

‖qk,`α‖ = (−1)k(qk,`α− pk,`), (3)

‖qk,`α‖ = ‖qk,`−1α‖ − ‖qk−1α‖. (4)

We can now interpret Proposition 3 as

min
0<n<qk

‖nα‖ = ‖qk−1α‖, for k > 1. (5)

Note that rotating preserves distances; a fact we will often use without explicit mention.
In particular, the distance between the points {nα} and {mα} is ‖|n−m|α‖. Thus by (5)
the minimum distance between the distinct points {nα} and {mα} with 0 6 n,m < qk
is at least ‖qk−1α‖. Formula (5) tells what is the point closest to 0 among the points
{nα} for 1 6 n 6 qk − 1. We are also interested in knowing the point closest to 0 on the
side opposite to {qk−1α}. The next result is very important and concerns this; see [12,
Proposition 2.2.].

Proposition 4. Let α be an irrational number. Let n be an integer such that 0 < n < qk,`
with k > 2 and 0 < ` 6 ak. If ‖nα‖ < ‖qk,`−1α‖, then n = mqk−1 for some integer m
such that 1 6 m 6 min{`, ak − `+ 1}.

2.3 Sturmian Words

Sturmian words are a well-known class of infinite, aperiodic binary words with minimal
factor complexity. They are defined as the infinite words having n+ 1 factors of length n
for every n > 0. For our purposes it is more convenient to view Sturmian words as the
infinite words obtained as codings of orbits of points in an irrational circle rotation with
two intervals; see [15, 11]. Let us make this more precise. The frequency α of letter 1
(called the slope) in a Sturmian word exists, and it is irrational. Divide the circle T into
two intervals I0 and I1 defined by the points 0 and 1−α, and define the coding function ν
by setting ν(x) = 0 if x ∈ I0 and ν(x) = 1 if x ∈ I1. The coding of the orbit of a point x
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is the infinite word sx,α obtained by setting its nth, n > 0, letter to equal ν(Rn(x)) where
R is the rotation by angle α. This word is Sturmian with slope α, and conversely every
Sturmian word with slope α is obtained this way. To make the definition proper, we need
to define how ν behaves in the endpoints 0 and 1− α. We have two options: either take
I0 = [0, 1 − α) and I1 = [1 − α, 1) or I0 = (0, 1 − α] and I1 = (1 − α, 1]. The difference
is seen in the codings of the orbits of the special points {−nα}, and both options are
needed to be able to obtain every Sturmian word of slope α as a coding of a rotation.
However, in this paper we are not concerned about this choice. We make the convention
that I(x, y) with x 6= y and x, y 6= 0 is whichever of the half-open intervals of T separated
by the points x and y (taken modulo 1 if necessary) that does not contain the point 0
as an interior point. The interval I(x, 0) = I(0, x) is whichever of the half-open intervals
separated by the points 0 and x having smallest length (the case x = 1

2
is not important

in this paper). Since the sequence ({nα})n>0 is dense in [0, 1)—as is well-known—every
Sturmian word of slope α has the same language (that is, the set of factors); this language
is denoted by L(α). Further, all Sturmian words are uniformly recurrent.

For every factor w = a0a1 · · · an−1 of length n there exists a unique subinterval [w] of
T such that sx,α begins with w if and only if x ∈ [w]. Clearly

[w] = Ia0 ∩R−1(Ia1) ∩ . . . ∩R−(n−1)(Ian−1).

We denote the length of the interval [w] by |[w]|. The points 0, {−α}, {−2α}, . . . , {−nα}
partition the circle into n + 1 intervals, which have one-to-one correspondence with the
words of L(α) of length n. Among these intervals the interval containing the point {−(n+
1)α} corresponds to the right special factor of length n. A factor w is right special if both
w0, w1 ∈ L(α). Similarly a factor is left special if both 0w, 1w ∈ L(α). In a Sturmian
word there exists a unique right special and a unique left special factor of length n for all
n > 0. The language L(α) is mirror-invariant, that is, for every w ∈ L(α) also w̃ ∈ L(α).
It follows that the right special factor of length n is the reversal of the left special factor
of length n. Sturmian words are also balanced ; that is, the number of occurrences of the
letter 1 in any two factors of the same length differ at most by 1.

Given the continued fraction expansion of an irrational α ∈ (0, 1) as in (2), we define
the corresponding standard sequence (sk)k>0 of words by

s−1 = 1, s0 = 0, s1 = sa1−1
0 s−1, sk = sakk−1sk−2, k > 2.

As sk is a prefix of sk+1 for k > 1, the sequence (sk) converges to a unique infinite word
cα called the infinite standard Sturmian word of slope α, and it equals sα,α. Inspired by
the notion of semiconvergents, we define semistandard words for k > 2 by

sk,` = s`k−1sk−2

with 1 6 ` < ak. Clearly |sk| = qk and |sk,`| = qk,`. Instead of writing “standard or
semistandard”, we often simply write “(semi)standard”. The set of standard words of
slope α is denoted by Stand(α), and the set of standard and semistandard words of slope
α is denoted by Stand+(α). (Semi)standard words are left special as prefixes of the word
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cα. Every (semi)standard word is primitive [11, Proposition 2.2.3]. An important property
of standard words is that the words sk and sk−1 almost commute; namely sksk−1 = wxy
and sk−1sk = wyx for some word w and distinct letters x and y. For more on standard
words see [11, 1].

The only difference between the words cα and cα where α = [0; 1, a2, a3, . . .] and
α = [0; a2 + 1, a3, . . .] is that the roles of the letters 0 and 1 are reversed. We may thus
assume without loss of generality that a1 > 2. For the rest of this paper we make the
convention that α stands for an irrational number in (0, 1) having the continued fraction
expansion as in (2) with a1 > 2, i.e., we assume that 0 < α < 1

2
. The numbers qk and qk,`

refer to the denominators of the convergents of α, and the words sk and sk,` refer to the
standard or semistandard words of slope α.

2.4 Powers in Sturmian Words

In this section we review some known results on powers in Sturmian words, and prove
helpful results for the next section.

If a square w2 occurs in a Sturmian word of slope α, then the length of the word w must
be a really specific number, namely a denominator of a convergent or a semiconvergent
of α. The proof can be found in [3, Theorem 1] or [12, Proposition 4.1].

Proposition 5. If w2 ∈ L(α) with w nonempty and primitive, then |w| = q0, |w| = q1 or
|w| = qk,` for some k > 2 with 0 < ` 6 ak.

Next we need to know when conjugates of (semi)standard words occur as squares in
a Sturmian word.

Proposition 6. The following holds:

(i) A factor w ∈ L(α) is conjugate to sk for some k > 0 if and only if |w| = |sk| and
w2 ∈ L(α).

(ii) Let w be a conjugate of sk,` with k > 2 and 0 < ` < ak. Then w2 ∈ L(α) if and only
if the intervals [w] and [sk,`] have the same length.

(iii) Let n = q0, n = q1, or n = qk,` with k > 2 and 0 < ` 6 ak, and let s be the
(semi)standard word of length n. A factor w ∈ L(α) of length n is conjugate to s if
and only if w and s have equally many occurrences of the letter 0.

Proof. Claim (i) is a direct consequence of [3, Theorem 3] or alternatively [12, Theo-
rem 4.5]. Claim (ii) can be inferred from Theorems 4.3 and 4.5 of [12]. Finally, claim (iii)
is evident from the proof of [12, Theorem 4.3], but a short proof can be given: the idea
is that every factor of length n except one exceptional factor v is conjugate to s since s2

occurs in L(α) by (i) and (ii). As not every factor of length n may have the same number
of letters 0 (a right special factor extends to two factors having different number of letters
0), it must be that v has a different number of letters 0 than any conjugate of s.
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We also need to know the index of certain factors of Sturmian words. The following
proposition follows directly from Theorems 3 and 4 of [3] or from [12, Theorem 4.5].

Proposition 7. The index of the standard word sk in L(α) is ak+1+2 for k > 2 and a2+1
for k = 1. The index of the semistandard word sk,` in L(α) with k > 2 and 0 < ` < ak
is 2.

3 The Square Root Map

In [18] Saari observed that every Sturmian word of slope α = [0; a1, a2, . . .] is an optimal
squareful word with parameters a = a1 − 1 and b = a2 − 1. The assumption 0 < α < 1

2

implies that 02 ∈ L(α), so the six minimal squares in L(α) are the same as in (1). In
particular, Saari’s result means that every Sturmian word can be (uniquely) written as a
product of the six minimal squares of slope α (1). Thus the square root map introduced
next is well-defined.

Definition 8. Let s be a Sturmian word of slope α, and factorize it as a product of
minimal squares: s = X2

1X
2
2X

2
3 · · · . The square root of s is then defined to be the word√

s = X1X2X3 · · · .
Let us consider as an example the famous Fibonacci word f . The Fibonacci word is

a Sturmian word of slope [0; 2, 1, 1, . . .], so it has parameters a = 1 and b = 0. It is also
the fixed point of the substitution 0 7→ 01, 1 7→ 0. For more information, see for instance
[11]. We have that

f = (010)2(100)2(10)2(01)202(10010)2(01)2 · · · and√
f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · · · .

Note that a square root map can be defined for any optimal squareful word. However,
now we only focus on Sturmian words; we study later the square root map for other
optimal squareful words in Section 8.

We aim to prove the surprising fact that given a Sturmian word s the word
√
s is also

a Sturmian word having the same slope as s. Moreover, knowing the intercept of s, we
can compute the intercept of

√
s.

In the proof we need a special function ψ : T → T defined as follows. For x ∈ (0, 1)
we set

ψ(x) =
1

2
(x+ 1− α),

and we set

ψ(0) =

{
1
2
(1− α), if I0 = [0, 1− α),

1− α
2
, if I0 = (0, 1− α].

The mapping ψ moves a point x on the circle T towards the point 1 − α by halving the
distance between the points x and 1−α. The distance to 1−α is measured in the interval
I0 or I1 depending on which of these intervals the point x belongs to.

We can now state the result.
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0

1− α

[S2
1 ][S2

3 ]

[S2
2 ]

[S2
5 ] [S2

6 ]

[S2
4 ]

[S2]

[S5]

Figure 1: The positions of the intervals on the circle in the proof sketch of Lemma 11.

Theorem 9. Let sx,α be a Sturmian word with slope α and intercept x. Then
√
sx,α =

sψ(x),α. In particular,
√
sx,α is a Sturmian word with slope α.

For a combinatorial version of the above theorem see Theorem 29 in Section 6.
The main idea of the proof is to demonstrate that the square root map is actually the

symbolic counterpart of the function ψ. We begin with a definition.

Definition 10. A square w2 ∈ L(α) satisfies the square root condition if ψ([w2]) ⊆ [w].

Note that if the interval [w] in the above definition has 1− α as an endpoint, then w
automatically satisfies the square root condition. This is because ψ moves points towards
the point 1−α but does not map them over this point. Actually, if w satisfies the square
root condition, then necessarily the interval [w] has 1−α as an endpoint (see Corollary 15).

We will only sketch the proof of the following lemma.

Lemma 11. For every i ∈ {1, . . . , 6} the minimal square root Si of slope α satisfies the
square root condition and ψ({x+ 2|Si|α}) = {ψ(x) + |Si|α} for all x ∈ [S2

i ].

Proof Sketch. It is straightforward to verify that

[S1] = I(0, 1− α), [S4] = I(1− α, 1),

[S2] = I(−2α, 1− α), [S5] = I(1− α,−q2,1α),

[S3] = I(−2α, 1− α), [S6] = I(1− α,−q2,1α)

and

[S2
1 ] = I(0,−2α), [S2

4 ] = I(−q2,1α, 1),

[S2
2 ] = I(−(q2,1 + 1)α, 1− α), [S2

5 ] = I(1− α,−(q3,1 + 1)α),

[S2
3 ] = I(−2α,−(q2,1 + 1)α), [S2

6 ] = I(−(q3,1 + 1)α,−q2,1α),

see Figure 1. Since ψ does not map points over the point 1 − α, it is evident that every
minimal square root satisfies the square root condition.

Consider then the latter claim. Let i ∈ {1, . . . , 6}. Suppose that x ∈ [S2
i ] \ {0},

{x+ 2|Si|α} 6= 0, and bx+ 2|Si|αc = 2r for some r > 0. Then

ψ({x+ 2|Si|α}) =
1

2
(x+ 2|Si|α− 2r + 1− α) = ψ(x) + |Si|α− r = {ψ(x) + |Si|α} (6)
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since ψ is a function from T to T. We consider next the cases i = 1 and i = 5; the other
cases are similar.

Suppose that Si = S1. Now x+ 2α > 2α > 0 = 2p0 and

x+ 2α 6 1− 2α + 2α = 1 = 2p0 + 1,

so x + 2α ∈ (2p0, 2p0 + 1]. The claim is thus clear as in (6) if x 6= 0 and x 6= 1 − 2α. If
x = 0, then I0 = [0, 1− α) and {ψ(x) + α} = {1

2
(1− α) + α} = 1

2
(1 + α) = ψ({x+ 2α}).

If x = 1− 2α, then I0 = (0, 1− α] and ψ({x+ 2α}) = 1− α
2

= {ψ(x) + α}.
Assume then that Si = S5. Note that |S5| = q2. Using (4) we obtain that

x+ 2q2α 6 ‖(q3,1 + 1)α‖+ 2q2α

= 1− α + ‖q3,1α‖+ 2p2 + 2‖q2α‖
= 1− α + ‖q1α‖ − ‖q2α‖+ 2p2 + 2‖q2α‖
= 1− α + ‖q1α‖+ ‖q2α‖+ 2p2

6 2p2 + 1,

where equality holds only if x = ‖(q3,1 + 1)α‖ and a2 = 1. The length of the interval
[S2

5 ] is ‖q3,1α‖. Since 1 − α > α + ‖q1α‖ and α > ‖q1α‖ > ‖q2α‖, it follows from the
preceding inequalities that x+ 2q2α > 2p2. Therefore x+ 2q2α ∈ (2p2, 2p2 + 1]. If a2 > 1
or x 6= ‖(q3,1 + 1)α‖, then the conclusion follows as in (6). Suppose finally that a2 = 1
and x = ‖(q3,1 + 1)α‖. Now I0 = (0, 1 − α], so ψ({x + 2q2α}) = ψ(0) = 1 − α

2
. On the

other hand,

ψ(x) + q2α =
1

2
(1− α + ‖q3,1α‖+ 1− α) + p2 + ‖q2α‖

=
1

2
(1− α + ‖q1α‖ − ‖q2α‖+ 1− α + 2‖q2α‖) + p2

= 1− α

2
+ p2,

so the conclusion holds also in this case.

Proof of Theorem 9. Write sx,α = X2
1X

2
2X

2
3 · · · as a product of minimal squares. Since

the minimal square X2
1 satisfies the square root condition by Lemma 11, we have that

ψ(x) ∈ [X1]. Hence both
√
sx,α and sψ(x),α begin with X1. Lemma 11 implies that

ψ({x + 2|X1|α}) = {ψ(x) + |X1|α} for all x ∈ [X2
1 ]. Thus by shifting sx,α the amount

2|X1| and by applying the preceding reasoning, we conclude that sψ(x),α shifted by the
amount |X1| begins with X2. Therefore the words

√
sx,α and sψ(x),α agree on their first

|X1|+ |X2| letters. By repeating this procedure, we conclude that
√
sx,α = sψ(x),α.

Theorem 9 allows us to effortlessly characterize the Sturmian words which are fixed
points of the square root map.

Corollary 12. The only Sturmian words of slope α which are fixed by the square root
map are the two words 01cα and 10cα, both having intercept 1− α.
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Proof. The only fixed point of the map ψ is the point 1 − α. Having this point as an
intercept, we obtain two Sturmian words: either 01cα or 10cα, depending on which of the
intervals I0 and I1 the point 1− α belongs to.

The set {01cα, 10cα} is not only the set of fixed points but also the unique attractor of
the square root map in the set of Sturmian words of slope α. When iterating the square
root map on a fixed Sturmian word sx,α, the obtained word has longer and longer prefixes
in common with either of the words 01cα and 10cα because ψn(x) tends to 1 − α as n
increases.

4 One Characterization of Words Satisfying the Square Root
Condition

In the previous section we saw that the minimal squares, which satisfy the square root con-
dition, were crucial in proving that the square root of a Sturmian word is again Sturmian
with the same slope. The minimal squares of slope α are not the only squares in L(α)
satisfying the square root condition; in this section we will characterize combinatorially
such squares. To be able to state the characterization, we need to define

RStand(α) = {w̃ : w ∈ Stand(α)},

the set of reversed standard words of slope α. Similarly we set

RStand+(α) = {w̃ : w ∈ Stand+(α)}.

We also need the operation L which exchanges the first two letters of a word (we do not
apply this operation to too short words).

The main result of this section is the following.

Theorem 13. A square w2 ∈ L(α) with w primitive satisfies the square root condition if
and only if w ∈ RStand+(α) ∪ L(RStand(α)).

As we remarked in Section 3, a square w2 ∈ L(α) trivially satisfies the square root
condition if its interval [w] has 1−α as an endpoint. Our aim is to prove that the converse
is also true. We begin with a technical lemma.

Lemma 14. Let n = q1 or n = qk,` for some k > 2 with 0 < ` 6 ak, and let i be an
integer such that 1 < i 6 n.

(i) If {−iα} ∈ I0 and {−(i+ n)α} < {−iα}, then ψ(−(i+ n)α) > {−iα}.

(ii) If {−iα} ∈ I1 and {−(i+ n)α} > {−iα}, then ψ(−(i+ n)α) < {−iα}.

Proof. We prove (i), the second assertion is symmetric. Suppose that {−iα} ∈ I0 and
{−(i+n)α} < {−iα}. Note that the distance between the points {−iα} and {−(i+n)α}
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is less than α. It follows that {−nα} ∈ I1. Assume on the contrary that ψ(−(i+ n)α) 6
{−iα}, that is,

{−(i+ n)α}+
1

2
({1− α} − {−(i+ n)α}) 6 {−iα}.

Since 0 < {−(i + n)α} < {−iα}, the distance between {−(i + n)α} and {−iα} is the
same as the distance between 1 and {−nα}. Thus by substituting

{−(i+ n)α} = {−iα} − (1− {−nα})

to the above and rearranging, we have that

{1− α} − {−iα} 6 1− {−nα}.

Since {−nα} ∈ I1, we obtain that

‖ − (i− 1)α‖ 6 ‖ − nα‖. (7)

Suppose now first that n = qk,` for some k > 2 with 0 < l 6 ak. Since i − 1 < n,
Proposition 4 and (7) imply that i − 1 = mqk−1 for some 1 6 m 6 min{`, ak − ` + 1}.
As {−nα} ∈ I1, the point {−qk−1α} must lie on the opposite side of 0 in the interval
I0. Therefore {−(i − 1)α} ∈ I0. Then by (7), the point {−iα} must lie in I1. This is a
contradiction. Suppose then that n = q1. It is easy to see that (7) cannot hold for any i
greater than 1. This concludes the proof.

Corollary 15. If w2 ∈ L(α) with w primitive satisfies the square root condition, then the
interval [w] has 1− α as an endpoint.

Proof. Let n = |w|. Proposition 5 implies that n = q0, n = q1, or n = qk,` for some k > 2
with 0 < ` 6 ak. Say n = q0 = 1. As the only factor of length 1 occurring as a square is
0, the claim holds as [0] = I0 = I(0, 1− α). Suppose then that n = q1 or n = qk,`.

Let [w] = I(−iα,−jα). Then either [w2] = I(−iα,−(j + |w|)α) or [w2] = I(−(i +
|w|)α,−jα). Suppose first that [w] ⊆ I0. By symmetry we may assume that {−jα} >
{−iα}. Now [w2] = [−(i+|w|)α,−jα) if and only if j = 1. Namely, if j 6= 1, then it is clear
that it is possible to find a point x ∈ I(−iα,−jα) close to {−jα} such that ψ(x) > {−jα},
so the condition ψ([w2]) ⊆ [w] cannot be satisfied. If [w2] = [−iα,−(j+ |w|)α) and j 6= 1,
then by Lemma 14 ψ(−(j + |w|)α) > {−jα}, so the condition ψ([w2]) ⊆ [w] cannot be
satisfied. Thus also in this case necessarily j = 1. The case where [w] ⊆ I1 is proven
symmetrically using the latter symmetric assertion of Lemma 14.

Next we study in more detail the properties of squares w2 ∈ L(α) whose interval has
1− α as an endpoint.

Proposition 16. Consider the intervals of factors in L(α) of length n = q1 or n = qk,`
with k > 2 and 0 < ` 6 ak. Let u and v be the two distinct words of length n having
intervals with endpoint 1− α. Then the following holds.
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(i) There exists a word w such that u = xyw and v = yxw = L(u) for distinct letters x
and y.

(ii) Either u or v is right special.

(iii) If µ is the right special word among the words u and v, then µ2 ∈ L(α).

(iv) If λ is the word among the words u and v which is not right special, then λ2 ∈ L(α)
if and only if n = q1 or ` = ak.

Proof. Suppose first that n = q1. Then it is straightforward to see that the factors u and
v of length n having intervals with endpoint 1 − α are 010a1−2 = S2 and 10a1−1 = S4.
Clearly S4 is right special and L(S4) = S2. Moreover S2

2 , S
2
4 ∈ L(α).

Assume that n = qk,` for some k > 2 with 0 < ` 6 ak. By Proposition 4 the point
{−nα} is the point closest to 0 on the side opposite to the point {−qk−1α}. Thus either
{−(n+1)α} ∈ [u] or {−(n+1)α} ∈ [v]. Assume by symmetry that {−(n+1)α} ∈ [u]. This
means that the word u is right special, proving (ii). Further, the endpoint of [u] which is
not 1− α must be after a rotation the next closest point to 0 on the side opposite to the
point {−qk−1α}. Thus by Proposition 4 [u] = I(−(qk,`−1 + 1)α, 1 − α) and consequently
[v] = I(1− α,−(qk−1 + 1)α).

Since the points x = {(−(qk,`−1 + 1)α} and y = {−(qk−1 + 1)α} are on the opposite
sides of the point 1− α and the points {x+ α} and {y + α} are on the opposite sides of
the point 0, it follows that u begins with cd and v begins with dc for distinct letters c and
d. Assume on the contrary that u = cdzeu′ and v = dczfv′ for distinct letters e and f .
In particular, |z| 6 n − 3. This means that the point x′ = {x + (|z| + 2)α} is in [e] and
the point y′ = {y+ (|z|+ 2)α} is in [f ]. It must be that e = c and f = d as otherwise the
point x′ − α would be in [c] and the point y′ − α would be in [d] contradicting the choice
of z. Since α is irrational, either x′ is closer to 1−α than x or y′ is closer to 1−α than y.

Suppose that x′ is closer to 1 − α than x. Since x′ is on the same side of the point
1− α as x, it follows that

‖x′ + α‖ = ‖(qk,`−1 − |z| − 2)α‖ < ‖qk,`−1α‖ = ‖x+ α‖.

Since qk,`−1−|z|−2 < qk,`−1, by Proposition 4 it must be that qk,`−1−|z|−2 6 0. However,
as ‖qk,`−1α‖ = ‖ − qk,`−1α‖, it follows by Proposition 4 that |z| + 2 − qk,`−1 = mqk−1 for
some m > 1. Thus |z|+ 2 > qk,`−1 + qk−1 = qk,` = n. This is, however, a contradiction as
|z| 6 n− 3.

Suppose then that y′ is closer to 1− α than y. Similar to above, it follows that

‖y′ + α‖ = ‖(qk−1 − |z| − 2)α‖ < ‖qk−1α‖ = ‖y + α‖.

Again, it must be that qk−1− |z| − 2 6 0. Since ‖qk−1α‖ = ‖− qk−1α‖, it follows from (5)
that |z|+ 2− qk−1 > qk. Therefore |z|+ 2 > qk + qk−1 > n. This is again a contradiction
with the fact that |z| 6 n− 3.

Thus we conclude that u = cdw and v = dcw for some word w proving (i). As n = qk,`,
it must be that the right special word of length n equals s̃k,`. Since u and v are conjugate
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by Proposition 6 (iii), Proposition 6 implies that if ` = ak, then u2, v2 ∈ L(α). Suppose
that ` 6= ak. By Proposition 6, the word sk,` occurs as a square in L(α). Since L(α)
is mirror-invariant, also u2 = s̃ 2

k,` ∈ L(α). Therefore from Proposition 6 it follows that
|[u]| = ‖qk,`−1α‖ = |[sk,`]|. Now [v] = I(1 − α,−(qk−1 + 1)α), so |[v]| = ‖qk−1α‖ 6= |[u]|.
Thus Proposition 6 implies that v2 /∈ L(α). Hence (iii) and (iv) are proved.

Proof of Theorem 13. If |w| = 1, then clearly w = 0 = s̃0, so the claim holds. We may
thus focus on the case that |w| > 1.

Suppose that w2 ∈ L(α) satisfies the square root condition. By Corollary 15 the
interval [w] has 1 − α as an endpoint. Moreover, Proposition 5 implies that |w| = q1 or
|w| = qk,l for some k > 2 with 0 < l 6 ak. Thus from Proposition 16 it follows that w = s̃
or w = L(s̃ ) where s is the (semi)standard word of length |w|. By Proposition 16 we have
that s̃ 2 ∈ L(α). Moreover, by Proposition 16 we have that L(s̃ )2 ∈ L(α) if and only if
|w| = qk for some k > 1. Thus w ∈ RStand+(α) ∪ L(RStand(α)).

Suppose then that w ∈ RStand+(α) ∪ L(RStand(α)). Note first that L(w) has the
same number of letters 0 as w, so w is conjugate to L(w) by Proposition 6. Thus it
follows from Proposition 6 that w2 ∈ L(α). Let u and v be the factors of length |w|
having endpoint 1−α. By Proposition 16 the word u must be right special and v = L(u).
Since the right special factor of length |w| is unique, either w = u or L(w) = u. Thus
the interval [w] has 1 − α as an endpoint. Then clearly w2 satisfies the square root
condition.

5 Characterization by a Word Equation

It turns out that the squares of slope α satisfying the square root condition have also a
different characterization in terms of specific solutions of the word equation

X2
1X

2
2 · · ·X2

n = (X1X2 · · ·Xn)2 (8)

in the language L(α). We are interested only in the solutions of (8) where all words Xi

are minimal square roots (1), i.e., primitive roots of minimal squares. Thus we give the
following definition.

Definition 17. A nonempty word w is a solution to (8) if w can be written as a product of
minimal square roots w = X1X2 · · ·Xn which satisfy the word equation (8). The solution
is trivial if X1 = X2 = . . . = Xn and primitive if w is primitive. The word w is a solution
to (8) in L(α) if w is a solution to (8) and w2 ∈ L(α).

All minimal square roots of slope α are trivial solutions to (8). One example of a
nontrivial solution is w = S2S1S4 in the language of the Fibonacci word (i.e., in the
language of slope [0; 2, 1, 1, . . .]) since w2 = (01010)2 = (01)2 · 02 · (10)2 = S2

2S
2
1S

2
4 . Note

that in the language of any Sturmian word there are only finitely many trivial solutions
as the index of every factor is finite.

Note that the factorization of a word as product of minimal squares is unique. Indeed,
if X2

1 · · ·X2
n = Y 2

1 · · ·Y 2
m, where the squares X2

i and Y 2
i are minimal, then either X2

1 is
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a prefix of Y 2
1 or vice versa. Therefore by minimality X2

1 = Y 2
1 , that is, X1 = Y1. The

uniqueness of the factorization follows.
Our aim is to complete the characterization of Theorem 13 as follows.

Theorem 18. Let w ∈ L(α) with w primitive. The following are equivalent:

(i) w is a primitive solution to (8) in L(α),

(ii) w2 satisfies the square root condition,

(iii) w ∈ RStand+(α) ∪ L(RStand(α)).

For later use in Section 8 we define the language L(a, b).

Definition 19. The language L(a, b) consists of all factors of the infinite words in the
language

(10a+1(10a)b + 10a+1(10a)b+1)ω = (S5 + S6)ω.

Observe that by Proposition 2 every factor in L(a, b) is a factor of some optimal
squareful word with parameters a and b. Moreover, if α = [0; a + 1, b + 1, . . .], then
L(α) ⊆ L(a, b).

Definition 20. The language Π(a, b) consists of all nonempty words in L(a, b) which can
be written as products of the minimal squares (1).

Let w ∈ Π(a, b), that is, w = X2
1 · · ·X2

n for minimal square roots Xi. Then we can
define the square root of w by setting

√
w = X1 · · ·Xn.

We need two technical lemmas. Their proofs are straightforward case-by-case analysis.
The statement of Lemma 21 has a technical condition for later use in Section 8, which is
perhaps better understood if the reader first reads the proof of Lemma 22 up to the point
where Lemma 21 is invoked.

Lemma 21. Let u and v be words such that

• u is a nonempty suffix of S6,

• |v| > |S5S6|,

• v begins with xy for distinct letters x and y,

• uv ∈ L(a, b) and L(v) ∈ L(a, b).

Suppose there exists a minimal square X2 such that |X2| > |u| and X2 is a prefix of uv
or uL(v). Then there exist minimal squares Y 2

1 , . . ., Y 2
n such that X2 and Y 2

1 · · ·Y 2
n are

prefixes of uv and uL(v) of the same length and X = Y1 · · ·Yn.
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Proof. Let Z2 be a minimal square such that |Z2| > |u| and Z2 is a prefix of uv or uL(v).
It is not obvious at this point that Z exists but its existence becomes evident as this proof
progresses. By symmetry we may assume that Z2 is a prefix of uv. To prove the claim
we consider different cases depending on the word Z.

Case A. Z = S1 = 0. Since u is a nonempty suffix of S6 and |Z2| > |u|, it must be
that u = 0. As v begins with 0, we have that v begins with 01 by assumption. Since
v ∈ L(a, b) and |v| > |S6|, the word v begins with either 010a10a or 010a+110a. In the
latter case L(v) would begin with 10a+21 contradicting the assumption L(v) ∈ L(a, b).
Hence v begins with 010a10a. It follows that uv has 0010a10a as a prefix, that is, uv begins
with S2

1S
2
4 . On the other hand, the word uL(v) has the word S2

3 = 010a+110a as a prefix.
Since S3 = S1S4, the conclusion of the claim holds.

Case B. Z = S2 = 010a−1. If u = 0, then v has 10a10a as a prefix and, consequently,
L(v) has 010a−110a as a prefix contradicting the fact that L(v) ∈ L(a, b). Therefore by
the assumptions that u is a nonempty suffix of S6 and |Z2| > |u|, it follows that u = 010a.
Thus v has 10a as a prefix. Using the fact that L(v) ∈ L(a, b), we see that v begins with
10a+1 and L(v) begins with 010a. Hence uv has S2

2S
2
1 as a prefix, and uL(v) has S2

3 as a
prefix. Since S2S1 = S3, we conclude, as in the previous case, that the conclusion holds.

Case C. Z = S3 = 010a. Using again the fact that u is a suffix of S6 and |Z2| > |u|,
we see that either u = 0 or u = 010a. In the first case v begins with 10a+110a and L(v)
begins with 010a10a. Hence the word uL(v) has S2

1S
2
4 as a prefix. As S1S4 = S3, the

conclusion follows. Let us then consider the other case. Now L(v) begins with 10a+1, so
the word uL(v) has S2

2S
2
1 as a prefix. Again, the conclusion follows since S2S1 = S3.

Case D. Z = S4 = 10a. Now the only option is that u = 10a. Using the fact that
L(v) ∈ L(a, b), we see that v cannot begin with 10a1, so v must have 10a+1 as a prefix.
Further, since |v| > |S6|, it must be that S6 is a prefix of v. If S61 would be a prefix of
v, then the word L(v) would have the word (10a)b+21 as a factor contradicting the fact
that L(v) ∈ L(a, b). Thus S60 is a prefix of v. Since v ∈ L(a, b) and |v| > |S5S6|, we
have that S60(10a)b+1 = S2

510a is a prefix of v. Consequently, the word L(v) begins with
0(10a)b+110a+1(10a)b+1, so uL(v) has S2

6 as a prefix. Assume first that b is odd. It is
straightforward to see that in this case

0(10a)b10a+1(10a)b+1 = (S2
2)(b+1)/2S2

1(S2
4)(b+1)/2.

Thus for the prefix 10aS510a of uv we have that

10aS2
510a = S2

4(S2
2)(b+1)/2S2

1(S2
4)(b+1)/2.

As S6 = S4S
(b+1)/2
2 S1S

(b+1)/2
4 , the conclusion follows as before. Assume then that b is

even. It is now easy to show that

0(10a)b10a+1(10a)b+1 = (S2
2)b/2S2

3(S2
4)b/2.

Therefore
10aS2

510a = S2
4(S2

2)b/2S2
3(S2

4)b/2.
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Since S6 = S4S
b/2
2 S3S

b/2
4 , the conclusion again follows.

Case E. Z = S5 = 10a+1(10a)b. Now either u = 10a or u = 10a+1(10a)b+1. In the
first case v must begin with 0(10a)b10a+1(10a)b. However, this implies that L(v) begins
with 10a+1(10a)b−110a+1(10a)b contradicting the fact that L(v) ∈ L(a, b). Consider then
the latter case where v begins with 0(10a)b. As L(v) ∈ L(a, b) and |v| > |S6|, it must be
that L(v) begins with 10a+1(10a)b+1. Hence the word uL(v) has S2

6 as a prefix. Since the
word v begins with 0(10a)b+2, the word uv has S2

5S
2
4 as a prefix. The conclusion follows

as S5S4 = S6.
Case F. Z = S6 = 10a+1(10a)b+1. Now there are two possibilities: either u = 10a or

u = 10a+1(10a)b+1. In the first case v begins with 0(10a)b+110a+1(10a)b+1, so L(v) begins
with 10a+1(10a)b10a+1(10a)b+1. The word uL(v) has S2

40(10a)b10a+1(10a)b+1 as a prefix.
Proceeding as in the Case D depending on the parity of b, we see that the conclusion
holds. Consider then the latter case u = 10a+1(10a)b+1. The word v must begin with
u, so L(v) has 0(10a)b+2 as a prefix. Clearly the word uL(v) has S2

5S
2
4 as a prefix. As

S6 = S5S4, the conclusion follows.

A more intuitive way of stating Lemma 21 is that under the assumptions of the lemma
swapping two adjacent and distinct letters which do not occur as a prefix of a minimal
square affects a product of minimal square only locally and does not change its square
root.

Lemma 22. Let w be a primitive solution to (8) having the word S6 = 10a+1(10a)b+1 as
a suffix such that w2, L(w) ∈ L(a, b). Then wL(w) ∈ Π(a, b) and

√
wL(w) = w.

Proof. If w = S6, then it is easy to see that wL(w) = S2
5S

2
4 and w = S5S4, so the claim

holds. We may thus suppose that S6 is a proper suffix of w.
Since w is a solution to (8), we have that w2 = X2

1 · · ·X2
n and w = X1 · · ·Xn for some

minimal square roots Xi. It must be that n > 1 as if n = 1 then w = X1, and it is not
possible for S6 to be a proper suffix of w. Assume for a contradiction that X1 = S1. Since
X1X2 is a prefix of w2, it follows that X2 begins with the letter 0. If X2 6= S1, then X1X2

begins with 001 but X2
1X

2
2 begins with 000, which is impossible. Hence X2 = S1, and by

repeating the argument it follows that Xk = S1 for all k such that 1 6 k 6 n. Thus w
cannot have S6 as a suffix, so we conclude that X1 6= S1. Hence w always begins with 01
or 10.

We show that |X2
1 | < |w|. Assume on the contrary that |X2

1 | > |w|. Since w has the
word S6 as a suffix, it follows that S6 is a factor of X2

1 . It follows that X1 is one of the
words S5, S6 or S3 (if b = 0). If X1 = S5, then S6 occurs in X2

1 = 10a+1(10a)b10a+1(10a)b

only as a prefix. Thus w = S6 contradicting the fact that S6 is a proper suffix of w. If
X1 = S6, then S6 occurs in X2

1 = 10a+1(10a)b+110a+1(10a)b+1 as a prefix and as a suffix.
Since w 6= S6, it must be that w = X2

1 contradicting the primitivity of w. Let finally
b = 0 and X1 = S3. Then S6 occurs in X2

1 = 010a+110a as a suffix. Hence w = X2
1

contradicting again the primitivity of w.
Now there exists a maximal r such that 1 6 r < n and X2

1 · · ·X2
r is a prefix

of w. Actually X2
1 · · ·X2

r is a proper prefix of w, as otherwise w2 = (X2
1 · · ·X2

r )2 =
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(X1 · · ·XrX1 · · ·Xr)
2, so w = (X1 · · ·Xr)

2 contradicting the primitivity of w. Thus when
factorizing wL(w) and w2 as products of minimal squares, the first r squares are equal.
Let u be the nonempty word such that w = X2

1 · · ·X2
ru. By the definition of the number

r, we have that u is a proper prefix of X2
r+1. Suppose for a contradiction that |u| > |S6|.

It follows that u has S6 as a proper suffix. This leaves only the possibilities that Xr+1 is
either of the words S5 or S6. However, if Xr+1 = S5, then S6 cannot be a proper suffix of
u, and if Xr+1 = S6, then r is not maximal. We conclude that |u| 6 |S6|.

Next we show that w must satisfy |w| > |S5S6|. Suppose first that w begins with
the letter 0. Then as S6 is a proper suffix of w and w2 ∈ L(a, b), it must be that w
begins with 0(10a)b+1. Suppose that this prefix overlaps with the suffix S6. Then clearly
w = 0(10a)b10a+1(10a)b+1 = (0(10a)b+1)2 contradicting the primitivity of w. If the prefix
0(10a)b+1 does not overlap with the suffix S6, then |w| > |S5S6|. Assume then that w
begins with the letter 1. Similar to above, the word w must begin with 10a+1(10a)b+1. In
this case necessarily |w| > |S5S6|.

Finally, we can apply Lemma 21 to the words u and w with X = Xr+1. We obtain
minimal squares Y 2

1 , . . ., Y 2
m such that Y 2

1 · · ·Y 2
m is a prefix of uL(w) and and Y1 · · ·Ym =

Xr+1 · · ·Xr+t for some t > 1. Thus

wL(w) = X2
1 · · ·X2

rY
2

1 · · ·Y 2
mX

2
r+t+1 · · ·X2

n and

w = X1 · · ·Xn = X1 · · ·XrY1 · · ·YmXr+t+1 · · ·Xn.

The claim is proved.

Proposition 23. Let w ∈ RStand+(α)∪L(RStand(α)). Then the word w is a primitive
solution to (8) in L(α).

Proof. Note that Proposition 6 implies that w2 ∈ L(α). Suppose first that |w| < |S6|
where S6 = s̃3,1 = 10a+1(10a)b+1. Clearly the minimal square root S1, . . . , S5 are solutions
to (8), so we are left with the case where w = s̃2,` = 0(10a)` for some ` such that
1 < ` 6 b + 1. It is straightforward to see that if ` is even, then

w2 = (S2
2)`/2S2

1(S2
4)`/2 and w = S

`/2
2 S1S

`/2
4 .

If ` is odd, then

w2 = (S2
2)(`+1)/2S2

3(S2
4)(`+1)/2 and w = S

(`+1)/2
2 S3S

(`+1)/2
4 .

Hence w is a solution to (8).
We may thus suppose that |w| > |S6|, so w has S6 as a suffix. We proceed by induction.

Now either w = s̃k,` for some k > 3 with 0 < ` 6 ak or L(w) = s̃k for some k > 3. We
assume that the claim holds for every word satisfying the hypotheses which are shorter
than w. Consider first the case w = s̃k,` for some k > 3 with 0 < ` 6 ak. By the fact that
s̃k−1s̃k−2 = L(s̃k−2)s̃k−1 we obtain that

w2 = s̃k−2s̃
`
k−1s̃k−2s̃

`
k−1 = s̃k−2s̃

`−1
k−1L(s̃k−2)s̃ `−1

k−1 · s̃ 2
k−1 = s̃k,`−1L(s̃k,`−1) · s̃ 2

k−1.
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Now if k = 3 and ` = 1, then the conclusion holds as s̃3,1 = S6 is a minimal square root.
Hence we may assume that either k > 3 or k = 3 and ` > 1. Since s̃k−1 is a solution to
(8), we have that s̃ 2

k−1 = X2
1 · · ·X2

n and s̃k−1 = X1 · · ·Xn for some minimal square roots
Xi. In other words,

s̃ 2
k−1 ∈ Π(a, b) and

√
s̃ 2
k−1 = s̃k−1.

Since |s̃k,`−1| > |S6|, with an application of Lemma 22 we obtain that

s̃k,`−1L(s̃k,`−1) ∈ Π(a, b) and
√
s̃k,`−1L(s̃k,`−1) = s̃k,`−1.

Thus w2 ∈ Π(a, b) and
√
w2 =

√
s̃k,`−1L(s̃k,`−1)

√
s̃ 2
k−1 = s̃k,`−1s̃k−1 = w,

so w is a solution to (8).
Consider next the case w = L(s̃k) for some k > 3. Similar to above,

w2 = L(s̃k−2)s̃ akk−1L(s̃k−2)s̃ akk−1 = L(s̃k−2)s̃ ak+1
k−1 s̃k−2s̃

ak−1
k−1

= L(s̃k−2)s̃k−1s̃k−3s̃
ak−1

k−2 s̃
ak−1
k−1 s̃k−2s̃

ak−1
k−1 = L(s̃k−2)s̃k−1s̃k−3s̃

ak−1−1
k−2 · s̃ 2

k,ak−1

= s̃k−1s̃k−2s̃k−3s̃
ak−1−1
k−2 · s̃ 2

k,ak−1 = s̃k−1L(s̃k−1) · s̃ 2
k,ak−1.

If k > 3, then the claim follows using the induction hypothesis and Lemma 22 as above.
In the case k = 3 we have that

s̃k−1L(s̃k−1) ∈ Π(a, b) and
√
s̃k−1L(s̃k−1) = s̃k−1.

Namely, it is not difficult to see that if b is even, then

s̃k−1L(s̃k−1) = (S2
2)1+b/2S2

1(S2
4)b/2 and s̃k−1 = S

1+b/2
2 S1S

b/2
4 .

If b is odd, then

s̃k−1L(s̃k−1) = (S2
2)(b+1)/2S2

3(S2
4)(b−1)/2 and s̃k−1 = S

(b+1)/2
2 S3S

(b−1)/2
4 .

Thus w is a solution to (8) also in the case k = 3.

Note that a word w in the set L(RStand+(α)) \L(RStand(α)) is a solution to (8) but
not in the language L(α). Rather, w is a solution to (8) in L(β) where β is a suitable
irrational such that L(w) is a reversed standard word of slope β.

From Proposition 23 we conclude the following interesting fact:

Corollary 24. There exist arbitrarily long primitive solutions of (8) in L(α).

We can now prove Theorem 18.

Proof of Theorem 18. By Proposition 23 and Theorem 13 it is sufficient to prove that (i)
implies (ii).

Suppose that w is a solution to (8) in L(α). Write w2 as a product of minimal
squares: w2 = X2

1X
2
2 · · ·X2

n. Let x ∈ [w2]. Then the word sx,α begins with X2
1X

2
2 · · ·X2

n,
so by Theorem 9 the word

√
sx,α = sψ(x),α begins with X1X2 · · ·Xn. Therefore ψ(x) ∈

[X1X2 · · ·Xn] = [w]. Thus w2 satisfies the square root condition.
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6 A More Detailed Combinatorial Description of the Square
Root Map

Recall from Section 3 that the square root
√
s of a Sturmian word s has the same factors

as s. The proofs were dynamical; we used the special mapping ψ on the circle. In this
section we describe combinatorially why the language is preserved; we give a location for
any prefix of

√
s in s. As a side product, we are able to describe when a Sturmian word

is uniquely factorizable as a product of squares of reversed (semi)standard words.
Let us begin with an introductory example. Recall from Section 3 the square root of

the Fibonacci word f :

f = (010)2(100)2(10)2(01)202(10010)2(01)2 · · · ,√
f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · · · .

Obviously the square root X1 = 010 of (010)2 occurs as a prefix of f . Equally clearly
the word 010 · 100 =

√
(010)2(100)2 occurs, not as a prefix, but after the prefix X1 of f .

Thus the position of the first occurrence of 010 · 100 shifted |X1| = 3 positions from the
position of the first occurrence of X1. However, when comparing the position of the first
occurrence of

√
(010)2(100)2(10)2 with the first occurrence of 010 · 100, we see that there

is no further shift. By further inspection, the word
√

(010)2(100)2(10)2(01)202(10010)2

occurs for the first time at position |X1| of f . This is no longer true for the first seven
minimal squares; the first occurrence of X1X2 = 010 ·100 ·10 ·01 ·0 ·10010 ·01 is at position
|X1X2| = 16 of f . The amount of shift from the previous position |X1| = 3 is |X2| = 13;
observe that both of these numbers are Fibonacci numbers. Thus the amount of shift was
exactly the length of the square roots added after observing the previous shift. As an
observant reader might have noticed, both of the words X1 and X2 are reversed standard
words, or equivalently, primitive solutions to (8). Repeating similar inspections on other
Sturmian words suggests that there is a certain pattern to these shifts and that knowing
the pattern would make it possible to locate prefixes of

√
s in the Sturmian word s. Thus

it makes very much sense to “accelerate” the square root map by considering squares of
solutions to (8) instead of just minimal squares. Next we make these somewhat vague
observations more precise.

Every Sturmian word has a solution of (8) as a square prefix. Next we aim to char-
acterize Sturmian words having infinitely many solutions of (8) as square prefixes. The
next two lemmas are key results towards such a characterization.

Lemma 25. Consider the reversed (semi)standard word s̃k,` of slope α with k > 2 and
0 < ` 6 ak. The set [s̃k,`] \ {1− α} equals the disjoint union(

∞⋃
i=0

ak+2i⋃
j=1

[s̃ 2
k+2i,j]

)
\
`−1⋃
i=1

[s̃ 2
k,i].

Analogous representations exist for the sets [s̃0] \ {1− α} and [s̃1] \ {1− α}.
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To put it more simply: for each x 6= 1−α there exists a unique reversed (semi)standard
word w such that x ∈ [w2]. To illustrate the proof, we begin by giving a proof sketch.

Proof Sketch. Consider as an example the interval [0] = I(0, 1−α). It is easy to see that
[02] = I(0,−2α) = I(0,−(q0 + 1)α), so [0] = [02] ∪ I(−(q0 + 1)α, 1 − α). The interval
I(−(q0 + 1)α, 1 − α) is the interval of the factor s̃2,1. Therefore [0] = [s̃ 2

0 ] ∪ [s̃2,1]. Since
s̃ 2

2,1 ∈ L(α), the interval [s̃2,1] splits into two parts: [s̃2,1] = [s̃ 2
2,1]∪J . It is straightforward

to show that J = I(−(q2,1 + 1)α, 1 − α). Again, the interval J is the interval of the
factor w which equals either s̃2,2 or s̃4,1 depending on the number a2. Therefore [0] =
[s̃ 2

0 ] ∪ [s̃ 2
2,1] ∪ [w]. This process can be repeated for the interval [w] and indefinitely after

that. The very same idea can be applied to any interval [s̃k,`].

Proof of Lemma 25. Consider the lengths of the reversed (semi)standard words beginning
with the same letter as s̃k,`. Out of these lengths we can form the unique increasing
sequence (bn) such that b1 = qk,`−1. If we set s1 = s̃k,` and J1 = I(−(b1 + 1)α, 1 − α),
then based on the observations in the proof of Proposition 16 we see that J1 = [s1].
The interval J1 is split by the point {−(qk,` + 1)α} = {−(b2 + 1)α}. It must be that
[s2

1] = I(−(b1 + 1)α,−(b2 + 1)α). Otherwise [s2
1] = [s1]∩R−b2([s1]) = I(−(b2 + 1)α, 1−α),

so the points {−(b1 + b2)α} and {−b1α} are on the opposite sides of 0. Furthermore,
‖(b1 +b2)α‖ equals the distance between the points {−b1α} and {−b2α}, so ‖(b1 +b2)α‖ =
‖qk−1α‖. Since also the point {−qk−1α} is on the side opposite to {−b1α}, it follows that
qk−1 = b1 + b2 which is obviously false. Thus J2 = J1 \ [s2

1] = I(−(b2 + 1)α, 1− α) is the
interval of s2, the unique reversed (semi)standard word of length b3 beginning with the
same letter as s1. By repeating this when n > 1, we see that the interval Jn is split by the
point {−(bn+1 +1)α} and that [s2

n] = I(−(bn+1)α,−(bn+1 +1)α). Then there is a unique
reversed (semi)standard word sn+1 such that [sn+1] = I(−(bn+1 + 1)α, 1− α) = Jn \ [s2

n];
we set Jn+1 = [sn+1]. By the definition of the sequence (bn), the words sn+1 and s1 begin
with the same letter. This yields a well-defined sequence (Jn) of nested subintervals of
J1. It is clear that |Jn| → 0 as n→∞. It follows that

[s̃k,`] ∪ {1− α} = J1 ∪ {1− α} =
∞⋃
n=1

[s2
n] ∪ {1− α}.

The sets [s2
n] are by definition disjoint. The claim follows since the indexing in the claim

is just another way to express the reversed (semi)standard words having lengths from the
sequence (bn).

The above proof works as it is for the cases s̃0 and s̃1; only minor adjustments in
notation are needed.

Lemma 26. Let u ∈ RStand+(α) and v ∈ RStand+(α) ∪ L(RStand+(α)). Then u2 is
never a proper prefix of v2.

Proof. If v ∈ RStand+(α) and |u| 6= |v|, then by Lemma 25 (see the remark after its
statement), the intervals [u2] and [v2] are disjoint. Hence u2 can never be a proper
prefix of v2. Assume then that v ∈ L(RStand+(α)). If |v| 6 |s̃1|, then v2 is a minimal
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square, so it is not possible for u2 to be a proper prefix of v2. Suppose that |v| = |s̃k,`|
for some k > 2 with 0 < ` 6 ak. As in the proof of Proposition 16, we have that
[v] = I(−(qk−1 + 1)α, 1 − α). If u begins with the same letter as v and |u| < |v|, then
|u| 6 |s̃k−1|. It follows, as in the proof of Lemma 25, that the distance between 1−α and
either of the endpoints of the interval [u2] must be at least ‖qk−1α‖. Hence the intervals
[v] and [u2] are disjoint, so u2 is not a proper prefix of v2.

Let s be a fixed Sturmian word of slope α. Since the index of a factor of a Sturmian
word is finite, Lemma 26 and Theorem 18 imply that if s has infinitely many solutions of
(8) as square prefixes then no word in RStand+(α) is a square prefix of s. We have now
the proper tools to prove the following:

Proposition 27. Let sx,α be a Sturmian word of slope α and intercept x. Then sx,α begins
with a square of a word in RStand+(α) if and only if x 6= 1− α.

Proof. If x 6= 1−α, then x ∈ I0\{1−α} = [s̃0]\{1−α} or x ∈ I1\{1−α} = [s̃1]\{1−α}.
Thus by applying Lemma 25 to I0 \ {1 − α} or I1 \ {1 − α}, we see that the word sx,α
begins with a square of a word in RStand+(α).

Suppose then that x = 1 − α. Then sx,α ∈ {01cα, 10cα}. It is a well-known fact that
s2k = P2k10 and s2k+1 = Q2k+101 for some palindromes P2k and Q2k+1 for every k > 1
(see e.g. [11, Lemma 2.2.8]). As cα = limk→∞ sk, it follows that 01cα = limk→∞ s̃2k and
10cα = limk→∞ s̃2k+1. Hence by Lemma 26, the word sx,α cannot have as a prefix a square
of a word in RStand+(α).

It follows that if s has infinitely many solutions of (8) as square prefixes, then s ∈
{01cα, 10cα}.

Next we take one extra step and characterize when s can be written as a product of
squares of words in RStand+(α).

Theorem 28. A Sturmian word s of slope α can be written as a product of squares
of words in RStand+(α) if and only if s is not of the form X2

1X
2
2 · · ·X2

nc where Xi ∈
RStand+(α) and c ∈ {01cα, 10cα}. If s is a product of squares in RStand+(α), then this
product is unique.

Proof. This is a direct consequence of Proposition 27 and Lemma 26.

Suppose that s /∈ {01cα, 10cα}. Then the word s has only finitely many solutions of
(8) as square prefixes. We call the longest solution maximal. Observe that the maximal
solution is not necessarily primitive since any power of a solution to (8) is also a solution.
Sturmian words of slope α can be classified into two types.

Type A. Sturmian words s of slope α which can be written as products of maximal
solutions to (8). In other words, it can be written that s = X2

1X
2
2 · · · where Xi is the max-

imal solution occurring as a square prefix of the word T hi(s) where hi = |X2
1X

2
2 · · ·X2

i−1|.
Type B. Sturmian words s of slope α which are of the form s = X2

1X
2
2 · · ·X2

nc where
c ∈ {01cα, 10cα} and the words Xi are maximal solutions as above.
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Proposition 27 and Lemma 26 imply that the words Xi in the above definitions are
uniquely determined and that the primitive root of a maximal solution is in RStand+(α).
Consequently, a maximal solution is always right special. When finding the factorization
of a Sturmian word as a product of squares of maximal solutions, it is sufficient to detect
at each position the shortest square of a word in RStand+(α) and take its largest even
power occurring in that position.

Keeping the Sturmian word s of slope α fixed, we define two sequences (µk) and (λk).
We set µ0 = λ0 = ε. Following the notation above, we define depending on the type of s
as follows.

(A) If s is of type A, then we set for all k > 1 that

µk = X2
1X

2
2 · · ·X2

k and

λk = X1X2 · · ·Xk.

(B) If s is of type B, then we set for 1 6 k 6 n that

µk = X2
1X

2
2 · · ·X2

k and

λk = X1X2 · · ·Xk,

and we let

µn+1 = X2
1X

2
2 · · ·X2

nc and

λn+1 = X1X2 · · ·Xnc.

Compare these definitions with the example in the beginning of this section; the words
X1 and X2 are maximal solutions in the Fibonacci word (which is of type A).

We are finally in a position to formulate precisely the observations made in the begin-
ning of this section and state the main result of this section.

Theorem 29. Let s be a Sturmian word with slope α.
(A) If s is of type A, then √

s = lim
k→∞

T |λk|(s).

Moreover, the first occurrence of the prefix λk+1 of
√
s is at position |λk| of s for all k > 0.

(B) If s is of type B, then √
s = T |λn|(s).

Moreover, the first occurrence of the prefix λk+1 with 0 6 k 6 n−1 is at position |λk| of s,
and the first occurrence of any prefix of

√
s having lenght greater than |λn| is at position

|λn| of s.
In particular

√
s is a Sturmian word with slope α.

The theorem only states where the prefixes λk of
√
s occur for the first time. For the

first occurrence of other prefixes of
√
s we do not have a guaranteed location.

To illustrate the theorem, consider next τ , the eighth shift of the Fibonacci word. If
we write under the word τ each of the corresponding words λk at the position of their first
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X2
1 X2

2 X2
3 X2

4 X2
5

τ : 01001010010100100101001001010010100100101001010010010100100101001010010010100100 · · ·
λ1 : 010
λ2 : 01010010
λ3 : 0101001001010010
λ4 : 01010010010100101001001010010
λ5 : 01010010010100101001001010010010100101001001010010

Figure 2: The first occurrences of the words λk in τ . The eighth shift of the Fibonacci
word was used since for the Fibonacci word the lengths |λk| grow very rapidly.

occurrence we get the picture in Figure 2. Theorem 29 shows that the nice pattern where
the words λk overlap continues indefinitely and, moreover, that if we replace τ with any
other Sturmian word (of type A) we obtain a similar picture. Most of the results of this
paper were motivated by the discovery of this pattern.

Before proving the theorem we need one more result.

Proposition 30. Suppose that s is a Sturmian word of type A. Then the word λk is right
special and a suffix of the word µk for all k > 0.

Proof. This proof might be tricky to follow. We advise the reader to keep the picture of
Figure 3 in mind while reading the proof. This picture depicts only the Case A below but
is surely helpful.

The assertion is evident when k = 0. Suppose that k > 0 and assume that λk is right
special and that λk is a suffix of the word µk. It is equivalent to say that {−(|λk|+1)α} ∈
[λk] and [µk] ⊆ R−|λk|([λk]) (evidently 2|λk| = |µk|). We write simply λ = λk, µ = µk,
and X = Xk+1. This proof utilizes only the facts that µX2 ∈ L(α) and that λ is right
special and a suffix of the word µ, not the structure of the words λ and µ implied by
their definitions. Thus without loss of generality, we may assume that X is primitive.
Consequently, X ∈ RStand+(α). It follows that

[X] = I(−(q + 1)α, 1− α) and (9)

[X2] = [X] ∩R−|X|([X]) = I(−(q + 1)α,−(|X|+ 1)α).

for some nonnegative integer q. Let x = {−(|µ| + 1)α}. It follows from the hypothesis
{−(|λ|+ 1)α} ∈ [λ] that x ∈ R−|λ|([λ]). By (9) the point x is an endpoint of the interval
R−|µ|([X]).

Let then y = {−(|µX| + 1)α}. By (9) the point y is an endpoint of the interval
R−|µX|([X]) and an interior point of the interval R−|µ|([X]). Suppose for a contradiction
that y /∈ R−|λ|([λ]). As x /∈ R−|µX|([X]) (otherwise it would follow that 1−α ∈ R−|X|([X])
which contradicts (9)), it follows that R−|λ|([λ]) ∩R−|µX|([X]) = ∅. Since

[µk+1] = [µ] ∩R−|µ|([X]) ∩R−|µX|([X]),

we have that [µk+1] ⊆ R−|µX|([X]). By assumption [µk+1] ⊆ [µ] ⊆ R−|λ|([λ]). Thus
[µk+1] ⊆ R−|λ|([λ])∩R−|µX|([X]), so by the above we are forced to conclude that [µk+1] = ∅.
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x y z
R−|λ|([λ])

R−|µ|([X])

R−|µX|([X])

R−|λ|([λX])

R−|λX|([λX])

R−|µ|([X2])

[µ]

Figure 3: A possible arrangement for the intervals in the Case A of the proof of Propo-
sition 30. The blue color marks the interval [µX] and magenta marks the interval
[µX2] = [µk+1].

µk−1 Xk Xk Xk+1 Xk+1

w w w w

λk−1

λk−1 Xk Xk+1

Figure 4: Possible locations for factors in the proof of Theorem 29.

This is a contradiction since X is chosen in such a way that [µk+1] = [µX2] 6= ∅. We
conclude that y ∈ R−|λ|([λ]).

Now R−|λ|([λX]) = R−|λ|([λ]) ∩ R−|µ|([X]). Since y ∈ R−|λ|([λ]), R−|µ|([X]), it follows
that y = {−(|µX| + 1)α} ∈ R−|λ|([λX]). Thus R|λ|(y) = {−(|λX| + 1)α} ∈ [λX], so
the word λX is right special. We have two cases depending on the length of the interval
R−|µ|([X]) compared to the length of the interval R−|λ|([λ]).

Case A. R−|µ|([X]) * R−|λ|([λ]). In this case R−|λ|([λX]) = I(x, z), where z is an
endpoint of R−|λ|([λ]). Since y is an interior point of R−|λ|([λX]), R−|X|(x) = y, and
x /∈ R−|λX|([λX]), we obtain that I(y, z) ⊆ R−|λX|([λX]). Since y is also an interior point
of R−|λ|([λ]), we obtain similarly that R−|λ|([λ]) ∩R−|µ|([X2]) = I(y, z). Thus

[µk+1] = [µ] ∩R−|µ|([X2]) ⊆ R−|λ|([λ]) ∩R−|µ|([X2]) = I(y, z) ⊆ R−|λX|([λX]).

This proves that λX = λk+1 is a suffix of µk+1.
Case B. R−|µ|([X]) ⊆ R−|λ|([λ]). It follows that R−|λ|([λX]) = R−|µ|([X]), so we have

R−|λX|([λX]) = R−|µX|([X]). Since R−|µ|([X2]) ⊆ R−|µX|([X]), we get that

[µk+1] = [µ] ∩R−|µ|([X2]) ⊆ [µ] ∩R−|µX|([X]) ⊆ [µ] ∩R−|λX|([λX])

proving that also in this case λX = λk+1 is a suffix of µk+1.

Note that even though λk is right special and always a suffix of µk, it is not necessary
for µk to be right special.
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Proof of Theorem 29. Since Sturmian words of type B differ from Sturmian words of type
A essentially only by the fact that the sequence of maximal solutions is finite, it is in this
proof enough to consider the case that s is of type A.

Proposition 30 says that λk is always a suffix of µk for all k > 0. Since |µk| = 2|λk|, it
follows that the word T |λk|(s) has the word λk as a prefix. Therefore

√
s = limk→∞ T

|λk|(s).
It remains to prove that the first occurrence of λk+1 in s is at position |λk| of s for

all k > 0. It is clear that the first occurrence of λ1 = X1 is at position |λ0| = 0.
Assume that k > 0, and suppose for a contradiction that λk+1 occurs before the position
|λk|. Since λk is a prefix of λk+1, by induction we see that λk+1 cannot occur before
the position |λk−1|. This means that an occurrence of XkXk+1 begins in s at position ν
such that |µk−1| 6 ν < |µk−1Xk|; see Figure 4. Observe that s has at position |µk−1| an
occurrence of X2

k . Write now Xk = wt with w ∈ RStand+(α). Since w is primitive, we
must have that ν = |µk−1| + r|w| with 0 6 r < t. Thus Xk+1 occurs in s at position
ν + |Xk| = |µk−1|+ (r + t)|w|. Since r < t, it follows that either w is a prefix of Xk+1 or
Xk+1 is a prefix of w.

Suppose first that w is a prefix of Xk+1. If w = Xk+1, then the prefix µk−1X
2
k of s

is followed by w2. Now w2t+2 is a solution to (8) implying that Xk is not a maximal
solution to (8). Since this is contradictory, we infer that |w| < |Xk+1|. Since Xk+1 occurs
at position |µk−1| + (r + t)|w| < |µk| and Xk+1 has w as a prefix, it must be that Xk+1

begins with wa where a is the first letter of w. Since w is right special and w2 ∈ L(α), it
follows that X2

k+1 begins with w2. Like above, this implies that Xk is not maximal. This
is a contradiction.

Suppose then that Xk+1 is a proper prefix of w. First of all, Xk+1 must be primitive
as otherwise Xk+1, and consequently also w, would have as a prefix a square of some
word in RStand+(α) contradicting Lemma 26. The assumption that Xk+1 is a prefix of w
implies that Xk+1 and w begin with the same letter. Like above, since w is right special
and w2 ∈ L(α), it must be that w occurs after the prefix µk of s. Since also X2

k+1 occurs
after the prefix µk, by Lemma 26 we conclude that the word w must be a proper prefix of
X2
k+1. Observe now that the assumption that Xk+1 is a proper prefix of w excludes the

possibilities that w = s̃0 = 0 or w = s̃1 = 10a. Therefore w = s̃h,` for some h > 2 with
0 < ` 6 ah. Because |w| < 2|Xk+1|, we must have that |Xk+1| > |s̃h−2|. On the other
hand, since |Xk+1| < |w| and Xk+1 and w begin with the same letter, the only option is
that Xk+1 = s̃h,`′ with 0 < `′ < `. Now

X2
k+1 = (s̃h−2s̃

`′

h−1)2 = s̃h−2s̃
`′

h−1L(s̃h−1)s̃h−2s̃
`′−1
h−1 ,

so as w is a prefix of X2
k+1, it must be that s̃h−1 = L(s̃h−1). This is a contradiction. This

final contradiction ends the proof.

As a conclusion of this section, we study the lengths of the maximal solutions of (8).
Namely, let s = X2

1X
2
2 · · · be a Sturmian word of type A factorized as a product of

maximal solutions Xi. Computer experiments suggest that typically the sequence (|Xi|)
is strictly increasing. However, there are examples where |Xi| > |Xi+1| for some i > 1.
It is natural to ask if the lengths can decrease significantly or if oscillation is possible. It
turns out that neither is possible. In Corollary 33 we prove that lim infi→∞ |Xi| =∞.
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First we need a result on certain periods of (semi)standard words.

Lemma 31. Let u, v ∈ Stand+(α) and |u| > |v|. If u is a prefix of some word in v+, then
u = sk,` and v = sk−1 for some k > 2 with 0 < ` 6 ak.

Proof. Suppose that u is a prefix of some word in v+. If u = s1 = 0a1, then necessarily
v = s0 = 0. Then obviously u is not a prefix of any word in v+. Therefore u = sk,` for
some k > 2 with 0 < ` 6 ak. Suppose that k = 2. Then u = (0a1)`0. It is straightforward
to show that v must equal to s1 = 0a1; u cannot be a prefix of a word in v+ if v = s0 = 0
or v = s2,`′ for some `′ such that 0 < `′ < `. Thus we may assume that k > 2.

Suppose first that |v| > |sk−1|. Then by the assumption |u| > |v|, it must be that
v = sk,`′ for some `′ such that `′ < `. Since u is a prefix of some word in v+, it follows
that the word w = s`−`

′

k−1sk−2 is a prefix of some word in sk−2v
+. Since the word w begins

with sk−1sk−2, we obtain that sk−2v begins with sk−1sk−2, so sk−1sk−2 = sk−2sk−1. This
is a contradiction.

Assume then that |v| < |sk−1|. Now the prefix sk−1 of u is a prefix of some word in
v+, so by induction v = sk−2. Now u = (s

ak−1

k−2 sk−3)`sk−2, so as u is a prefix of some word
in v+, it follows that z = sk−3sk−2 is a prefix of some word in v+. This means that z ends
with a prefix of sk−2 of length |sk−3|. As the prefix of sk−2 of length |sk−3| is sk−3, the
word z ends with sk−3. Consequently sk−3sk−2 = sk−2sk−3; a contradiction.

The only remaining option is that v = sk−1. This is certainly possible.

The next proposition describes precisely under which conditions it is possible that
|Xi| > |Xi+1|. Moreover, it rules out the possibility that the lengths decrease significantly
or oscillate.

Proposition 32. Let s = X2
1X

2
2X

2
3 · · · be a Sturmian word of type A with slope α factor-

ized as a product of maximal solutions Xi. If |X1| > |X2|, then X1 = s̃k,` for some k > 2
with 0 < ` 6 ak − 1, the primitive root of X2 is s̃k−1, and |X3| > |X1|.

Proof. Assume that |X1| > |X2|. Let us first make the additional assumption that X1

is primitive. In particular, X1 ∈ RStand+(α). Let u be the primitive root of X2. Then
u ∈ RStand+(α) and, moreover, by the assumption |X1| > |X2| it holds that |u| < |X1|.
By Proposition 30 the word λ2 = X1X2 is a suffix of the word µ2 = X2

1X
2
2 . Therefore

X1 is a proper suffix of X1X2, so X1X2 = ZX1 for some nonempty word Z. A standard
argument shows that X1 is a suffix of some word in X+

2 (see e.g., [10, Proposition 1.3.4]).

Consequently, X̃1 is a prefix of a word in ũ+. As |u| < |X1|, Lemma 31 implies that
X1 = s̃k,` and u = s̃k−1 for some k > 2 with 0 < ` 6 ak.

Suppose now that ` = ak. Then the word X2
1X

2
2 contains s̃k−1s̃k−2s̃

ak+2
k−1 as a factor.

Thus sak+2
k−1 sk−2sk−1 ∈ L(α). As sk−1 is a prefix of sk−2sk−1, it follows that sak+3

k−1 ∈ L(α)
contradicting Proposition 7. Therefore ` 6 ak − 1.

Let us then relax the assumption thatX1 is primitive. Let v be the primitive root ofX1,
so that X1 = vj for some j > 1. Consider now the Sturmian word T (2j−2)|v|(s) = v2X2

2 · · · .
By the above arguments v = s̃k,` for some k > 2 with 0 < ` 6 ak − 1 and the primitive
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root of X2 is s̃k−1. Further, as ` 6= ak, it follows from Proposition 7 that v3 /∈ L(α). Thus
j = 1, that is, X1 = s̃k,`.

It remains to show that |X3| > |X1|. Assume for a contradiction that |X3| 6 |X1|.
It is not possible that |X3| < |X2| as the preceding arguments show that then X2 must
be a reversed semistandard word; however, X2 is a power of the reversed standard word
s̃k−1. Hence by the maximality of X2 we have that |X3| > |X2|. Let X3 = wt with
w ∈ RStand+(α) and t > 1. As |X2| < |X3| 6 |X1|, we have that |sk−1| < t|w| 6 |sk,`|.

Assume for a contradiction that |w| < |sk−1|. If w is a reversed semistandard word,
then Proposition 7 implies that t = 1, so t|w| > |sk−1| cannot hold. Thus w is a reversed
standard word. If w = s̃0 = 0, then clearly t|w| > |sk−1| > |s1| cannot hold as the index
of the factor 0 in L(α) is a1 + 1. Thus w 6= s̃0. Suppose first that w = s̃k−2. Now

t|w| > |sk−1| = ak−1|sk−2|+ |sk−3|,

so t > ak−1. Since X2
3 ∈ L(α), Proposition 7 implies that 2t 6 ak−1 + 2. Therefore

ak−1 + 2 > 2t > 2ak−1

implying that ak−1 = 1. However, if ak−1 = 1, then ak−1 + 2 is odd, so actually 2t <
ak−1 + 2. Then ak−1 + 2 > 2t > 2ak−1, so ak−1 < 1; a contradiction. Suppose then that
w = s̃k−3. Now

t|w| > |sk−1| > |sk−2sk−3| = |sak−2

k−3 sk−4sk−3| > (ak−2 + 1)|sk−3|,

so t > ak−2 + 1. Like previously, as X2
3 ∈ L(α), Proposition 7 implies that 2t 6 ak−2 + 2.

Like above, we obtain that ak−2 < 0; a contradiction. Similar to above

|sk−1| > (ak−2 + 1)|sk−3|+ |sk−4| > 2|sk−3|+ |sk−4| > (2ak−3 + 1)|sk−4|.

As 2ak−3 + 1 > ak−3 + 2, we conclude that |sak−3+2
k−4 | < |sk−1|. Therefore by Proposition 7

it is not possible that |w| 6 |sk−4|. In conclusion, it is not possible that t|w| > |sk−1|.
This is a contradiction.

Now |w| > |s̃k−1| (by the maximality of X2 it must be that w 6= s̃k−1). Because
|w| 6 |s̃k,`|, we have that w = s̃k,`′ for some `′ such that 0 < `′ 6 `. Since ` 6= ak, the
word w is a reversed semistandard word, so by Proposition 7 we have that t = 1. By
Proposition 30 the word λ3 = X1X2X3 is a suffix of the word µ3 = X2

1X
2
2X

2
3 . It follows

that s̃k−2s̃
`+r
k−1 = s̃ `+r−`

′

k−1 s̃k−2s̃
`′

k−1 where r is such that X2 = s̃ rk−1. Therefore the words s̃k−2

and s̃k−1 commute; a contradiction. This final contradiction proves that |X3| > |X1|.

Corollary 33. Let s = X2
1X

2
2 · · · be a Sturmian word of type A with slope α factorized

as a product of maximal solutions Xi. Then lim infi→∞ |Xi| =∞.

Proof. This follows from Proposition 32: if |Xi+1| < |Xi| for some i > 1, then |Xi+2| >
|Xi|.
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7 The Square Root of the Fibonacci Word

In this section we prove a formula for the square root of the Fibonacci word. To do this
we factorize the Fibonacci word as a product of maximal solutions to (8).

We denote by Φ the slope of the Fibonacci word, that is, Φ = [0; 2, 1, 1, . . .]. Further,
we set

tk =

{
01, if k is even ,

10, if k is odd .

We need two lemmas specific to the slope Φ.

Lemma 34. For the standard words of slope Φ it holds that tksksk+1sk+2 = s̃ 2
k+2tk+1 for

all k > 0.

Proof. The case k = 0 is verified directly: t0s0s1s2 = 01 · 0 · 01 · 010 = (010)2 · 10 = s̃ 2
2 t1.

Let then k > 1. There exists a palindrome Pk such that sk = Pk t̃k for all k > 1 (see e.g.
[11, Lemma 2.2.8]). Now

tksksk+1sk+2 = tkPk t̃ksk+1sk+2 = s̃k t̃kPk+1t̃k+1sk+2 = s̃ktk+1Pk+1t̃k+1sk+2

= s̃ks̃k+1t̃k+1Pk+2t̃k+2 = s̃ks̃k+1s̃k+2t̃k+2 = s̃ 2
k+2tk+1,

which proves the claim.

Lemma 35. For the standard words of slope Φ it holds that s3k+4 =
∏k

i=0 s̃
2
3i+2 · tk+1 for

all k > 0.

Proof. If k = 0, then s4 = 01001010 = s̃ 2
2 t1. Let then k > 1. Now

s3k+4 = s3k+3s3k+2 = s3k+2s3k+1s3k+2 = s3k+1s3ks3k+1s3k+2

= s3(k−1)+4s3ks3k+1s3k+2 =
k−1∏
i=0

s̃ 2
3i+2 · tks3ks3k+1s3k+2

where the last equality follows by induction. By applying Lemma 34 we obtain that

s3k+4 =
k−1∏
i=0

s̃ 2
3i+2 · s̃ 2

3k+2tk+1 =
k∏
i=0

s̃ 2
3i+2 · tk+1,

which proves the claim.

As an immediate corollary to Lemma 35 we obtain a formula for the square root of
the Fibonacci word.

Theorem 36. For slope Φ we have that

cΦ =
∞∏
i=0

s̃ 2
3i+2 and

√
cΦ = s 1

2
,Φ =

∞∏
i=0

s̃3i+2.
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a4

a3 1 2 3

1 2, 5, 8 2, 4, 7 2, 5, 8
2 2, 3, 6 2, 4, 7 2, 3, 6
3 2, 3, 5 2, 4, 7 2, 3, 5

Table 1: How X1, X2, and X3 are affected when a3 and a4 vary in the case that a1 = 2
and a2 = 1.

a4

a3 1 2 3

1 1 0 1
2 1 0 1
3 0 0 0

Table 2: How the first letter of X4 varies when a3 and a4 vary in the case that a1 = 2 and
a2 = 1.

The preceding arguments are very specific to the Fibonacci word. The reader might
wonder if formulas for the square roots of other standard Sturmian words exist. Surely, for
some specific words such formulas can be derived, but we believe no general factorization
for the square roots of standard Sturmian words can be given. Let us give some arguments
supporting our belief.

Let s = X2
1X

2
2 · · · be a standard Sturmian word of slope α factorized as a product of

maximal solutions to (8). The word s begins with the word 0a1. Therefore if a > 1, then
X1 = 0ba/2c. Thus if a > 1, then X2 begins with 0 if and only if a is odd. Because of
the asymmetry of the letters 0 and 1 in the minimal squares of slope α (1), the parity of
the parameter a greatly influences the remaining words Xi. Moreover, it is not just the
partial quotient a1 which influences the factorization. Suppose for instance that a1 = 2
and a2 = 1. Table 1 shows how the values of the partial quotients a3 and a4 affect the
words Xi. The cell of the table tells which squares of reversed standard words the words
X1, X2, and X3 correspond to. For example if a3 = 2 and a4 = 1, then the standard
Sturmian word of slope [0; 2, 1, 2, 1, . . .] begins with s̃ 2

2 s̃
2
4 s̃

2
7 . Table 2 tells the first letter of

the corresponding word X2
4 . As can be observed from Table 2, the first letter of X2

4 varies
when a3 and a4 vary. Because of the asymmetry, it is thus expected that slight variation in
partial quotients drastically changes the factorization as a product of maximal solutions
to (8). Since similar behavior is expected from the rest of the partial quotients, it seems
to us that no nice formula (like e.g., the formula of Theorem 36) can be given for the
square root of a standard Sturmian word in terms of reversed standard words.

De Luca and Fici proved a nice formula for a certain shift of a standard Sturmian
word [4, Theorem 18].

Proposition 37. Let cα be the standard Sturmian word of slope α = [0; a + 1, b + 1, . . .].
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Then

cα = 0a10a−1

∞∏
k=1

s̃ 2
k .

As a corollary of this we see that the word
√
T 2a(cα) =

∏∞
k=1 s̃k is a Sturmian word

of slope α with intercept ψ({(2a + 1)α}) = aα. We have thus shown that

cα = 0a−1

∞∏
k=1

s̃k.

In particular, we obtain the well-known result that the Fibonacci infinite word is a product
of the reversed Fibonacci words.

8 A Curious Family of Subshifts

In this section we construct a family of linearly recurrent and optimal squareful words
which are not Sturmian but are fixed points of the (more general) square root map.
Moreover, we show that any subshift Ω generated by such a word has a curious property:
for every w ∈ Ω either

√
w ∈ Ω or

√
w is periodic.

It is evident from Proposition 2 that Sturmian words are a proper subclass of optimal
squareful words. As Sturmian words have the exceptional property that their language
is preserved under the square root map, it is natural to ask if other optimal squareful
words can have this property. We show that, indeed, such words exist by an explicit
construction. The idea behind the construction is to mimic the structure of the Sturmian
words 01cα and 10cα. The simple reason why these words are fixed points of the square
root map (thus preserving the language) is that they have arbitrarily long squares of
solutions to (8) as prefixes. Thus to obtain a fixed point of the square root map, it is
sufficient to find a sequence (uk) of solutions to (8) with the property that u2

k is a proper
prefix of u2

k+1 for all k > 1. Let us show how such a sequence can be obtained.
Let S be a fixed primitive solution to (8) in the language of some Sturmian word

with slope [0; a + 1, b + 1, . . .] such that |S| > |S6|. In particular, S has the word S6 =
10a+1(10a)b+1 as a proper suffix. Recall from the proof of Lemma 22 that |S| > |S5S6|.
We denote the word L(S) simply by L. Using the word S as a seed solution, we produce
a sequence (γk) of primitive solutions to (8) defined by the recurrence

γ1 = S, γk+1 = L(γk)γ
2
k for k > 2. (10)

We need to prove that the sequence (γk) really is a sequence of primitive solutions to (8).
Before showing this, let us define

Γ1 = lim
k→∞

γ2k and Γ2 = lim
k→∞

γ2k+1. (11)

The limits exist as γ2
k is always a prefix of γk+2. Hence both Γ1 and Γ2 have arbitrarily

long squares of words in the sequence (γk) as prefixes. Observe also that L(Γ1) = L(Γ2).

the electronic journal of combinatorics 24(1) (2017), #P1.54 33



As there is not much difference between Γ1 and Γ2 in terms of structure, we set Γ to be
either of these words.

Taking for granted that the sequence (γk) is a sequence of solutions to (8), we see that√
Γ = Γ. Note that we also need to ensure that the word Γ is optimal squareful for the

square root map to make sense.
Next we aim to prove the following.

Proposition 38. The word γk is a primitive solution to (8) in L(a, b) for all k > 1.

Recall from Section 5 that the language L(a, b) consists of all factors of the infinite
words in the language

(10a+1(10a)b + 10a+1(10a)b+1)ω = (S5 + S6)ω.

Before we can prove Proposition 38, we need to know that the words γk are primitive
and that they are factors of some optimal squareful word with parameters a and b.

Lemma 39. The word γk is primitive for all k > 1.

Proof. We proceed by induction. By definition γ1 is primitive. Let k > 1, and suppose
for a contradiction that γk+1 is not primitive; that is, γk+1 = L(γk)γ

2
k = zn for some

primitive word z and n > 1. If n = 2, then obviously |γk| must be even, and the suffix
of γk of length |γk|/2 must be a prefix of γk. This contradicts the primitivity of γk. The
case n = 3 would imply that γk = L(γk), which is not possible. Hence n > 3, and further
|z| < |γk|. As γ2

k is a suffix of some word in z+, it follows that z = uv where vu is a suffix
of γk. On the other hand, z is a suffix of γk, so uv = vu. Since z is primitive, the only
option is that u is empty. Thus γk ∈ z+; a contradiction with the primitivity of γk.

Lemma 40. We have that γk, L(γk) ∈ L(a, b) for all k > 1.

Proof. For a suitable slope α = [0; a + 1, b + 1, . . .], either of the words S and L is a
reversed standard word of slope α. Thus by Theorem 18 both S2 and L2 are in L(α), so
S2, L2 ∈ L(a, b).

We clearly have that γ1 ∈ L(a, b). Note that by the assumption |S| > |S6| both of the
words S and L have the word s = S6 = 10a+1(10a)b+1 as a proper suffix. Write S = us.
Since s begins with 10a+1 and S2 has sus as a suffix, it follows that us ∈ (S5 + S6)+.
Using the fact that L ∈ L(a, b), we see that γ2 = LSS = L(u)s(us)2 ∈ L(a, b). Clearly
L(γ2) = S3 = (us)3 ∈ L(a, b). Proceeding by induction we may assume that k > 2
and γk, L(γk) ∈ L(a, b). Since γk has either S or L as a prefix, it can be written that
γk = vszs with |vs| = |S|. It follows that sz ∈ (S5 + S6)+. Since svs is a suffix of
either S2 or L2, we have that sv ∈ (S5 + S6)+. Therefore svsz ∈ (S5 + S6)+. As
L(γk) = L(vsz)s ∈ L(a, b), we have that L(vsz) is a suffix of some word in (S5 + S6)+.
Overall, the word γk+1 = L(vsz)(svsz)2s is in L(a, b). Clearly then must the word
L(γk+1) = (vszs)3 = vsz(svsz)2s also be in L(a, b).

Note that without the assumption |S| > |S6| the conclusion of the above lemma fails
to hold. If S = S6 = 10a+1(10a)b+1, then L = 0(10a)b+2 and LS = 0(10a)b+210a+1(10a)b+1.
Therefore LS /∈ L(a, b), and consequently γ2 = LS2 /∈ L(a, b).
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Proof of Proposition 38. We proceed by induction. By Lemma 39 the word γk is primitive
for all k > 1. Lemma 40 tells that both of the words γk and L(γk) are in L(a, b) for all
k > 1. By definition both γ1 and L(γ1) are solutions to (8). We may thus assume that
k > 1 and both γk and L(γk) are solutions to (8). It follows from Lemma 22 that

γkL(γk) ∈ Π(a, b) and
√
γkL(γk) = γk.

Since L(γk) is a solution to (8), Lemma 22 also implies that

L(γk)γk ∈ Π(a, b) and
√
L(γk)γk = L(γk).

Because
γ2
k+1 = L(γk)γk · γkL(γk) · γ2

k,

we obtain that

γ2
k+1 ∈ Π(a, b) and

√
γ2
k+1 =

√
L(γk)γk

√
γkL(γk)

√
γ2
k = L(γk)γkγk = γk+1.

This proves that γk+1 is a solution to (8). Consider next the word L(γk+1) = γ3
k. Because

(L(γk+1))2 = (γ2
k)

3, it is evident that

(L(γk+1))2 ∈ Π(a, b) and
√

(L(γk+1))2 = γ3
k = L(γk+1).

Therefore also L(γk+1) is a solution to (8). The conclusion follows.

As we remarked earlier, we have now proved that Γ is a fixed point of the square root
map. Next we show that the word Γ is aperiodic, linearly recurrent, and not Sturmian.

Lemma 41. The word γ2
2 is not a factor of any Sturmian word.

Proof. By definition γ2 = LS2. Write S = xyw and L = yxw for some word w and distinct
letters x and y. Now γ2

2 = yxw(xyw)2yxw(xyw)2, so the word γ2
2 has the factors xwx

and ywy. Hence γ2
2 is not balanced, so it cannot be a factor of any Sturmian word.

Lemma 42. The word Γ is aperiodic and linearly recurrent.

Proof. The recurrence (10) and the definition (11) of Γ show that for all k > 1 the word
Γ is a product of the words γk+1 = L(γk)γ

2
k and L(γk+1) = γ3

k such that between two
occurrences of L(γk+1) there is always γ2

k or γ5
k. From this it follows that the return time

of a factor of Γ of length |γk| is at most the return time of the factor L(γk), which is at
most 6|γk|. Let then w be a factor of Γ such that |γk| < |w| 6 |γk+1|. Since w is a factor
of some factor of Γ of length |γk+1|, it follows that the return time of w is at most 6|γk+1|.
Now 6|γk+1| = 18|γk| < 18|w| proving that Γ is linearly recurrent.

The preceding shows that γk is followed in L(Γ) by both γk and L(γk). As the first
letters of γk and L(γk) are distinct, the factor γk is right special. Thus L(Γ) contains
arbitrarily long right special factors, so Γ must be aperiodic.
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Since linearly recurrent words have linear factor complexity [5, Theorem 24], it follows
from Lemma 42 that Γ has linear factor complexity.

We observed in the previous proof that the word Γ is a product of the words S and L
such that between two occurrences of L in this product there is always S2 or S5. Since S
and L are primitive, any word w ∈ L(Γ) which is a product of the words S and L such
that |w| > 6|S| must synchronize to the factorization of Γ as a product of the words S
and L. That is, for any factorization Γ = uwΓ′ we must have that |u| is a multiple of |S|.

Theorem 43. The word Γ is a non-Sturmian, linearly recurrent optimal squareful word
which is a fixed point of the square root map.

Proof. The fact that Γ is optimal squareful and linearly recurrent follows from Lemmas
40 and 42. The argument outlined at the beginning of this section shows that Γ is a fixed
point of the square root map as by Proposition 38 the words γk which occur as square
prefixes in Γ are solutions to (8). Finally, Γ contains the factor γ2

2 , so Γ is not Sturmian
by Lemma 41.

Denote by Ω the subshift consisting of the infinite words having language L(Γ). As Γ
is linearly recurrent, it is uniformly recurrent, so the subshift Ω is minimal. The rest of
this section is devoted to proving the result mentioned in the beginning of this section.

Theorem 44. For all w ∈ Ω either
√
w ∈ Ω or

√
w is (purely) periodic with minimal

period conjugate to S. Moreover, there exists words u, v ∈ Ω such that
√
u ∈ Ω and

√
v

is periodic.

This result is very surprising since it is contrary to the plausible hypothesis that an
aperiodic word must map to an aperiodic word under the square root map.

It is not difficult to prove Theorem 44 for words in Ω which are products of the words
S and L. We prove this special case next in Lemma 45. However, difficulties arise since
a word in Ω can start in an arbitrary position of an infinite product of S and L. There
are certain well-behaved positions in S and L which are easier to handle. Theorem 44 is
proved for these special positions in Lemma 47. The rest of the effort is in demonstrating
that all the other cases can be reduced to these well-behaved cases. We begin by proving
the easier cases, and we conclude with the reductions.

Lemma 45. If a word w ∈ Ω can be written as a product of the words S and L, then√
w ∈ Ω.

Proof. Any word u which is a product of the words S and L can be naturally written as
a binary word u over the alphabet {S, L}. If such a word u has even length, then it is a
word over the alphabet A = {SS, SL, LS, LL}. Using the fact that

√
SS = S,

√
SL = S,√

LS = L, and
√
LL = L (see Lemma 22), we can define a square root for a word over A.

Without loss of generality we may assume that Γ = Γ1, that is, Γ = limk→∞ γ2k. The
word γ2

2k is a prefix of Γ for all k > 1. Thus γ2k has occurrences at positions 0 and |γ2k| of
Γ. Clearly |γk| = 3k−1|S|, so the word γ2k occurs in Γ in an even and in an odd position
for all k > 1.
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Let w ∈ Ω, and let v be a prefix of w of length |v| = 2n|S| for some n > 1, so v is a
word over A. The word v is a factor of γ2j for some j > 1. Since γ2j occurs in Γ in an

even and in an odd position, the word v occurs in an even position in Γ. Hence Γ can be
factored as Γ = zvt where z and t are finite or infinite words over A. Since Γ is a fixed
point of the square root map, we have that Γ =

√
z
√
v
√
t. Hence

√
v ∈ L(Γ). It follows

that L(
√
w) ⊆ L(Γ), so

√
w ∈ Ω.

Definition 46. Let w be a word and ` be an integer such that 0 < ` < |w|. If the
factor of w3 of length |w2| starting at position ` can be written as a product of minimal
squares X2

1 , . . ., X2
n, then we say that the position ` of w is repetitive. If in addition

|X2
1 · · ·X2

m| 6= |w| − `, |w2| − ` for all m such that 1 6 m 6 n, then we say that the
position ` is nicely repetitive.

For example if a = 1, b = 0, and S = 1001001010010, then the position 1 of S is
repetitive as the factor 00100101001010010010100101 of S3 of length |S2| = 26 starting at
position 1 is in Π(a, b). This position is not nicely repetitive as |02·(10010)2| = 12 = |S|−1.
The position 2 of S, however, can be checked to be nicely repetitive. The position 4 of
S is not repetitive as the factor 00101001010010010100101001 of length 26 starting at
position 4 is not in Π(a, b).

In the upcoming proof of Theorem 44 we will show that if w ∈ Ω is a product of the
words S and L and ` is a nicely repetitive position of S, then the word

√
T `(w) is always

periodic. On the other hand, we show that if ` is not a nicely repetitive position then√
T `(w) is always in Ω.
Next we identify some good positions in the suffix S6 of S. As we observed in the proof

of Lemma 22, the suffix S6 of S restricts locally how a factorization of a word as a product
of minimal squares continues after an occurrence of S6. Consider a product X2

1 · · ·X2
n of

minimal squares which has an occurrence of S6 at position `. Then for somem ∈ {1, . . . , n}
the minimal square X2

m must begin at some of the positions `, ` + 1, . . . , ` + |S6| − 1.
Otherwise some minimal square would have S6 as an interior factor; yet no such minimal
square exists. Among the positions `, `+1, . . . , `+ |S6|−1 we are interested in the largest
position where a minimal square may begin. Let

B = {` ∈ {0, . . . , |S6| − 1} :

no square of length at most |S6| − ` begins at position ` of S6}.

It is straightforward to see that

B = {|S6| − |S6|, |S6| − |S4|, |S6| − |S3|, |S6| − |S1|}.

We are interested in those positions of the suffix S6 of S where no minimal square begins.
Hence we define

BS = {` : `− |S|+ |S6| ∈ B} = {|S| − |S6|, |S| − |S4|, |S| − |S3|, |S| − |S1|}.

A consequence of the definitions is that if ` is a position of S such that ` /∈ BS, then there
exists `′ ∈ BS ∪{|S|} such that S[`, `′− 1] ∈ Π(a, b). This fact is used later several times.
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Lemma 47. Suppose that w ∈ Ω can be written as a product of the words S and L.
Assume that the position ` ∈ BS is nicely repetitive. Let the prefix of T `(w) of length
|S2| be factorized as a product of minimal squares X2

1 · · ·X2
n. Then the word

√
T `(w) is

periodic with minimal period X1 · · ·Xn. Moreover, X1 · · ·Xn is conjugate to S.

Proof Sketch. As ` is repetitive, the factor u of length |S2| of S3 starting at position ` is
in Π(a, b). If we substitute the middle S in S3 with L, then an application of Lemma 21
shows that the factor of length |S2| of SLS starting at position ` is still in Π(a, b) and
that the square root of this factor coincides with the square root of u (here we need that
` ∈ BS). Further analysis shows that if we substitute the words S in S3 in any way, then
the square root of the factor of length |S2| beginning at position ` is unaffected. Since `
is repetitive, the prefix of T `+|S

2|(w) of length |S2| is again in Π(a, b) and has the same
square root, and so on. Thus

√
T `(w) is periodic. Since both the square of the period

and S2 occur in a suitable Sturmian word; having equal lengths, they must be conjugate
by Proposition 6.

Proof. We have that |S| > |S5S6|, so ` > 1. Let u be the suffix of S of length |S|−`. Since
` is repetitive, the factor v of S3 of length |S2| starting at position ` can be factorized as
a product of minimal squares Y 2

1 · · ·Y 2
m. We have that |Y 2

1 | > |u| because ` ∈ BS.
Next we consider how the situation changes if any of the words S in S3 is substituted

with L. Substituting the first S with L does not affect the product as ` > 1. Suppose
then that the second word S is substituted with L. By applying Lemma 21 to the words
u and S with X = Y1, we see that the factor of length |S2| of SLS starting at position
` can still be factorized as a product of minimal squares and that the square root of this
factor coincides with the square root of v. Consider next what happens when the third
word S is substituted with L. Let

r = max{i ∈ {1, . . . ,m} : |Y 2
1 · · ·Y 2

i | 6 |S2| − `}.

Set `′ = ` + |Y 2
1 · · ·Y 2

r | − |S|. Since ` is nicely repetitive, we have that `′ < |S|. By the
maximality of r and the definition of the set BS, we thus have that `′ ∈ BS. Applying
Lemma 21 to the suffix of S of length |S|− `′ and S with X = Yr+1 we obtain, like above,
that the product of minimal squares is affected but the square root is not. Substituting
the second and third words S with L gives the same result: first proceed as above and
substitute the second word S and then make the second substitution like above but apply
Lemma 21 for the word L instead of S.

We have concluded that however we substitute the words S in S3, the square root of
the factor of length |S2| beginning at position ` never changes. The word w is obtained
from the word Sω by substituting some of the words S with L. By the preceding, the prefix
of T `(w) of length |S2| can be factorized as a product of minimal squares X2

1 · · ·X2
n. Since

` is repetitive, the prefix of T `+|S
2|(w) of length |S2| can also be factorized as a product of

some minimal squares (perhaps different) but the square root still equals X1 · · ·Xn. By
repeating this observation we see that√

T `(w) = (X1 · · ·Xn)ω.
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By our choice of S we have that S ∈ {s̃k, L(s̃k)} where s̃k is a reversed standard word
of some slope α = [0; a+ 1, b+ 1, . . .]. Let β = [0; b1, b2, . . .] be a number such that ai = bi
for 1 6 i 6 k and bk+1 > 5. Then by the definition of standard words S5 ∈ L(β). By
the preceding, the prefix of T `(S5) of length |S4| can be written as a product of minimal
squares, and the square root of these minimal squares equals (X1 · · ·Xn)2. Since the
square root of a Sturmian word of slope β is a Sturmian word of slope β, we have that
(X1 · · ·Xn)2 ∈ L(β). As |X1 · · ·Xn| = |S|, it follows by Proposition 6 that X1 · · ·Xn is
conjugate to S. Since S is primitive, so is X1 · · ·Xn, and hence the period X1 · · ·Xn is
minimal.

Lemma 48. Every seed solution S has at least one nicely repetitive position ` such that
` ∈ BS.

Proof. Suppose that S = s̃k,i for some k > 3 and 0 < i 6 ak. It is sufficient to show
that r = |s̃k,i−1| is a nicely repetitive position of S. If r /∈ BS, then there exists r′ ∈ BS
such that S[r, r′ − 1] ∈ Π(a, b). Since the position r is nicely repetitive, so must r′ be. If
S = L(s̃k,i), then as r > 1, an application of Lemma 21 shows that the conclusion holds
also in this case.

Observe that the word s̃k,i−1 is both a prefix and a suffix of S. Using the fact that
s̃k−2s̃k−3 = L(s̃k−3s̃k−2) we obtain that

S3 = s̃k,i−1s̃k−1s̃k−2s̃
i
k−1s̃k,i = s̃k,i−1 · s̃k−1s̃k−2s̃k−3s̃

ak−1−1
k−2 · s̃k,i−1s̃k,i

= s̃k,i−1 · s̃k−1L(s̃k−1) · s̃ 2
k,i−1s̃k−1.

By Lemma 22 the word s̃k−1L(s̃k−1) is in Π(a, b). Since s̃k,i−1 is a solution to (8), we have
that s̃ 2

k,i−1 ∈ Π(a, b). Overall, the factor s̃k−1L(s̃k−1)s̃ 2
k,i−1 of S3 of length |S2| starting at

position r is in Π(a, b). Thus the position r of S is repetitive.
Suppose for a contradiction that the suffix of S of length |S| − r is in Π(a, b), that is,

S = s̃k,i−1X
2
1 · · ·X2

n for some minimal square roots Xj. It follows that sk−1 = X2
1 · · ·X2

n.
Since sk−1 is a solution to (8), it follows that sk−1 = (X1 · · ·Xn)2. This contradicts the
primitivity of sk−1. Similarly if the suffix of S2 of length |S2| − r is in Π(a, b), then
s̃k,i−1 ∈ Π(a, b) contradicting the primitivity of s̃k,i−1. We conclude that the position r is
nicely repetitive.

Lemma 47 and Lemma 48 now imply the following:

Corollary 49. There exist uncountably many linearly recurrent optimal squareful words
having (purely) periodic square root.

Proof. We only need to show that there are uncountably many such words. Consider the
words in Ω which can be written as a product of the words S and L. Viewed over the
binary alphabet {S, L}, these words form an infinite subshift Ω. Let us show that Ω is
minimal. Then the conclusion follows by well-known arguments from topology: a minimal
subshift is always finite or uncountable and an aperiodic subshift cannot be finite (use
the fact that a perfect set is always uncountable).

the electronic journal of combinatorics 24(1) (2017), #P1.54 39



Let w ∈ Ω (we use the notation of the proof of Lemma 45). Let u ∈ L(w) be a factor
such that |u| > 6. As |u| > 6|S|, every occurrence of u in Γ must synchronize to the
factorization of Γ as a product of S and L. It follows that every return to u in Γ is a
product of S and L. Since the return time of u is finite in Γ, the return time of the word
u in w is also finite. Hence Ω is minimal.

We also prove the following weaker result, which we need later.

Lemma 50. The position |S| − |S6| of S is repetitive.

Proof. We prove first by induction that the prefix of the word S6s̃
2
k,` of length 2|s̃k,`|−|S6|

is a product of minimal squares for k > 2 and ` such that 0 < ` 6 ak. Let us first establish
the base cases.

Recall that s̃2 = 0(10a)b+1 and s̃3,1 = S6. We have that

S6s̃
2
2 = 10a+1(10a)b+1(0(10a)b+1)2 = S2

510a+1(10a)b+1 = S2
5S6.

In addition, for 0 < ` 6 a3, we have that

S6s̃
2
3,` = S6s̃3,1s̃

`−1
2 s̃3,` = S2

6 s̃
`−1
2 s̃3,` = S2

6 s̃
`−1
2 s̃1s̃

`
2 .

The case ` = 1 is clear. So let us assume that ` > 1. We have that

S6s̃
2
3,` = S2

6 s̃
`−1
2 s̃1s̃

`−2
2 s̃0s̃

b
1S6,

so it is sufficient to show that the word s̃ `−1
2 s̃1s̃

`−2
2 s̃0s̃

b
1 is in Π(a, b).

Suppose first that `− 1 is even. Then as s̃2 is a solution to (8), it is enough to show
that s̃1s̃

`−2
2 s̃0s̃

b
1 ∈ Π(a, b). Since s̃1s̃2 = L(s̃2)s̃1, we have that

s̃1s̃
`−2
2 s̃0s̃

b
1 = L(s̃2)`−2s̃1s̃0s̃

b
1 .

Now s̃1s̃0s̃
b
1 = L(s̃2). The word L(s̃2) is a solution to (8), so the conclusion follows as

`− 1 is even.
Suppose next that `− 1 is odd. We need to show that s̃2s̃1s̃

`−2
2 s̃0s̃

b
1 ∈ Π(a, b). Using

the facts s̃1s̃2 = L(s̃2)s̃1 and s̃1s̃0s̃
b
1 = L(s̃2) we obtain that

s̃2s̃1s̃
`−2
2 s̃0s̃

b
1 = s̃2L(s̃2)`−1.

By Lemma 22 the word s̃2L(s̃2) is a product of minimal squares. Since `− 1 is odd and
L(s̃2) is a solution to (8), the conclusion follows.

We have established the base cases. Now for k > 4 and 0 < ` 6 ak, we have that

S6s̃
2
k,` = S6(s̃k−2s̃

`
k−1)2.

By induction S6s̃k−2 = X2
1 · · ·X2

nS6 and S6s̃k−1 = Y 2
1 · · ·Y 2

mS6 for some minimal square
roots X1, . . ., Xn, Y1, . . ., Ym. Therefore

S6s̃
2
k,` = (X2

1 · · ·X2
n(Y 2

1 · · ·Y 2
m)`)2S6.
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We have thus proved that the prefix of the word S6s̃
2
k,` of length 2|s̃k,`| − |S6| is a product

of minimal squares for k > 2 and ` such that 0 < ` 6 ak.
Now if S = s̃k,` for some k > 2 and ` such that 0 < ` 6 ak, then the claim is clear

by the above. Suppose that S = L(s̃k,`). Now if S6s̃k,` /∈ Π(a, b), then two applications
of Lemma 21 show that the claim holds. Assume that S6s̃k,` ∈ Π(a, b). Since the prefix
of S6s̃

2
k,` of length 2|s̃k,`| − |S6| is in Π(a, b), this means that the prefix of s̃k,` of length

|s̃k,`| − |S6| is in Π(a, b). It is sufficient to show that the prefixes of s̃k,` and L(s̃k,`) of
length 2|s̃2| are in Π(a, b). Since s̃1s̃2 = L(s̃2)s̃1, the word s̃4,1 = s̃2s̃3 has s̃2L(s̃2) as a
prefix. If a3 > 1, then the word s̃3 = s̃1s̃

a3
2 has L(s̃2)s̃2 as a prefix. Finally if a3 = 1,

then the word s̃5,1 = s̃3s̃4 = s̃1s̃2s̃4 has L(s̃2)2 as a prefix. Lemma 22 shows that s̃2L(s̃2),
L(s̃2)s̃2, and L(s̃2)2 are all in Π(a, b). The conclusion follows.

There is no clear pattern for other positions in BS; it depends on the word S if a
position in BS is repetitive or not. The position |S| − |S6| is not always nicely repetitive.
Suppose that a = 1, b = 0, and S = s̃3,3 = 10(010)3. Then the factor beginning at position
|S|−|S6| = 6 of S3 of length |S2| is a product of minimal squares: (10010)2 ·(010)2 ·(100)2.
As |(10010)2 · (010)2| = 16 = |S2| − 6, the position 6 is not nicely repetitive.

Since none of the minimal squares can be a proper prefix of another minimal square,
it is easy to factorize words as products of minimal squares from left to right. Next we
consider what happens if we start to backtrack from a given position to the left.

Lemma 51 (Backtracking Lemma). Let X, Y1, . . ., Yn be minimal square roots. Let w
be a word having both of the words X2 and Y 2

1 · · ·Y 2
n as suffixes. If |X| > |Yn|, then

|X| > |Y1 · · ·Yn| and the word Y1 · · ·Yn is a suffix of X.

Proof. Suppose that |X| > |Yn|. We may assume that n is as large as possible. We prove
the lemma by considering different options for the word X.

Clearly we cannot have that X = S1. Let X = S4. Now X2 can have a proper minimal
square suffix only if a > 1. If a is even, then we must have that

X2 = 10a1(S2
1)a/2 and Yn−a/2+1 = . . . = Yn = S1.

The suffix (S2
1)a/2 of w cannot be preceded by S2

2 as otherwise w would have S2S
a
1 = 0102a−1

as a suffix; this is not possible as 2a−1 > a. Therefore there is no choice for Yn−a/2. Thus
|Y 2

1 · · ·Y 2
n | < |X2| and Y1 · · ·Yn is a suffix of X. If a is odd, then similarly

X2 = 10a10(S2
1)(a−1)/2 and Yn−(a−1)/2+1 = . . . = Yn = S1.

Again there is no choice for Yn−(a−1)/2, and the conclusion holds. Similar considerations
show that the conclusion holds if X ∈ {S2, S3}.

Let then X = S5. It is obvious that now Yn ∈ {S1, S3, S4}. If Yn = S1 or b = 0,
then like above Y1 = . . . = Yn = S1 and Y1 · · ·Yn is a suffix of X. We may thus suppose
that b > 0. Say Yn = S3. Then we must have b = 1 and X2 = 10a+110a−1Y 2

n . Like
above, the remaining minimal square roots Yi with i < n must equal to S1 and there must
be b(a − 1)/2c of them. Since there is no further choice, the conclusion holds as clearly

the electronic journal of combinatorics 24(1) (2017), #P1.54 41



Y1 · · ·Yn is a suffix of X. Suppose then that b > 1. The next case is Yn = S4. Assume
first that b is even. Then it is straightforward to see that necessarily

Yn−b/2+1 = . . . = Yn = S4 and X2 = 10a+1(10a)b10a+1(S2
4)b/2.

Thus Yn−b/2 = S1 and, further, it must be that

Yn−b = . . . = Yn−b/2−1 = S2 and X2 = 10a+110a−1(S2
2)b/2S2

1(S2
4)b/2.

Like before, the remaining minimal squares Yi with i < n− b must equal to S1 and there
must be b(a− 1)/2c of them. Therefore

Y1 · · ·Yn = S
b(a−1)/2c
1 S

b/2
2 S1S

b/2
4 = 0b(a−1)/2c+1(10a)b

is a suffix of X, so the conclusion holds. If b is odd, then in a similar fashion

X2 = 10a+110a−1(S2
2)(b−1)/2S2

3(S4)(b−1)/2,

so Yn−(b−1)/2 = S3 and

Yn−(b−1)/2+1 = . . . = Yn = S4 and Yn−b+1 = . . . = Yn−(b−1)/2−1 = S2.

Again, the final b(a− 1)/2c minimal square roots must equal S1. Since

Y1 · · ·Yn = S
b(a−1)/2c
1 S

(b−1)/2
2 S3S

(b−1)/2
4 = 0b(a−1)/2c+1(10a)b

is a suffix of X, the conclusion holds.
If X = S6, then it is clear that Yn 6= S5. The conclusion follows as in the case

X = S5.

The next lemma is useful in the proof of Theorem 44.

Lemma 52. Let w be an infinite product of the words S and L and `1, `2, `3 be positions
of w such that `1 < `2 < `3. Let r be the largest integer such that `1 > r|S|. If

• w[`1, `3 − 1], w[`2, `3 − 1] ∈ Π(a, b),

• `1 − r|S| ∈ BS, and

• `2 6 (r + 1)|S|,

then for all u ∈ Π(a, b) such that uw[`2, `3 − 1] is a suffix of w[0, l3 − 1] we have that
|uw[`2, `3 − 1]| < |w[`1, `3 − 1]|.

Proof. Let v = w[`1, `3 − 1] and u = w[`2, `3 − 1]. Since v, u ∈ Π(a, b), we may write
v = X2

1 · · ·X2
n and u = Y 2

1 · · ·Y 2
m for some minimal square roots Xi and Yi. Suppose

that n > m. If Xn−m+i = Yi for all i ∈ {1, . . . ,m}, then as |v| > |u|, we must have that
n > m. This means that the prefix X2

1 of v ends before the position `2, that is, `1 + |X2
1 | <
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`2 6 (r + 1)|S|. This contradicts the fact that `1 − r|S| ∈ BS. Therefore as |v| > |u|,
we we conclude that there exists a maximal j ∈ {1, . . . ,m} such that Xn−m+j 6= Yj. If
|Yj| > |Xn−m+j|, then by the Backtracking Lemma we have that |X2

1 · · ·X2
n−m+j| < |Y 2

j |.
This is not possible as |v| > |u|. Therefore |Yj| < |Xn−m+j|. Let z ∈ Π(a, b) be such
that zu is a suffix of w[0, `3 − 1]. Write z = Z2

1 · · ·Z2
t for minimal square roots Zi.

Applying the Backtracking Lemma to the words X2
n−m+j and Z2

1 · · ·Z2
t Y

2
1 · · ·Y 2

j yields
that |Z2

1 · · ·Z2
t Y

2
1 · · ·Y 2

j | < |X2
n−m+j|. It follows that |zu| < |v|. If n < m, then as

|v| > |u|, there exists a maximal j′ ∈ {1, . . . , n} such that Ym−n+j′ 6= Xj′ . Proceeding as
above, we see that the conclusion holds.

Finally we can give a proof of Theorem 44.

Proof of Theorem 44. Let w ∈ Ω. Since Γ is uniformly recurrent and a product of the
words S and L, there exists a word w′ ∈ Ω such that w′ is a product of S and L and
w = T `(w′) for some ` such that 0 6 ` < |S| (recall that a product of S and L occurring
in Γ having length at least 6|S| must synchronize to the factorization of Γ as a product
of S and L). If ` = 0, then the conclusion holds by Lemma 45, so we can assume that
` > 0. Write w as a product of minimal squares: w = X2

1X
2
2 · · · . Let

r1 = max{{0} ∪ {i ∈ {1, 2, . . .} : |X2
1 · · ·X2

i | 6 |S| − `}}.

If r1 > 0, then set `1 = `+ |X2
1 · · ·X2

r1
|. If r1 = 0, then we set `1 = `. By the maximality

of r1 and by the definition of the set BS, it follows that `1 ∈ BS ∪ {|S|} (indeed, the word
L also has S6 as a suffix). See Figure 5.

To aid comprehension we have separated different parts of the proof as distinct claims
with their own proofs. Any new definitions and assumptions given in one of the subproofs
are valid only up to the end of the subproof.

Claim 53. If `1 = |S|, then
√
w ∈ Ω.

Proof. Suppose that `1 = |S|. By the definition of the number r1, we have that r1 > 0 and
the word T |S|−`(w) = T |S|(w′) = X2

r1+1X
2
r2+2 · · · is a product of the words S and L. Now

zw′ ∈ Ω for some z ∈ {S, L}. Since zw′ is a product of S and L, by Lemma 45
√
zw′ ∈ Ω.

By the choice of S as a solution to (8) and by Lemma 22, the first |S2| letters of zw′ can be
written as a product of minimal squares. Hence zw′ = Y 2

1 · · ·Y 2
nX

2
r1+1X

2
r1+2 · · · for some

minimal square roots Y1, . . ., Yn. By the Backtracking Lemma, we have that X1 · · ·Xr1

is a suffix of Y1 · · ·Yn. Thus the word
√
w = X1 · · ·Xr1Xr1+1 · · · is a suffix of the word√

zw′ = Y1 · · ·YnXr1Xr1+1 · · · . Therefore L(
√
w) ⊆ L(

√
zw′) = L(Γ), so

√
w ∈ Ω.

We assume that `1 ∈ BS. Now either the position `1 of the word S is nicely repetitive
or it is not.

Claim 54. If `1 is a nicely repetitive position of S, then
√
w is periodic with minimal

period conjugate to S.
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Proof. By Lemma 47 the word
√
T `1(w′) is periodic with minimal period z conjugate

to S. If `1 = `, then there is nothing more to prove, so assume that `1 6= `. There
exists u, v ∈ {S, L} such that uvw′ ∈ Ω. Since `1 is a nicely repetitive position of S,
the prefix of T `1(uvw′) of length |S2| is a product of minimal squares and its square
root equals z by Lemma 47. Since the factor w′[`, `1 − 1] is also a product of minimal
squares, the Backtracking Lemma implies that

√
w′[`, `1 − 1] is a suffix of z. Now

√
w =√

w′[`, `1 − 1]
√
T `1(w′), so

√
w is periodic with minimal period conjugate to S.

If the position `1 of S is not nicely repetitive, then either it is not repetitive or it is
repetitive but not nicely repetitive.

Claim 55. If `1 is a repetitive but not nicely repetitive position of S, then
√
w ∈ Ω.

Proof. Suppose that `1 is a repetitive but not a nicely repetitive position of S. This means
that either S3[`1, |S| − 1] ∈ Π(a, b) or S3[`1, |S2| − 1] ∈ Π(a, b) (they both cannot be in
Π(a, b) as this would imply that S is not primitive). Thus either w′[`1, |S| − 1] ∈ Π(a, b)
or w′[`1, |S2| − 1] ∈ Π(a, b) (in the latter case Lemma 21 ensures that w′[`1, |S2| − 1] ∈
Π(a, b)). The former case is, however, not possible as it would contradict the maximality
of r1. Thus only the latter option is possible. Since w′ is a product of the words S
and L, the prefix w′[0, |S2| − 1] of w′ is a product of minimal squares. Since w′[`, `1 −
1], w′[`1, |S2| − 1] ∈ Π(a, b), the Backtracking Lemma implies that

√
w′[`, |S2| − 1] is a

suffix of
√
w′[0, |S2| − 1]. Thus

√
w is a suffix of

√
w′. As

√
w′ ∈ Ω by Lemma 45, we

conclude that
√
w ∈ Ω.

Now we may suppose that `1 is not a repetitive position of S. We let

r2 = max{i ∈ {r1 + 1, r1 + 2, . . .} : |X2
1 · · ·X2

i | 6 |S2| − `},
r3 = max{i ∈ {r2 + 1, r2 + 2, . . .} : |X2

1 · · ·X2
i | 6 |S3| − `}, and

r4 = max{i ∈ {r3 + 1, r3 + 2, . . .} : |X2
1 · · ·X2

i | 6 |S4| − `}.

The numbers r2, r3, and r4 are well-defined as the words S and L are not minimal squares.
We set

`2 = `1 + |X2
r1+1 · · ·X2

r2
|,

`3 = `2 + |X2
r2+1 · · ·X2

r3
|, and

`4 = `3 + |X2
r3+1 · · ·X2

r4
|.

Intuitively, the positions `1, `2, `3, and `4 are the successive positions of w which are closest
from the left to the boundaries of the words S and L in the factorization of w′ as a product
of the words S and L such that the prefix up to the position is a product of minimal
squares; see Figure 5. Let g1 = `1, g2 = `2 − |S|, g3 = `3 − |S2|, and g4 = `4 − |S3|. By
the maximality of the numbers r2, r3, and r4, we see that gi ∈ BS ∪{|S|} for i = 1, 2, 3, 4.

Claim 56. We have that g1, g3 6= |S|. If g2 or g4 equals |S|, then
√
w ∈ Ω.
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Proof. By our assumption that `1 ∈ BS, we have that g1 6= |S|. If g2 = |S|, then the factor
w′[`1, |S2| − 1] would be a product of minimal squares. This case was already considered
in Claim 55 where we concluded that

√
w ∈ Ω.

Suppose that g3 = |S|. Consider the positions `1 and |S| of w′. Both of the factors
u = w′[`1, `3 − 1] and v = w′[|S|, `3 − 1] = w′[`3 − |S2|, `3 − 1] are in Π(a, b) (because
v ∈ {SS, SL, LS, LL}). Now zw′ ∈ Ω for some z ∈ {S, L}. Since SS, SL, LS, LL ∈
Π(a, b), the prefix of zw′ of length |S2| is in Π(a, b). Lemma 52 applied to the word
(zw′)[0, |S| + `3 − 1] implies that |(zw′)[0, |S| + `3 − 1]| < |u| < |S3| which is nonsense.
Therefore g3 6= |S|.

Assume then that g4 = |S|. Suppose for a contradiction that g2 6= g4. Both of the
factors u′ = w′[`2, `4−1] and v′ = w′[|S|2, `4−1] = w′[`4−|S2|, `4−1] are in Π(a, b). Since
g2 6= g4, also `2 6= |S2|. Thus by the definition of `2, we have that `2 < |S2|. Lemma 52
applied to the word w′[0, `4 − 1] shows that |w′[0, `4 − 1]| < |u′| < |S3| which is absurd.
This contradiction shows that g2 = g4 = |S|, so

√
w ∈ Ω.

We may now assume that gi ∈ BS for all i ∈ {1, 2, 3, 4}.
Claim 57. The position g2 of S is nicely repetitive.

Proof. Assume on that neither of the positions g2 and g3 is a repetitive position of S.
First note that as g1 is not repetitive, we have that g3 6= g1. Similarly g2 6= g4. If g1 = g2,
then it follows from Lemma 21 and the definitions of the positions `2 and `3 that g2 = g3;
a contradiction. Hence g1 6= g2. Similarly g2 6= g3 as otherwise the position g2 would be
repetitive. Finally, g3 6= g4 because g3 is not repetitive. We have two cases: either g1 = g4

or g1 6= g4.
Assume that g4 6= g1. By Lemma 50 the position |S| − |S6| of S is repetitive, so

g1, g2, g3 ∈ BS \ {|S| − |S6|} = {|S| − |S1|, |S| − |S3|, |S| − |S4|}. Since all of the positions
g1, g2, and g3 are distinct, the only option is that g4 = |S| − |S6|. Since the position
|S| − |S6| is repetitive, by Lemma 21 the factor u = w′[`4 − |S2|, `4 − 1] is in Π(a, b).
By the definition of the positions `2, `3, and `4 also v = w′[`2, `4 − 1] ∈ Π(a, b). Since
g2 6= g4, also `2 6= `4 − |S2|. Since |S| − |S6| is the smallest element of the set BS,
we have that `2 > `4 − |S2|. As w[`1, `2 − 1] ∈ Π(a, b), we obtain by Lemma 52 that
|w[`1, `4 − 1]| < |u| = |S2|. This is a contradiction.

Hence we have that g1 = g4. Since the factor w[`1, `2 − 1] is a product of minimal
squares, the number c1 = `2−`1 is even. Similarly the numbers c2 = `3−`2 and c3 = `4−`3

are even. Thus the number c1 + c2 + c3 = 3|S| is even, so |S| is even. It follows that
the numbers d1 = g2 − g1, d2 = g3 − g2, and d3 = g4 − g3 = g1 − g3 are even. However,
exactly two of the numbers |S1|, |S3|, and |S4| have odd length. Hence exactly two of the
numbers g1, g2, and g3 are odd. Thus it is not possible that all of the numbers d1, d2, and
d3 are even. This is a contradiction.

The previous contradiction shows that one of the positions g2 and g3 is a repetitive
position of S. Suppose for a contradiction that g3 is repetitive. We have that w′[`1, `3 −
1] ∈ Π(a, b) and w′[`3 − |S2|, `3 − 1] ∈ Π(a, b). Similar to the second paragraph of this
subproof, using Lemma 52 we obtain a contradiction unless g1 = g3. Even this conclusion
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w′
` `1 `2 `3 `4

X2
1 · · ·X2

r1
X2
r1+1 · · ·X2

r2
X2
r2+1 · · ·X2

r3
X2
r3+1 · · ·X2

r4

S/L S/L S/L S/L

Figure 5: The positions `, `1, `2, `3, and `4 of w′ and the minimal squares between the
positions.

is contradictory as g1 is not repetitive. Therefore g3 can not be repetitive, so g2 is a
repetitive position of S. Now if g2 would not be nicely repetitive, we would have by the
maximality of r2 that w′[`2, |S3| − 1] ∈ Π(a, b), that is, g3 = |S|. However, since g3 ∈ BS,
we have that g2 is a nicely repetitive position of S.

We are now in the final stage of the proof. We will show that
√
w is periodic with

minimal period conjugate to S.
We can now argue as in the proof of Claim 54. Since g2 is a nicely repetitive position

of S, by Lemma 47 the word
√
T `2(w′) is periodic with minimal period z conjugate to S.

We have that uw′ ∈ Ω for some u ∈ {S, L}. Since g2 is a nicely repetitive position of S,
the prefix of T g2(uw′) of length |S2| is a product of minimal squares and its square root
equals z by Lemma 47. Since w′[`, `2 − 1] ∈ Π(a, b), the Backtracking Lemma implies
that

√
w′[`, `2 − 1] is a suffix of z. Now

√
w =

√
w′[`, `2 − 1]

√
T `2(w′), so

√
w is periodic

with minimal period conjugate to S.
By Lemma 48 the word S always has at least one nicely repetitive position. It therefore

follows that there exists a word in Ω having a periodic square root.

9 Remarks on Generalizations

It is natural to think that the square root map could be generalized to obtain a cube
root map and, further, a kth root map. However, in [17, Theorem 5.3.] Saari proves the
following reformulation of a result of Mignosi, Restivo, and Salemi.

Proposition 58. If w is an everywhere α-repetitive word with α > φ+ 1, where φ is the
golden mean, then w is ultimately periodic.

Generalizing the square root map to a cube root map would require everywhere 3-
repetitive words. By the above such words must be ultimately periodic, so we expect that
this direction of research would not be fruitful.

Another way to generalize the square root map is to use abelian powers instead of
ordinary powers. For abelian powers a result like Proposition 58 does not exist. For
instance, by [16, Theorem 1.9.] every position in a Sturmian word begins with an abelian
kth power for all k > 2. Abelian square root can be defined for e.g. optimal squareful words
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as we will see shortly. However, abelian cubes in Sturmian words do not work. Consider
again the Fibonacci word f . The minimal abelian cube prefix of T (f) is 10 · 01 · 01. This
abelian cube is followed by the factor 00, so the root of the next abelian cube must begin
with 00. Hence if we define the abelian cube root of T (f) to be the product of the roots
of the abelian cubes, the resulting word begins with 1000 which is not a factor of f . Thus
by defining an abelian cube root map in this way, we lose the main property that the
mapping preserves the languages of Sturmian words.

In [18] Saari also considers optimal abelian squareful words. Optimal abelian squareful
words are defined by replacing minimal squares with minimal abelian squares in the
definition of optimal squareful words. Let w = X1X

′
1X2X

′
2 · · · be a product of minimal

abelian squares XiX
′
i. We define its abelian square root as the word ab

√
w = X1X2 · · · .

It follows from [18, Theorem 18] that the six minimal squares are products of exactly
five minimal abelian squares (this is straightforward to verify directly). Thus if w is an
optimal squareful word, then

√
w = ab

√
w. Thus by Theorem 9 the abelian square root of

a Sturmian word sx,α is the Sturmian word sψ(x),α. Also, by Theorem 44 there exists a
minimal subshift Ω such that for all w ∈ Ω either ab

√
w ∈ Ω or ab

√
w is periodic. Saari proves

in [18, Theorem 19] that an optimal abelian squareful word must have at least five distinct
minimal abelian squares, but he leaves the characterization of these sets of minimal abelian
squares open. Thus it is possible that there exists optimal abelian squareful words which
contain other minimal abelian squares than those given by [18, Theorem 18]. For such
words the abelian square root map could exhibit different behavior than the square root
map (if the square root map is even defined for such words). We have not extended our
research to this direction.

We could also generalize the special function ψ. Divide the distance D between x and
1− α into k parts and choose the image of x to be x+ t

k
D among the points

x+
1

k
D, x+

2

k
D, . . . , x+

k − 1

k
D

to obtain the function

ψk,t : T→ T, x 7→ 1

k
(tx+ (k − t)(1− α)).

The map ψk,t is a perfectly nice function on the circle T, but to make things interesting
we would need to find a symbolic interpretation for it. We have not figured out any such
interpretation for these generalized functions.

10 Open Problems

In Section 8 we saw that there are non-Sturmian words whose language is preserved under
the square root map. However, Sturmian words satisfy an even stronger property: by
Theorem 9 for the Sturmian subshift Ωα of slope α it holds that

√
Ωα ⊆ Ωα. This property

is not satisfied by the aperiodic and minimal subshift ΩΓ of the word Γ constructed in
Section 8 since by Theorem 44 there is a word in ΩΓ having periodic square root; since
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ΩΓ is aperiodic and minimal, it cannot contain such words. We are thus led to ask the
following question we could not answer:

Question 59. If Ω is a subshift containing optimal squareful words satisfying
√

Ω ⊆ Ω,
does the subshift Ω only contain Sturmian words?

Let us briefly see that if we do not require all words in Ω to be aperiodic then the
above question has a negative answer.

Proposition 60. There exists a non-minimal non-Sturmian subshift Ω containing square-
ful words such that

√
Ω ⊆ Ω.

Proof Sketch. Let S be a seed solution as in Section 8, and let Γ be a corresponding
fixed point of the square root map generated by the seed S as in Section 8. Further, set
∆ = Sω, let Ω∆ be the subshift generated by ∆, and let ΩΓ be the subshift generated by
Γ. If w ∈ ΩΓ, then by Theorem 44 either

√
w ∈ ΩΓ or

√
w ∈ Ω∆. Hence if we are able

to show that
√

Ω∆ ⊆ Ω∆, then the non-minimal and non-Sturmian subshift ΩΓ ∪ Ω∆ has
the desired properties.

Let w ∈ Ω∆, so w = T `(∆) for some 0 6 ` < |S|. Write w as a product of minimal
squares: w = X2

1X
2
2 · · · . We can now argue as in the proof of Theorem 44. If |X2

1 · · ·X2
n| =

|S| − ` for some n > 1 or |X2
1 · · ·X2

m| = |S2| − ` for some m > 1, then using the fact
that

√
∆ = ∆ it is straightforward to see that

√
w ∈ Ω∆. Otherwise either ` is a nicely

repetitive position of S or `+ |X2
1 · · ·X2

i | − |S| is a nicely repetitive position of S where

i = max{j ∈ {1, 2, . . .} : |X2
1 · · ·X2

j | 6 |S2| − `}.

In both of these cases we deduce with the help of Lemma 47 that
√
w ∈ Ω∆.

There are other interesting related questions. Consider the limit set

Ω ∩
√

Ω ∩
√√

Ω ∩ . . . .

We know very little about the limit set except in the Sturmian case when it contains the
two fixed points 01cα and 10cα. For the subshift generated by the word Γ of Section 8 we
proved that the limit set contains at least two fixed points. We ask:

Question 61. When is the limit set nonempty? If it is nonempty, does it always contain
fixed points? Can it contain points which are not fixed points?

It is a genuine possibility that the limit set is empty. Consider for instance the word
ζ = τ(σω(6)), the morphic image of the fixed point of the morphism σ : 6 7→ 656556, 5 7→ 5
under τ : 6 7→ S2

6 , 5 7→ S2
5 where S5 = 100 and S6 = 10010 are minimal square roots of

slope α = [0; 2, 1, . . .]. It is straightforward to verify that ζ is optimal squareful and
uniformly recurrent and that the returns to the factor 101 in L(ζ) are 10100, 101(001)200
and 101(001)400. By considering all possible occurrences of the factor w = τ(56565) ∈
L(ζ) in any product of the minimal squares of slope α, it can be shown that the square
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root of the product always contains a return to the factor 101 which is not in L(ζ). Since
the factor w occurs in every point in the subshift Ωζ generated by ζ, we conclude that
Ωζ ∩

√
Ωζ = ∅.

In Section 8 we constructed infinite families of primitive solutions to (8) using the
recurrence γk+1 = L(γk)γ

2
k. Why this construction worked was because the seed solution

S and the word L = L(S) satisfy
√
SS = S,

√
SL = S,

√
LS = L, and

√
LL = L, that is,√

(LSS)2 =
√
LS · SL · SS = LSS. Similarly

√
(SLLLL)2 = SLLLL, so substituting

for example S = 01010010 we obtain the primitive solution

S2S1S4S3S5S4S3S5S6S5S4S3S5S4S3 = 0101001010010010100100101001001010010010

to (8) in L(1, 0). More solutions can be obtained with analogous constructions. Restricting
to the languages of optimal squareful words, we ask:

Question 62. What are the primitive solutions w of (8) in L(a, b) such that w or w2 is
not Sturmian and w is not obtainable by the above construction?
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