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Abstract

Let G be a graph with adjacency matrix A. The transition matrix of G relative
to A is defined by H(t) := exp (−itA), where t ∈ R. The graph G is said to
admit pretty good state transfer between a pair of vertices u and v if there exists
a sequence of real numbers {tk} and a complex number γ of unit modulus such
that lim

k→∞
H(tk)eu = γev. We find that the cycle Cn as well as its complement Cn

admit pretty good state transfer if and only if n is a power of two, and it occurs
between every pair of antipodal vertices. In addition, we look for pretty good state
transfer in more general circulant graphs. We prove that union (edge disjoint) of
an integral circulant graph with a cycle, each on 2k (k > 3) vertices, admits pretty
good state transfer. The complement of such union also admits pretty good state
transfer. Using Cartesian products, we find some non-circulant graphs admitting
pretty good state transfer.

Keywords: circulant graph, pretty good state transfer, Kronecker approximation
theorem

1 Introduction

Perfect state transfer (PST) has great significance due to its applications in quantum infor-
mation processing and cryptography (see [5, 8, 15]). The phenomenon of PST in quantum
communication networks was originally introduced by Bose in [7]. In mathematical terms,
PST is defined as follows. The transition matrix of a graph G with adjacency matrix A
is defined by

H(t) := exp (−itA), t ∈ R.

The transition matrix H(t) is a unitary matrix and it is also a polynomial in A. The
graph G is said to exhibit PST from a vertex u to another vertex v if there exists a real
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number τ and a complex number γ with |γ| = 1 such that H(τ)eu = γev. In the case
where H(τ)eu = γeu, τ 6= 0, we say that G is periodic at the vertex u. Moreover, G is said
to be periodic if there is τ ∈ R such that H(τ) is a scalar multiple of the identity matrix,
in which case the graph is periodic at all vertices. Finding whether a given graph has
PST is quite difficult especially when the graph is large. Remarkably, in [13], Coutinho
et al. showed that one can decide whether a graph admits PST in polynomial time with
respect to the size of the graph on a classical computer.

In initial papers (see [10, 11]), we find that PST occurs on Cartesian powers of a path
on two vertices and a path on three vertices. Further the results have been generalized
to NEPS of the respective graphs (see[6, 9, 27]). A graph is called integral if all its
eigenvalues are integers. In [19], Godsil established the fact that if a vertex transitive
graph exhibits PST between two vertices at time τ then the corresponding transition
matrix H(t) evaluated at τ is a scalar multiple of a permutation matrix of order two. In
that case, using H (2τ) = (H (τ))2, one can conclude that the graph is periodic at 2τ . A
Cayley graph is well known to be vertex-transitive and hence it is also a regular graph. In
[19], we also find that a regular graph is periodic if and only if the graph is integral. As
a result, if PST occurs on a Cayley graph then it must be integral. A characterization of
PST in integral circulant graphs appears in [4]. Some results on PST in gcd-graph, which
is a special class of integral Cayley graph, can be found in [25, 26]. In [20], we see that
there are only finitely many connected graphs with maximum valency at most k where
PST occurs. Since there are few graphs having PST, we consider a relaxation to PST
called pretty good state transfer (PGST).

The notion of PGST was first introduced by Godsil in [19]. A graph G with transition
matrix H(t) has PGST between a pair of vertices u and v if there is a sequence of real
numbers {tk} and a complex number of unit modulus γ such that

lim
k→∞

H(tk)eu = γev.

In such a case, we also say that G exhibits PGST from u to v with respect to the sequence
{tk}. This is equivalent to say that for ε > 0, there exists t ∈ R and γ ∈ C with |γ| = 1
such that ∣∣eTuH(t)ev − γ

∣∣ < ε.

There are a few published papers which discuss PGST. Godsil et al. [21] showed that
the path Pn exhibits PGST if and only if n + 1 equals to either 2m or p or 2p, where p
is an odd prime. We also see in [17] that a double star Sk,k admits PGST if and only if
4k + 1 is not a perfect square. The double star can be realized as a corona product of
the complete graph K2 and an empty graph. PGST in more general corona products has
been studied in [1, 2]. Moreover, in [28], we find some NEPS of the path on three vertices
having PGST. Some other relevant results regarding PST and PGST can be found in
[12, 14, 18, 22].

Circulant graphs arises frequently in communication networks. Among the circulant
graphs only integral circulant graphs are periodic (see [19]). It can be proved that if
a graph is periodic then the graph has PGST if and only if it has PST. Since a com-
plete characterization of PST in integral circulant graph is known, we consider PGST
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in circulant graphs which are not integral. In the present article, we completely classify
which cycles exhibit PGST. Beside cycles, we also find two classes of non-integral circu-
lant graphs one of which exhibits PGST and the other does not. Apart from circulant
graphs, we use Cartesian product to find some non-circulant graphs having PGST.

Let (Γ,+) be a finite abelian group and consider S ⊆ Γ \ {0} with {−s : s ∈ S} = S.
Such a set S is called a symmetric subset of Γ. A Cayley graph over Γ with a symmetric
set S is denoted by Cay (Γ, S). The graph has the vertex set Γ where two vertices a, b ∈ Γ
are adjacent if and only if a− b ∈ S. The set S is called the connection set of Cay (Γ, S).
Let Zn be the cyclic group of order n. A circulant graph is a Cayley graph over Zn. A
cycle Cn, in particular, is a circulant graph over Zn with the connection set {1, n − 1}.
Eigenvalues and eigenvectors of a cycle are very well known. Suppose ωn = exp

(
2πi
n

)
is

the primitive n-th root of unity. Then the eigenvalues of Cn are

λl = 2 cos

(
2lπ

n

)
, 0 6 l 6 n− 1, (1)

and the corresponding eigenvectors are vl =
[
1, ωln, . . . , ω

l(n−1)
n

]T
.

The eigenvalues and eigenvectors of a Cayley graph over an abelian group are also
known in terms of characters of the abelian group. In [23], it appears that the eigenvectors
of a Cayley graph over an abelian group are independent of the connection set. Consider
two symmetric subsets S1, S2 of Γ. So the set of eigenvectors of both Cay(Γ, S1) and
Cay(Γ, S2) can be chosen to be equal. Hence we have the following result.

Proposition 1. If S1 and S2 are symmetric subsets of an abelian group Γ then adjacency
matrices of the Cayley graphs Cay(Γ, S1) and Cay(Γ, S2) commute.

If d is a proper divisor of n then we define

Sn(d) = {x ∈ Zn : gcd(x, n) = d},

and for any set D containing proper divisors of n, we define

Sn(D) =
⋃
d∈D

Sn(d).

The set Sn(D) is called a gcd-set of Zn. A gcd graph over Zn is a circulant graph whose
connection set is a gcd-set. We denote a gcd graph over Zn with the connection set Sn(D)
by G(n,D).

The following theorem determines circulant graphs which are integral.

Theorem 2. [29] A circulant graph is integral if and only if the connection set is a gcd-set.

The Cartesian product of two graphs G1 and G2 with vertex sets V1 and V2 is the
graph G1�G2, with vertex set V1 × V2. Two vertices (u1, u2) and (v1, v2) are adjacent in
G1�G2 if and only if either u1 is adjacent to v1 in G1 and u2 = v2, or u1 = v1 and u2 is
adjacent to v2 in G2. The transition matrix of a Cartesian product of two graphs is given
by the following result.
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Lemma 3. [10] Let G1 and G2 be two graphs having transition matrices HG1(t) and
HG2(t), respectively. Then the transition matrix of the Cartesian product G1�G2 is
HG1�G2(t) = HG1(t)⊗HG2(t).

Now we introduce Kronecker approximation theorem on simultaneous approximation
of numbers. This will be used later to find graphs allowing PGST.

Theorem 4 (Kronecker approximation theorem). [3] If α1, . . . , αl are arbitrary real num-
bers and if 1, θ1, . . . , θl are real, algebraic numbers linearly independent over Q then for
ε > 0 there exist q ∈ Z and p1, . . . , pl ∈ Z such that

|qθj − pj − αj| < ε.

A bound on the integer q relative to the precision ε and some other given constraints
is given in [24].

2 Pretty Good State Transfer on Circulant Graphs

We begin with the discussion that the odd cycles never exhibit PGST. Moreover, if an
even cycle admits PGST then it must occur only between the antipodal vertices. Suppose
G is a graph with adjacency matrix A. If P is the matrix of an automorphism of G then
P must commute with A and consequently P commutes with the transition matrix H(t).
Suppose G allows PGST between two vertices u and v. Then there exists a sequence of
real numbers {tk} and a complex number γ of unit modulus such that

lim
k→∞

H(tk)eu = γev.

Further this implies that
lim
k→∞

H(tk) (Peu) = γ (Pev) .

Since the sequence {H(tk)eu} cannot have two different limits, we conclude that if P fixes
eu then P must fix ev as well. Note that the map that sends j to −j is an automorphism
of the circulant graph Cay (Zn, S). As a consequence, we have the following result.

Lemma 5. If pretty good state transfer occurs in a circulant graph Cay (Zn, S) then n is
even and it occurs only between the pair of vertices u and u+ n

2
, where u, u+ n

2
∈ Zn.

From now onwards we only consider the even cycles. Notice that it is enough to find
PGST in Cn between the pair of vertices 0 and n

2
. We thus calculate the (0, n

2
)-th entry

of the transition matrix of Cn. If
n−1∑
l=0

λlEl is the spectral decomposition of the adjacency

matrix A of Cn then the transition matrix can be calculated as

H(t) = exp (−itA) =
n−1∑
l=0

exp (−iλlt)El.
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Note that El = 1
n
vlv

∗
l , where vl =

[
1, ωln, . . . , ω

l(n−1)
n

]T
as given in (1). Therefore the

(0, n
2
)-th entry of El is 1

n
ω
−nl

2
n . Hence, we evaluate the (0, n

2
)-th entry of H(t) as

H(t)0,n
2

=
1

n

n−1∑
l=0

exp (−iλlt) · ω
−nl

2
n =

1

n

n−1∑
l=0

exp [−i (λlt+ lπ)]. (2)

It is well known that a cycle on four vertices admits PST at π
2

between any pair of
antipodal vertices. Since PGST is a generalization of PST, the cycle on four vertices also
exhibits PGST. In the following result, we distinguish a class of cycles admitting PGST.
Later, we will show that these are the only cycles with PGST.

Lemma 6. If n = 2k, k > 3, then the cycle Cn exhibits pretty good state transfer with
respect to a sequence in 2πZ.

Proof. The eigenvalues of Cn can be realized as

λl = 2 cos

(
2lπ

n

)
= ωln + ω−ln , where l = 0, 1, . . . , n− 1.

The graph C2k is bipartite and each of its eigenvalue is repeated twice except the eigen-
values 2 and −2. For 1 6 l 6 2k−2 − 1, we see that

λl = 2 cos

(
2lπ

n

)
= 2 cos

(
2π − 2lπ

n

)
= λn−l.

Similarly, for 1 6 l 6 2k−2 − 1 we have

λl = −λn
2
−l = −λn

2
+l.

Now we show that the distinct positive eigenvalues of Cn are linearly independent over
Q. It is well known that the minimal polynomial of ωn over Q has degree φ(n), where
φ is Euler’s phi-function (see [16]). It is evident that cos

(
2lπ
n

)
is positive only when

0 6 2lπ
n

< π
2

or 3π
2
< 2lπ

n
< 2π. Consequently, the distinct positive eigenvalues are

λl where 0 6 l < n
4
. If the distinct positive eigenvalues are linearly dependent over Q

then ωn will be a root of a polynomial of degree at most m = 2k−1 − 1 as ω−1n = −ωmn .
But since 2k−1 − 1 < 2k−1 = φ(2k), we conclude that the distinct positive eigenvalues
λ0, λ1, . . . , λ2k−2−1 are linearly independent over Q.

For 1 6 l 6 2k−2 − 1, consider the following real numbers

αl =

{
0, if l is even
1
2
, if l is odd.

By Kronecker approximation theorem, for δ > 0 there exist q,m1, . . . ,m2k−2−1 ∈ Z such
that for l = 1, . . . , 2k−2 − 1

|qλl −ml − αl| <
δ

2π
, i.e, |2qπλl − 2mlπ − 2αlπ| < δ. (3)
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Since λ0, λ2k−2 , λ2k−1 and λ3·2k−2 are integers, considering t = 2qπ, we observe that for
each l = 0, 2k−2, 2k−1, 3 · 2k−2 there exists an integer l′ satisfying

|(λlt+ lπ)− 2l′π| < δ.

Also for each l = 1, . . . , 2k−2 − 1, considering t = 2qπ and using (3), we find

l′ =

{
2ml+l+1

2
, if l is odd

2ml+l
2

, if l is even.

such that
|(λlt+ lπ)− 2l′π| < δ.

Since the relation λl = −λn
2
−l = −λn

2
+l = λn−l on eigenvalues of the cycle C2k holds for

1 6 l 6 2k−2 − 1, considering t = 2qπ, we conclude that for each l = 0, . . . , n− 1, there is
an integer l′ such that

|(λlt+ lπ)− 2l′π| < δ.

Therefore by uniform continuity of the exponential function exp (−ix), it follows that for
ε > 0 there exists q ∈ Z so that t = 2qπ and |exp [−i (λlt+ lπ)]− 1| < ε. Finally, from
Equation (2), we observe that

∣∣H(t)0,n
2
− 1
∣∣ =

1

n

∣∣∣∣∣
n−1∑
l=0

(exp [−i (λlt+ lπ)]− 1)

∣∣∣∣∣ < ε.

This leads to the conclusion that Cn admits PGST whenever n = 2k, k > 3, with respect
to a sequence in 2πZ.

Let G and H be two simple graphs on the same vertex set V , and respective edge sets
E(G) and E(H). The edge union of G and H, denoted G ∪H, is defined on the vertex
set V whose edge set is E(G) ∪ E(H). Using Lemma 6, we find more general circulant
graphs allowing PGST. We present this as a theorem.

Theorem 7. Let n = 2k with k > 3. If D is a set of proper divisors of n not containing
1 then the circulant graph Cn ∪G(n,D) as well as its complement admit pretty good state
transfer with respect to the same sequence in 2πZ.

Proof. Notice that both graphs Cn and G(n,D) have the same vertex set Zn but the
edge sets are disjoint as 1 6∈ D. Suppose A and B are the adjacency matrices of Cn and
G(n,D), respectively. The adjacency matrix of Cn ∪ G(n,D) is therefore A + B. Since
the matrices A and B commute, the transition matrix of Cn ∪G(n,D) is

H(t) = HA(t)HB(t),
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where HA(t) and HB(t) are transition matrices of Cn and G(n,D), respectively. Suppose

B has the spectral decomposition
r∑
j=1

θjEj. Since the graph G(n,D) is integral, the values

θj’s are integers. This in turn implies that if t ∈ 2πZ then

HB(t) = exp (−itB) =
r∑
j=1

exp (−itθj)Ej = I.

Hence H(t) = HA(t) whenever t ∈ 2πZ. Finally, by Lemma 6, we see that Cn ∪G(n,D)
exhibits PGST.

It remains to show that complement of Cn∪G(n,D) also admits PGST. The adjacency
matrix of the complement is J − I − (A+ B). Since all circulant graphs are regular, the
matrix A+B commutes with J − I. If H ′(t) is the transition matrix of the complement
of Cn ∪G(n,D) then

H ′(t) = exp (−it (J − I))H(−t).

Clearly the eigenvalues of J − I are integers. Hence following the same argument as given
in the previous part, we have the desired result.

In Theorem 7, the graph Cn ∪G(n,D) can never be a gcd graph and so it cannot be
integral. The reason is that if Cn∪G(n,D) = G(n,D′) for some divisor set D′ then 1 ∈ D′.
Therefore {1, n−1}∪Sn(D) contains all odd numbers in Zn as {1, n−1}∪Sn (D) = Sn (D′) .
As n = 2k (k > 3), we see, for example, that {1, n− 1} ∪ Sn(D) can never contain 3.

Notice that if D is an empty set then Theorem 7 implies that complement of a cycle
C2k , (k > 3) also allows PGST. Observe that the complement of C4 is the disjoint
union of two paths of length two. Since a path of length two admits PST and PGST
is a generalization of PST, we conclude that the complement of C4 also admits PGST.
Another point to observe in the proof of Theorem 7 is that for a fixed n, there exists a
fixed sequence with respect to which all graphs of the form Cn ∪G(n,D) as well as their
complement exhibit PGST.

It turns out that there are some more graphs allowing PGST apart from the circulant
graphs we already mentioned. Before finding those graphs we introduce the following
notations. For k > 3, we denote

Gk =
{
C2k ∪G

(
2k, D

)
: D is a set of proper divisors of 2k and 1 6∈ D

}
.

Also the set of the complements of graphs in Gk is denoted by Ḡk. Further we set

G =
⋃
k>3

(
Gk ∪ Ḡk

)
.

Now we find the following corollaries regarding PGST in Cartesian products.

Corollary 8. Let G1, G2 ∈ Gk ∪ Ḡk. Then the Cartesian product G1�G2 as well as its
complement admit pretty good state transfer.
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Proof. In the proof of Theorem 7 we see that if G1, G2 ∈ Gk ∪ Ḡk then both G1 and G2

have PGST with respect to the same sequence {tm} in 2πZ. Suppose G1 admits PGST
between the vertices u1 and v1 and G2 admits PGST between the vertices u2 and v2. Also
assume that HG1(t) and HG2(t) are the transition matrices of G1 and G2, respectively.
Therefore there exist γ1, γ2 ∈ C with |γ1| = |γ2| = 1 such that

lim
m→∞

eTu1HG1(tm)ev1 = γ1 and lim
m→∞

eTu2HG2(tm)ev2 = γ2.

Using the property of transition matrix of a Cartesian product, we have

(eu1 ⊗ eu2)
T (HG1�G2 (tm)) (ev1 ⊗ ev2) = (eu1 ⊗ eu2)

T (HG1 (tm)⊗HG2 (tm)) (ev1 ⊗ ev2)
=

(
eTu1HG1 (tm) ev1

)
·
(
eTu2HG2 (tm) ev2

)
.

Now taking limits on both sides we find that G1�G2 admits PGST.
It remains to show that the complement of G1�G2 exhibits PGST. Notice that both

G1 and G2 are regular graphs and therefore G1�G2 is also a regular graph. Now as in
the proof of second part of Theorem 7, we have the desired conclusion.

More generally, following the proof of Corollary 8, we can deduce that if two graphs
have PGST with respect to the same sequence then their Cartesian product also admits
PGST with respect to that sequence. In the next result, we find another class of graphs
exhibiting PGST.

Corollary 9. Let a graph G1 be periodic at a vertex at time 2π. If G2 ∈ G then the
Cartesian product G1�G2 admits pretty good state transfer. If G1 is regular then the
complement of G1�G2 also exhibits pretty good state transfer.

Proof. Suppose G1 is periodic at a vertex u at time 2π. If HG1(t) is the transition matrix
of G1 then there exists γ1 ∈ C with |γ| = 1 such that eTuHG1(2π)eu = γ1. Hence for q ∈ Z,
we have eTuHG1(2qπ)eu = γq1 . Since G2 ∈ G there is a sequence {tm} in 2πZ with respect
to which G2 exhibits PGST between two vertices v and w, say. Since the unit circle is
compact there is a subsequence {t′m} of {tm} such that

{
eTuHG1(t

′
m)eu

}
is convergent. If

HG2(t) is the transition matrix of G2 then

(eu ⊗ ev)T (HG1�G2 (t′m)) (eu ⊗ ew) =
(
eTuHG1 (t′m) eu

)
·
(
eTvHG2 (t′m) ew

)
.

Now taking limits on both sides, we find that G1�G2 admits PGST.
In case G1 is regular then G1�G2 is also regular. Therefore the complement of G1�G2

also exhibits PGST.

Remark 10. If a graph is integral then it is periodic at 2π. So Cartesian product of an
integral graph and a graph in G allows PGST. This gives a large number of graphs having
PGST.

In Lemma 6, we found a class of cycles with PGST. Next we investigate PGST in the
remaining class of cycles. The only possibility we need to consider is the case when n
has an odd prime factor. We have used some of the techniques from [21] to prove the
following result.
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Lemma 11. Let m ∈ N and p be an odd prime such that n = mp. Then the cycle Cn
does not exhibit pretty good state transfer.

Proof. Notice that if m is an odd number then, by Lemma 5, we have the desired result.
Hereafter we assume that m is even. For an odd prime p we have the following identity
involving the primitive p-th root ωp of unity:

1 + ωp + ω2
p + . . .+ ωp−1p = 0.

This further yields

1 + 2

p−1
2∑

r=1

cos

(
2rπ

p

)
= 0. (4)

Multiplying both sides of (4) by 2 cos
(
2π
n

)
we obtain the following relation of eigenvalues

of Cn (as given in (1)).

λ1 +

p−1
2∑

r=1

λmr+1 +

p−1
2∑

r=1

λmr−1 = 0. (5)

Similarly multiplying (4) by 2 cos
(
4π
n

)
gives

λ2 +

p−1
2∑

r=1

λmr+2 +

p−1
2∑

r=1

λmr−2 = 0. (6)

Now from Equation (5) and (6) we get

(λ2 − λ1) +

p−1
2∑

r=1

(λmr+2 − λmr+1) +

p−1
2∑

r=1

(λmr−2 − λmr−1) = 0. (7)

If Cn admits PGST then, by Equation (2), we have a sequence of real numbers {tk} and
a complex number γ with |γ| = 1 such that

lim
k→∞

n−1∑
l=0

exp [−i (λltk + lπ)] = nγ.

Since the unit circle is compact, we have a subsequence {t′k} of {tk} such that

lim
k→∞

exp [−i (λlt
′
k + lπ)] = γ, for 0 6 l 6 n− 1.

This further implies that

lim
k→∞

exp [−i (λl+1 − λl) t′k] = −1.
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Denoting the term in left hand side of Equation (7) as L, we find that

lim
k→∞

exp (−iLt′k) = −1.

But this is not possible as L = 0. Hence there is no pretty good state transfer in Cn
whenever n has an odd prime factor.

In the next result we see that if p is an odd prime and m ∈ N, then the complement
of the cycle Cmp does not admit PGST. This gives an another class of circulant graphs
not allowing PGST. We provide this result as a corollary.

Corollary 12. Let m ∈ N such that n = mp for some odd prime p. Then the complement
of the cycle Cn does not exhibit pretty good state transfer.

Proof. For m = 1, by Lemma 5, we conclude that complement of Cn does not admit
PGST. So we only consider the case m > 2.

The cycles are regular graphs. Therefore the eigenvalues of the complement of Cn are
λ′0 = n− λ0− 1 and λ′l = −λl− 1, whenever 1 6 l 6 n− 1, corresponding to the same set
of eigenvectors as that of Cn. This means that

(
0, n

2

)
-th entry of the transition matrix

of the complement Cn can be obtained from Equation (2) by replacing the eigenvalues
λl with λ′l. If Cmp exhibits PGST then by the same argument as given in Lemma 11, we
have a sequence {t′k} of real numbers satisfying

lim
k→∞

exp [−i (λ′lt
′
k + lπ)] = γ, |γ| = 1, for 0 6 l 6 mp− 1. (8)

Let L′ = (λ′2 − λ′1) +

p−1
2∑

r=1

(
λ′mr+2 − λ′mr+1

)
+

p−1
2∑

r=1

(
λ′mr−2 − λ′mr−1

)
. Using Equation (8) and

proceeding as in the proof of Lemma 11, we find that

lim
k→∞

exp (−iL′t′k) = −1. (9)

Now using λ′0 = n − λ0 − 1 and λ′l = −λl − 1 for 1 6 l 6 n − 1, in Equation (5) and
Equation (6) , we obtain

L′ =

{
2p, if m = 2;

0, if m > 3.

Since L′ = 0 for m > 3, Equation (9) gives a contradiction.
Now consider the case m = 2. Putting l = p in Equation (8) , we get lim

k→∞
exp (−it′k) = −γ,

as λ′p = 1. Since L′ = 2p for m = 2, Equation (9) gives (−γ)2p = −1, i.e, γ2p = −1. Again
from Equation (8) , we get

lim
k→∞

exp [−i
(
λ′1 + λ′p−1

)
t′k] = −γ2

or, lim
k→∞

exp [−i(−2)t′k] = −γ2, as λ′1 + λ′p−1 = −2

or, (−γ)−2 = −γ2, as lim
k→∞

exp (−it′k) = −γ

or, γ4 = −1,
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which contradicts the fact that γ2p = −1 as p is odd. Hence we conclude that the
complement of Cmp does not exhibit PGST.

Combining Lemma 6 and Lemma 11, we get a complete characterization for PGST on
cycles. Similarly, combining Theorem 7 and Corollary 12, we obtain a complete charac-
terization for PGST on complement of cycles as well. These two characterizations, along
with Lemma 5, are combined as the following theorem.

Theorem 13. A cycle Cn as well as its complement Cn admit pretty good state transfer
if and only if n = 2k for k > 2, and it occurs between every pair of antipodal vertices.

3 Conclusions

In the past decade the study of PST in graphs has received considerable attention. Now
we know a handful of graphs exhibiting PST. It is always preferable to find graphs having
PST between vertices at a long distance. So far the best known graphs in this regard
are the hypercubes. In a hypercube with n vertices, we have PST between vertices at a
distance log2(n). It is thus desirable to have graphs allowing PST between vertices at a
distance of O(n). Most lucrative classes of graphs in this regard are the paths Pn and the
cycles Cn as both of them have large diameter. But it is well known that Pn does not
exhibit PST whenever n > 4 and Cn admits PST only when n = 4.

Meanwhile the study of PGST got some interest. In [21], the authors presented a
remarkable result which classifies the paths Pn admitting PGST between the end vertices.
This serves as an example where PGST takes place between vertices at a distance n. In
this article, we found that Cn exhibits PGST if and only if n is a power of two and PGST
occurs between any pair of antipodal vertices. This gives an another class of graphs having
PGST between vertices at a distance of O(n). We also found a good number of circulant
graphs allowing or not allowing PGST. Apart from the circulant graphs, we found some
other graphs allowing PGST.

We found that the circulant graph C2k ∪ G
(
2k, D

)
for k > 3, 1 6∈ D, admits PGST.

However, it is not known if there are any other circulant graphs allowing PGST. It is thus
desirable to classify which circulant graphs exhibit PGST. More generally, it is preferable
to have a characterization of PGST in Cayley graphs.
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de Janeiro, Brasil, 2001.

[25] H. Pal and B. Bhattacharjya. A class of gcd-graphs having Perfect State Transfer.
Electronic Notes in Discrete Mathematics, 53:319–329, 2016.

[26] H. Pal and B. Bhattacharjya. Perfect State Transfer on gcd-graphs. Linear and
Multilinear Algebra, doi:10.1080/03081087.2016.1267105.

[27] H. Pal and B. Bhattacharjya. Perfect State Transfer on NEPS of the Path on Three
Vertices. Discrete Mathematics, 339(2):831–838, 2016.

[28] H. Pal and B. Bhattacharjya. Pretty Good State Transfer on some NEPS. Discrete
Mathematics, 340(4):746–752, 2017.

[29] W. So. Integral Circulant Graphs. Discrete Mathematics, 306(1):153–158, 2006.

the electronic journal of combinatorics 24(2) (2017), #P2.23 13

http://dx.doi.org/10.1080/03081087.2016.1267105

	Introduction
	Pretty Good State Transfer on Circulant Graphs
	Conclusions

