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Abstract

Motivated by [13, Theorem 4.1], this paper extends Lewis’s bijection to a bijec-
tion between a more general class L(n, k, I) of permutations and the set of standard
Young tableaux of shape 〈(k + 1)n〉, so the cardinality

|L(n, k, I)| = f 〈(k+1)n〉,

is independent of the choice of I ⊆ [n]. As a consequence, we obtain some new
combinatorial realizations and identities on Catalan numbers. In the end, we raise
a problem on finding a bijection between L(n, k, I) and L(n, k, I ′) for distinct I and
I ′.
Keywords: Pattern avoidance, Young tableaux, Catalan numbers.

1 Introduction

Let Sn denote the permutation group on [n] = {1, 2, . . . , n}. Write σ ∈ Sn in the
form σ = σ1σ2 · · · σn. For m 6 n, if σ ∈ Sn and π = π1 · · · πm ∈ Sm, we say that
σ contains the pattern π if there is an index subsequence 1 6 i1 < i2 < · · · < im 6 n
such that σij < σik iff πj < πk for 1 6 j, k 6 m, that is, σ has a subsequence which is
order isomorphic to π. Otherwise, σ avoids the pattern π, or say, σ is π-avoiding. Given
a pattern π and a set S of permutations, we denote by S(π) the set of elements of S that
avoid π. For example, the permutation 354261 contains a subsequence 5421 order isomor-
phic to 4321 and no subsequence order isomorphic to 1234, that is, 354261 /∈ S6(4321)
and 354261 ∈ S6(1234). The study on pattern avoidance of permutations started from
MacMahon [14]. He proved that the number of permutations which can be divided into

∗Supported by NSFC 11401196,11571097

the electronic journal of combinatorics 24(1) (2017), #P1.6 1



two decreasing subsequences is the Catalan number, i.e., |Sn(123)| = Cn = 1
n+1

(
2n
n

)
. Later

in 1970′s, Knuth [10, 11] proved that for any π ∈ S3,

|Sn(π)| = Cn =
1

n+ 1

(
2n

n

)
.

In past decades, various articles considered permutations avoiding some patterns, see
[3, 4, 5, 6, 9, 12, 15].

A partition of the nonnegative integer n is a sequence λ = (λ1, λ2, . . . , λl) of positive
integers satisfying λ1 > λ2 > · · · > λl and

∑l
i=1 λi = n, written as λ ` n. Repetitions of

equal elements use to be written by exponential notations, e.g., the partition (6, 4, 4, 4, 2)
is abbreviated 〈6, 43, 2〉. Associated to a partition λ ` n, a Young diagram is a collection
of boxes arranged in left-justified rows with λi boxes in row i. We usually identify each
partition with its Young diagram and speak of them interchangeably. If λ is a Young
diagram with n boxes, a standard Young tableau T of shape λ denoted by λ = sh(T) is a
filling of numbers 1, 2, . . . , n into those n boxes such that each number appears once and
entries strictly increase along each row and down each column. We use matrix coordinates
to identify boxes in a standard Young tableau, i.e., T(i, j) is the box in the i-th row and
j-th column of T. The hook length formula expresses the number of standard Young
tableaux of shape λ as

fλ =
n!∏
hij(λ)

,

where hij(λ) is the number of boxes T(x, y) with either x > i, y = j or x = i, y > j.
It is well-known that the Robinson-Schensted-Knuth (abbreviated RSK) correspondence
establishes a one-to-one correspondence between permutations and ordered pairs of stan-
dard Young tableaux of the same shape, see [8, 16] for more details. Thus one can apply
the hook length formula to enumerate permutations avoiding some patterns. To our
knowledge, there are some results obtained in this way, such as [1, 2, 7, 13].

For positive integers n, k and an index set I ⊆ [n], let L(n, k, I) be the set of per-
mutations σ = σ11σ12 · · · σ1j1σ21 · · · σ2j2 · · ·σn1 · · ·σnjn ∈ Skn+|I| satisfying the following
conditions

(C1). ji = k + 1 if i ∈ I and ji = k otherwise;

(C2). σi1 < σi2 < · · · < σiji for all 1 6 i 6 n;

(C3). σ avoids the pattern 12 · · · (k + 1)(k + 2).

By taking I = [n] and ∅ respectively, the notation L(n, k, I) extends Ln,k+1(1, 2, . . . , k+
2) and Ln,k(1, 2, . . . , k+ 2) defined in [13]. In 2011, Lewis [13, Theorem 4.1] established a
bijection between L(n, k,∅) and the set of standard Young tableaux of shape 〈(k + 1)n〉.
The main result of this paper extends Lewis’s bijection to a bijection between L(n, k, I)
and the set of standard Young tableaux of shape 〈(k + 1)n〉 for any index set I ⊆ [n]. As
an obvious consequence, we obtain that the cardinality

|L(n, k, I)| = f 〈(k+1)n〉,
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does not depend on the choice of I. Taking k = 1, we obtain a class of combinatorial
realizations of Catalan numbers. Applying the inclusion-exclusion principle, some new
combinatorial identities on Catalan numbers will be formulated. Finally, we raise an
open problem on finding a bijection between L(n, k, I) and L(n, k, I ′) for distinct subsets
I and I ′ of [n], respectively.

2 Main Theorem

As mentioned above, under the RSK correspondence, the study of pattern avoidance
can be reduced to study standard Young tableaux. Below are some facts on the RSK
correspondence which can be found in [8, 16, 17].

Lemma 2.1 (Row Bumping Lemma). [8, p.9] Two successive row-insertions, first row-
inserting x in a tableau T and then row-inserting x′ in the resulting tableau (T ← x), give
rise to two routes R and R′, and two new boxes B and B′. If x 6 x′, then R is strictly
left of R′, and B is strictly left of and weakly below B′. If x > x′, then R′ is weakly left
of R, and B′ is weakly left of and strictly below B.

Lemma 2.2. [17, p.387-389] If ω ∈ Sn and ω
RSK−−−→ (P,Q), then the number of columns

(rows) of P is the length of the longest increasing (decreasing) subsequence of ω.

Now we introduce our main result whose proof is similar as Lewis’s result [13, Theorem
4.1]. One may refer to [8] for some notations used in the proof.

Theorem 2.3. For a fixed index set I ⊆ [n], there is a bijection between L(n, k, I) and
the set of standard Young tableaux of shape 〈(k + 1)n〉 and so the cardinality

|L(n, k, I)| = f 〈(k+1)n〉,

is independent of the choice of I.

Proof. For σ = σ11 · · ·σ1j1 · · · σn1 · · ·σnjn ∈ L(n, k, I), let T0 = ∅ and Ti = (Ti−1 ←
σi1 ← σi2 ← · · · ← σiji), the resulting tableau by row-insertions of σi1, . . . , σiji in Ti−1
successively. Denote by Ti−Ti−1 the skew tableau obtained by removing from Ti the boxes
of sh(Ti−1) and by sh(Ti)/sh(Ti−1) the shape of Ti − Ti−1. By Row Bumping Lemma 2.1,
all boxes of sh(Ti)/sh(Ti−1) must lie in different columns of Ti.

Since σ avoids 12 · · · (k+ 1)(k+ 2), by Lemma 2.2, each Ti has at most k+ 1 columns.
Let [n] − I = {i1, . . . , in−|I| | i1 < · · · < in−|I|}. It is clear from the definition (C1) of
L(n, k, I) that jit = k for all t = 1, . . . , n − |I|. Hence there is a unique vt ∈ [k + 1]
such that no new box is added to the vt-th column when performing the row insertions
(Tit−1 ← σit1 ← σit2 ← · · · ← σitjit ). While if i ∈ I, then ji = k + 1 and each column will
get a new box in the process.

Now we construct a map from L(n, k, I) to the set of standard Young tableaux of shape
〈(k+ 1)n〉 by the following algorithm. Given a σ = σ11 · · ·σ1j1 · · ·σn1 · · ·σnjn ∈ L(n, k, I).
To obtain a tableau T of shape 〈(k + 1)n〉, we fill all boxes of 〈(k + 1)n〉 with entries
[(k + 1)n] step by step as i goes from 1 to n.
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At the first step, if j1 = k, we fill the left k boxes on the top row of 〈(k+1)n〉 successively
with numbers σ11, . . . , σ1j1 and the box at the bottom-right conner of 〈(k+ 1)n〉 with the
number (k+ 1)n, otherwise j1 = k+ 1 and fill the top row of 〈(k+ 1)n〉 successively with
numbers σ11, . . . , σ1j1 . Generally at the i-th step, notice that sh(Ti) 6 〈(k + 1)n〉 and the
process Ti = (Ti−1 ← σi1 ← σi2 ← · · · ← σiji) produces ji new boxes with entries. Then
fill the corresponding ji new boxes of 〈(k + 1)n〉 with those entries. Consequently at this
step we get a copy of Ti on the top-left of 〈(k + 1)n〉. Additionally for i = it /∈ I, fill
the bottom box of the remaining empty boxes in the vt-th column of 〈(k + 1)n〉 with the
number (k + 1)n + 1 − t. Thus at this step every column has a new box filled with an
entry and all numbered boxes of T are separated to two components. One component
is a copy of Ti on the top-left of T , the other on the bottom-right. Moreover, vertically
moving the bottom component up to the top component and joining both components
together yields a Young tableau of shape 〈(k + 1)i〉. Hence, the outcome of the n-th step
is a standard Young tableau T of shape 〈(k+1)n〉 with entries [(k+1)n], which completes
the construction of a map sending a permutation σ ∈ L(n, k, I) to a standard Young
tableau T of shape 〈(k + 1)n〉.

To prove the map is bijective, since the RSK correspondence is a bijection, it is enough
to construct a pair (P,Q) of standard Young tableaux of the same shape from a standard
Young tableau T of shape 〈(k + 1)n〉 with entries [(k + 1)n] such that running the RSK
algorithm backwards will send (P,Q) to a permutation σ ∈ L(n, k, I).

Given a standard Young tableau T of shape 〈(k + 1)n〉 with entries [(k + 1)n]. Let
P be the standard Young tableau obtained by removing the boxes with n − |I| largest
entries from T , and denote by λ the shape of P . The other standard Young tableau
Q of shape λ will be constructed by filling the Young diagram λ step by step as i runs
from 1 to n. Let c0 = 0 and ci = j1 + j2 + · · · + ji for 1 6 i 6 n. At the i-th step,
the fillings are as follows. If i ∈ I, for those boxes of λ that remain empty (i.e., not
filled with entries) at the (i − 1)-th step, we fill the top empty box of each column with
entries ci−1 + 1, ci−1 + 2, . . . , ci successively from left to right. If i = it /∈ I and the
entry (k + 1)n + 1 − t is located on the vt-th column of T , we fill the top empty box
of each column, except for column vt, with entries ci−1 + 1, ci−1 + 2, . . . , ci successively
from left to right. Performing this algorithm finally yields a standard Young tableau Q
of shape λ, which together with P determines a permutation σ by running the procedure

σ
RSK−−−→ (P,Q) backwards. It is clear by Lemma 2.2 that σ avoids 12 · · · (k + 2) since P

has at most (k + 1) columns. From the construction of Q, it is clear by Lemma 2.1 that
σ consists of n increasing subsequences of length either k or k + 1 consecutively. More
precisely, σ = σ11 · · ·σ1j1 · · · σn1 · · ·σnjn with σi1 < · · · < σiji , and ji = k + 1 if i ∈ I and
ji = k otherwise. Therefore, the above map sends a standard Young tableau T of shape
〈(k + 1)n to a permutation σ ∈ L(n, k, I).

Example 2.4. Let I = {1, 3} and σ = 7 10 12 6 9 1 5 11 3 8 2 4 ∈ L(5, 2, I). Using
the algorithm mentioned in the above proof, we will construct a standard Young tableau
T of shape 〈35〉. Denote a = 10, b = 11, c = 12, d = 13, e = 14, f = 15 for convenience.
Performing the row insertions Ti = (Ti−1 ← σi1 ← σi2 ← · · · ← σiji) for 1 6 i 6 5, we
have
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T0

∅

→ T1

7 a c

→ T2

6 9 c
7 a

→ T3

1 5 b
6 9 c
7 a

→ T4

1 3 8
5 9 b
6 a c
7

→ T5

1 2 4
3 8 b
5 9 c
6 a
7

.

The corresponding fillings of 〈35〉 at each step is

→

7 a c

→

6 9 c
7 a

f

→

1 5 b
6 9 c
7 a

f

→

1 3 8
5 9 b
6 a c
7

e f

→

1 2 4
3 8 b
5 9 c
6 a d
7 e f

Then we have

T =

1 2 4
3 8 b
5 9 c
6 a d
7 e f

Conversely, using the second algorithm in the proof, we can easily construct a pair (P,Q)
of standard Young tableaux of the same shape from T , which is

P =

1 2 4
3 8 b
5 9 c
6 a
7

and Q =

1 2 3
4 5 8
6 7 a
9 c
b .

Taking I = ∅ and [n] respectively, Proposition 3.1 and Theorem 4.1 of [13] are easy
consequences of Theorem 2.3.

Corollary 2.5. [13, Proposition 3.1] There is a bijection between L(n, k, [n]) and the set
of standard Young tableaux of shape 〈(k + 1)n〉.

Corollary 2.6. [13, Theorem 4.1] There is a bijection between L(n, k,∅) and the set of
standard Young tableaux of shape 〈(k + 1)n〉.
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3 Catalan Numbers

The inclusion-exclusion principle states that for finite sets A1, . . . , An, one has∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
k=1

(−1)k+1
∑

16i1<···<ik6n

|Ai1 ∩ · · · ∩ Aik |.

In this section, we give a class of combinatorial realizations for Catalan numbers which
are new to our knowledge, and apply the inclusion-exclusion principle to obtain several
recursive formula of Catalan numbers.

As mentioned in Section 1, the classical pattern-avoiding interpretation of Catalan
numbers Cn is Sn(π) for any π ∈ S3, i.e., the collection of all π-avoiding permutations on
the set [n]. Another easy combinatorial realization of Catalan numbers is the set of stan-
dard Young tableaux of shape 〈2n〉, namely, f 〈2

n〉 = Cn = 1
n+1

(
2n
n

)
. More combinatorial

models of Catalan numbers can be found in [18]. Applying Theorem 2.3 at k = 1, below
we obtain a new class of combinatorial realizations of Catalan numbers by permutations
avoiding patterns.

Theorem 3.1. For any I ⊆ [n], we have |L(n, 1, I)| = Cn.

For the index set I = {i1, . . . , im} ⊆ [n], we define

I∗ = {ij + j − 1 | j = 1, . . . ,m} ⊆ [n+m− 1].

Note that I∗ contains no consecutive numbers of [n] since (ij+1 + j) − (ij + j − 1) =
ij+1− ij + 1 > 2. If σ = σ1 . . . σn+m ∈ L(n, 1, I), it is easy from the definition of L(n, 1, I)
that σij+j−1 < σij+j for each j ∈ [m], i.e., I∗ ⊆ Asc(σ), where the set Asc(σ) of all ascents
of σ is defined by

Asc(σ) = {i ∈ [n+m− 1] | σi < σi+1}.

Conversely, if σ ∈ Sn+m(123), it is clear that I∗ ⊆ Asc(σ) implies σ ∈ L(n, 1, I). Thus

L(n, 1, I) = {σ ∈ Sn+m(123) | I∗ ⊆ Asc(σ)}.

We say that a permutation σ contains the ascent set A if A ⊆ Asc(σ). It is clear that the
ascent set Asc(σ) contains no consecutive numbers if σ avoids 123. Let

An = {A ⊆ [n− 1] | A contains no consecutive numbers}.

For A ⊆ [n− 1], let

Sn(123, A) = {σ ∈ Sn(123) | A ⊆ Asc(σ)},
S◦n(123, A) = {σ ∈ Sn(123) | A = Asc(σ)}.

Applying Theorem 3.1, the following result is obvious.

Corollary 3.2. For A ∈ An, we have |Sn(123, A)| = Cn−|A|.
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Also, we have the following facts,

• Sn(123,∅) = Sn(123).

• Sn(123, A) = ∅ if A /∈ An.

• Sn(123, A) ⊆ Sn(123, B) if A,B ∈ An and B ⊆ A.

• For any A,B ∈ An, we have

Sn(123, A ∪B) =
⋂
i∈B

Sn(123, A ∪ {i}).

In particular, Sn(123, A) =
⋂
i∈A Sn(123, {i}).

• For any A ∈ An, we have

S◦n(123, A) = Sn(123, A)−
⋃
A(B

Sn(123, B) = Sn(123, A)−
⋃
i/∈A

Sn(123, A ∪ {i}).

In particular, {σ = n(n− 1) · · · 21} = S◦n(123,∅) = Sn(123)−
⋃n−1
i=1 Sn(123, {i}).

Since the map
{a1, a2, . . . , as} 7→ {a1, a2 − 1, . . . , as − s+ 1}

is a bijection between the set {A ∈ An : |A| = s} and
(
[n−s]
s

)
, we have

#{A ∈ An : |A| = s} =

(
n− s
s

)
.

Let A = {a1, . . . , as} ∈ An and for k = 1, . . . , n− s,

αk(A) = #{B ∈ An | A ⊆ B, |B − A| = k}.

We have αk(∅) =
(
n−k
k

)
and

αk(A) =
∑
bi > 0

b0 + · · · + bs = k

s∏
i=0

(
ai+1 − ai − 2− bi

bi

)
,

where a0 = −1 and as+1 = n + 1. Indeed, we have
(
ai+1−ai−2−bi

bi

)
choices to insert bi

integers between ai and ai+1 so that the sequence contains no consecutive numbers.

Theorem 3.3. For any A ∈ An, we have

|S◦n(123, A)| =
∑
k>0

(−1)kαk(A)Cn−k−|A|.
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Proof. The above facts imply

|S◦n(123, A)| =

∣∣∣∣∣Sn(123, A)−
⋃
i/∈A

Sn(123, A ∪ {i})

∣∣∣∣∣
= |Sn(123, A)| −

∣∣∣∣∣⋃
i/∈A

Sn(123, A ∪ {i})

∣∣∣∣∣ .
Using the inclusion-exclusion principle, we have

|S◦n(123, A)| = Cn−|A| +
n−s∑
k=1

∑
A ⊆ B ∈ An
|B − A| = k

(−1)k|Sn(123, B)|

=
∑
k>0

(−1)kαk(A)Cn−k−|A|.

Taking A = ∅, the following result is immediate.

Corollary 3.4. For any nonnegative integer n, we have∑
k>0

(−1)k
(
n− k
k

)
Cn−k = 1.

Taking A = {i}, each σ ∈ S◦n(123, {i}) has exactly one ascent i. Writing σ =
σ1 · · ·σiσi+1 · · ·σn ∈ S◦n(123, {i}), both subsequences σ1 · · ·σi and σi+1 · · ·σn are de-
creasing and σi < σi+1. It is clear that there are

(
n
i

)
− 1 such permutations σ, i.e.,

|S◦n(123, {i})| =
(
n
i

)
− 1. On the other hand, setting

(
x
k

)
= 0 for x < 0, we have

αk({i}) =
∑

b0, b1 > 0
b0 + b1 = k

(
i− 1− b0

b0

)(
n− i− 1− b1

b1

)

=
k∑
j=0

(
i− j − 1

j

)(
n− k − i+ j − 1

k − j

)
.

Corollary 3.5. For any i ∈ [n− 1], we have(
n

i

)
− 1 =

∑
k>0

(−1)kCn−k−1

k∑
j=0

(
i− j − 1

j

)(
n− k − i+ j − 1

k − j

)
.

If i = 1 and 2, then ∑
k>0

(−1)k
(
n− k − 2

k

)
Cn−k−1 = n− 1,

∑
k>0

(−1)k
(
n− k − 3

k

)
Cn−k−1 =

(
n

2

)
− 1.
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Suppose A = {a1, . . . , as} and ai+1 − ai 6 3 for all i = 0, . . . , s, where a0 = −1 and
as+1 = n+ 1. From Corollary 3.2, one has

S◦n(123, A) = Sn(123, A) = Cn−s.

In particular, for any alternating permutation σ ∈ Sn, we have either Asc(σ) = {1, 3, 5, . . .}
or Asc(σ) = {2, 4, 6, . . .}. Hence, we can easily obtain the following result. (We can’t find
references, although we believe it is a known result)

Corollary 3.6. The number of alternating permutations in Sn(123) is Ck+Ck+1 if n = 2k,
and 2Ck if n = 2k + 1.

4 Further Discussions

Let I and I ′ be distinct subsets of [n]. Recall that the proof of Theorem 2.3 gives a
bijection sending each permutation σ ∈ L(n, k, I) to a standard Young tableau T of
shape 〈(k + 1)n〉. An inverse of the bijection will send each standard Young tableau
T of shape 〈(k + 1)n〉 to a permutation σ′ ∈ L(n, k, I ′). Composing both will yields
a bijection between L(n, k, I) and L(n, k, I ′) for distinct I and I ′. However, since the
RSK correspondence and its inverse are esoteric, the bijection obtained in this way is
extremely not intuitive. Hence, it would be exciting if there is a direct bijection, without
RSK correspondence involved, between L(n, k, I) and L(n, k, I ′). Next we give an easy
example.

Proposition 4.1. There is a bijection between L(n, 1, {1}) or L(n, 1, {n}) and L(n, 1,∅).

Proof. First note that σ1 < σ2 for any σ = σ1σ2σ3 · · ·σnσn+1 ∈ L(n, 1, {1}). Since σ
avoids the pattern 123, one has σi < σ2 for all 3 6 i 6 n + 1, otherwise σ1σ2σi forms an
increasing subsequence of σ. So σ2 = n+ 1. Let σ′ = σ1σ3σ4 · · ·σn+1 be the permutation
on [n] obtained by removing σ2 from a permutation σ ∈ L(n, 1, {1}). Obviously, σ′ avoids
123, i.e, σ ∈ Sn(123) = L(n, 1,∅). Thus we obtain a map σ 7→ σ′ from L(n, 1, {1}) to
L(n, 1,∅). Its inverse can be obtained by running the above process backwards. Hence
the map σ 7→ σ′ is a bijection from L(n, 1, {1}) to L(n, 1,∅). The other bijection between
L(n, 1, {n}) and L(n, 1,∅) can be constructed similarly.

Obvioulsy, finding a bijection between L(n, k, I) and L(n, k, I ′) can be reduced to a
bijection between L(n, k, I) and L(n, k,∅) = Snk(123), which is raised below as an open
problem.

Problem 4.2. Find a bijection between L(n, k, I) and Snk(123) for any I ⊆ [n].
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