A Note on the Weak Dirac Conjecture

Zeye Han
Kunming, Yunnan, China
migaoyan@sina.com

Submitted: Dec 19, 2016; Accepted: Mar 21, 2017; Published: Mar 31, 2017
Mathematics Subject Classifications: 52C10, 52C30, 52C35

Abstract
We show that every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \frac{n}{3} \rceil + 1 \) of the lines determined by \(P \).

Keywords: Configurations of points; Incident-line-numbers; Weak Dirac Conjecture, Hirzebruch-type inequalities

In this note we denote by \(P \) a set of non-collinear points in the plane, and by \(\mathcal{L}(P) \) the set of lines determined by \(P \), where a line that passes through at least two points of \(P \) is said to be determined by \(P \). For a point \(P \in \mathcal{P} \), we denote by \(d(P) \) the number of lines of \(\mathcal{L}(P) \) that are incident to \(P \), called the incident-line-number or multiplicity of \(P \); see [4] and [14]. Finally, we denote by \(l_r \) the number of lines that pass through precisely \(r \) points of \(\mathcal{P} \).

Dirac’s conjecture is a well-known problem in combinatorial geometry. In 1951, Dirac [5] showed that:

Theorem 1. Every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \sqrt{n+1} \rceil \) lines of \(\mathcal{L}(P) \).

Dirac [5] made (and verified for \(n \leq 14 \)) the following conjecture.

Conjecture 2 (Dirac Conjecture). Every set \(P \) of \(n \) non-collinear points in the plane contains a point incident to at least \(\lceil \frac{n}{2} \rceil \) lines of \(\mathcal{L}(P) \).

The conjectured bound is tight, for instance, Dirac [5] constructed a set \(P \) of \(n \) non-collinear points with \((l_2, l_3, l_2) = (\frac{n^2}{4} - \frac{3n}{2} + 3, \frac{n}{2} - 1, 2)\) for every even-integer \(n \geq 6 \). In 2011, Akiyama, Ito, Kobayashi, and Nakamura [1] proved there exists a set \(P \) of \(n \) non-collinear points for every integer \(n \geq 8 \) except \(n = 12k + 11 (k \geq 4) \), satisfying \(d(P) \leq \lceil \frac{n}{2} \rceil \) for every point \(P \in \mathcal{P} \). However, Dirac’s conjecture is false, some counter-examples were found in [1,7–11].

The following natural conjecture arises [4].
Conjecture 3 (Strong Dirac Conjecture). Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{2} \right\rceil - c_0$ lines of $\mathcal{L}(\mathcal{P})$ with $c_0 > 0$.

Conjecture 4 (Weak Dirac Conjecture). Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{c_1} \right\rceil$ lines of $\mathcal{L}(\mathcal{P})$ with $c_1 > 0$.

In 1983, the Weak Dirac Conjecture was proved independently by Beck [2] and Szemerédi and Trotter [20] with c_1 unspecified or very large.

In 2012, based on Crossing Lemma, Szemerédi-Trotter Theorem, and Hirzebruch’s inequality, Payne and Wood [17] proved the following theorem,

Theorem 5. Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{37} \right\rceil$ lines of $\mathcal{L}(\mathcal{P})$.

In 2016, Pham and Phi [18] refined the result of Payne and Wood to give:

Theorem 6. Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{26} \right\rceil + 2$ lines of $\mathcal{L}(\mathcal{P})$.

There are some results in algebraic geometry providing constraints on line arrangements in the projective plane. In [12, 13], Hirzebruch studied algebraic surfaces constructed as abelian covers of the projective plane branched along line arrangements in the context of the so-called ball-quotients. It turned out that he obtained, as a by-product, the following result which is known as Hirzebruch’s inequality.

Theorem 7 (Hirzebruch’s Inequality). Let \mathcal{P} be a set of n points in the plane with at most $n - 3$ collinear. Then

$$l_2 + \frac{3}{4}l_4 \geq n + \sum_{r \geq 5} (2r - 9)l_r.$$

Theorem 8 (Orbifold Langer-Miyaoka-Yau Inequality). Let (X, D) be a normal projective surface with a \mathbb{Q}-divisor $D = \sum_i a_iD_i$ with $0 \leq a_i \leq 1$. Assume that the pair (X, D) is log canonical and $K_X + D$ is \mathbb{Q}-effective. Then

$$(K_X + D)^2 \leq 3e_{\text{orb}}(X, D),$$

where $e_{\text{orb}}(X, D)$ denotes the global orbifold number for $(X, \sum_i a_iD_i)$. Moreover, if equality holds, then $K_X + D$ is nef.

Bojanowski in [3] provided the following Hirzebruch-type inequality for line arrangements in the projective plane, which is also a special case of a much stronger result from the same thesis [3, Theorem 2.3]. It is worth pointing out that following Langer’s ideas, Pokora [19] provided some Hirzebruch-type inequalities for curve configurations in the projective plane with transversal intersection points where Bojanowski’s result is a special case.
Theorem 9 (Bojanowski-Pokora Inequality). Let \mathcal{P} be a set of n points in the plane with at most $\left\lfloor \frac{2n}{3} \right\rfloor$ collinear. Then

$$l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{4} \sum_{r \geq 5} r(r-4)l_r.$$

Based on the Bojanowski-Pokora inequality, we show the following result.

Theorem 10. Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$.

Proof. Suppose some line L passes through $\left\lceil \frac{n}{3} \right\rceil + 1$ or more points of \mathcal{P}. Since \mathcal{P} is non-collinear, there exists a point $P \in \mathcal{P}$ such that $P \notin L$. Consider the (distinct) lines determined by P and $\mathcal{P} \cap L$. Then P is incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$, and the theorem holds. Now assume that \mathcal{P} does not contain $\left\lceil \frac{n}{3} \right\rceil + 1$ collinear points.

According to Theorem 9,

$$l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{4} \sum_{r \geq 5} r(r-4)l_r = n + \frac{1}{2} \sum_{r \geq 5} \binom{r}{2}l_r - \frac{3}{4} \sum_{r \geq 5} rl_r.$$

Since $\sum_{r \geq 2} \binom{r}{2}l_r = \binom{n}{2}$,

$$l_2 + \frac{3}{4}l_3 \geq n + \frac{1}{2} \left(\binom{n}{2} - \frac{4}{2} \binom{r}{2}l_r \right) - \frac{3}{4} \sum_{r \geq 5} rl_r.$$

That is,

$$\sum_{r \geq 2} rl_r \geq \frac{n(n+3)}{3}.$$

Since $\sum_{P \in \mathcal{P}} d(P) = \sum_{r \geq 2} rl_r$,

$$\sum_{P \in \mathcal{P}} d(P) \geq \frac{n(n+3)}{3}.$$

By the pigeonhole principle, \mathcal{P} contains a point incident to at least $\left\lceil \frac{n}{3} \right\rceil + 1$ lines of $\mathcal{L}(\mathcal{P})$. \hfill \Box

Acknowledgements

I am very grateful to the editor and the referees for their suggestions about this note, which included grammar, historical comments about algebraic geometry, and references.
References

