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Abstract

The Novelli–Pak–Stoyanovskii algorithm is a sorting algorithm for Young tableaux
of a fixed shape that was originally devised to give a bijective proof of the hook-
length formula. We obtain new asymptotic results on the average case and worst
case complexity of this algorithm as the underlying shape tends to a fixed limit curve.
Furthermore, using the summation package Sigma we prove an exact formula for
the average case complexity when the underlying shape consists of only two rows.
We thereby answer questions posed by Krattenthaler and Müller.

1 Introduction

The Novelli–Pak–Stoyanovskii algorithm (NPS algorithm) transforms (sorts) an arbitrary
filling of a Young diagram λ of size n with the numbers {1, 2, . . . , n} into a standard Young
tableau of the shape λ. From a sorters point of view, the algorithm is best described as
a “two-dimensional insertion sort”. Following certain rules, at each step two entries of
adjacent cells are compared and possibly exchanged. The remarkable property of the
NPS algorithm is that, when applied to all possible fillings of a fixed diagram, it produces
every standard Young tableau of this shape equally often as an output. Thus it provides
a uniformly distributed random sampler for standard Young tableaux of a given shape.
The algorithm was originally defined by Novelli, Pak and Stoyanovskii in [11, 12] to give
a bijective proof of the hook-length formula due to Frame, Robinson and Thrall [4].

The study of the complexity of the NPS algorithm on a partition λ was initiated by
Krattenthaler and Müller. They define the average case complexity C(λ) and the worst
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case complexity W (λ) as the average, respectively the maximal number of exchanges
performed by the NPS algorithm applied to an arbitrary filling of shape λ. Their analysis
lead to multiple interesting conjectures that are the main motivation for the present paper.
Three of these conjectures, which were presented to us in private communication [7], are
listed below. The first two conjectures concern the asymptotic behavior of C(λ(n)) and
W (λ(n)), where (λ(n))n∈N is a sequence of partitions that approach a fixed limit curve γ
after a suitable rescaling. (This is made precise in Section 3.)

Conjecture 1. The order of magnitude of C(λ(n)) lies between
∣∣λ(n)∣∣3/2 and

∣∣λ(n)∣∣2 where∣∣λ(n)∣∣ denotes the size of λ(n).

Conjecture 2. The average case complexity C(λ(n)) is asymptotically one half of the
worst case complexity W (λ(n)).

The third conjecture that we are interested in is an exact formula for the average case
complexity when the partition λ = (λ1, λ2) consists of two parts.

Conjecture 3. The average case complexity of the NPS algorithm on λ = (λ1, λ2) is
given by1

C(λ) =
λ1(λ1 − 1)

4
+
λ2(λ2 − 3)

4
− 2

λ2∑
k=1

(
λ2
k

)
(−1)k(2k − 2)!

(λ1 − λ2 + 2)2k−1
.

In this paper we prove Conjectures 1 and 3. While we were unable to prove Conjec-
ture 2 in full generality, we do provide a proof for a large class of sequences of partitions,
adding further evidence to its validity. The article is structured as follows:

In Section 2 we review the combinatorics of the NPS algorithm.
In Sections 3–5 we engage sequences of partitions that converge under a balanced scal-

ing, that is, by a factor of
√
n in both dimensions. Section 3 contains mostly preparatory

results and includes a precise definition of convergence. Section 4 treats the worst case
complexity. We derive an exact combinatorial formula for W (λ) for any partition λ in
Proposition 4.1 by proving that a trivial upper bound is tight. Moreover Theorem 4.2
provides an asymptotic result on W (λ(n)) in the balanced case. Section 5 treats the av-
erage case complexity in the balanced case. Here we give an asymptotic lower bound for
C(λ(n)) in Theorem 5.3. It is a consequence of our results that both C(λ(n)) and W (λ(n))

are of order
∣∣λ(n)∣∣3/2, which is in accordance with Conjecture 1.

In Section 6 we turn to sequences that converge when subjected to an imbalanced
scaling, that is, by a factor of n1/p in one direction and a factor of n1/q in another.
Theorem 6.1 verifies both Conjectures 1 and 2 in the imbalanced setting. More precisely,
we show that C(λ(n)) and W (λ(n)) are both of order n(p+1)/p if p < q and of order n(q+1)/q

if p > q, and that the leading coefficient of the average case complexity is one half of the
leading coefficient of the worst case complexity.

1Here (x)k stands for the Pochhammer symbol which is 1 for k = 0 and which equals x(x+ 1) . . . (x+
k − 1) for positive integers k.
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In Section 7 we prove Conjecture 3 employing the summation package Sigma [16] in a
non-trivial fashion. Here we first provide an alternative representation C(λ) in terms of
five non-trivial double sums and show that this expression corresponds to the single sum
expression given in Conjecture 3. The underlying machinery is based on the summation
paradigms of creative telescoping, recurrence solving and the zero-recognition problem for
the class of (indefinite) nested sums over hypergeometric products. As a by-product we
provide alternative representations of C(λ) = C(λ1, λ2) that enable one to calculate C(λ)
efficiently if one keeps λ1 symbolic and specializes λ2 to a concrete value, or if one keeps
λ1 symbolic and specializes the distance λ1 − λ2 to a specific non-negative integer. In
particular, we discover a particularly nice formula for the special case λ1 = λ2.

2 The NPS algorithm

12 7 5 1
2 10 9 11
13 4
8
6
3

Figure 1: The partition λ = (4, 4, 2, 1, 1, 1) in English convention, and a tableau of shape λ.

In this section we recall some definitions concerning partitions and Young tableaux as
well as the needed facts about the NPS algorithm.

Let n ∈ N be a non-negative integer. A partition λ of n is a weakly decreasing sequence
λ1 > λ2 > . . . > λk > 0 of positive integers such that |λ| =

∑
λi = n. We call |λ| the

size of λ. The length l(λ) is the number of summands λi. We identify a partition with its
Young diagram λ = {(i, j) : 1 6 i 6 l(λ), 1 6 j 6 λi}. The elements (i, j) are called the
cells of the partition λ.

The conjugate partition λ′ of λ is given by the Young diagram {(j, i) : (i, j) ∈ λ}.
Visually we imagine a partition as a left justified array of n boxes, with λi boxes in the
i-th row counting from top to bottom as in Figure 1. Thus λ′ is obtained from λ by a flip
along the main diagonal.

Define the arm of a cell armλ(i, j) = λi − j as the number of cells in the same row as
(i, j) and strictly to the right of (i, j). Define the leg of a cell legλ(i, j) = λ′j − i as the
number of cells in the same column as (i, j) and strictly below (i, j). Furthermore, define
the hook length of a cell as hλ(i, j) = λi + λ′j − i− j + 1. We call a cell (i, j) a corner of
λ if hλ(i, j) = 1.

An integer filling of a partition is a map T : λ → Z assigning an entry T (i, j) to
each cell (i, j). The partition λ is called the shape of T . A tableau is a bijection T :
λ → {1, 2, . . . , n}. A standard Young tableau (SYT) is a tableau that increases along
rows from left to right as well as down columns, that is, T (i, j) 6 T (i′, j′) whenever
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Figure 2: The NPS algorithm in action.

i 6 i′ and j 6 j′. A hook tableau is a map H : λ → Z such that for each cell (i, j) we
have − legλ(i, j) 6 H(i, j) 6 armλ(i, j). Note that somewhat counter-intuitively a hook
tableau is not a tableau. We denote the set of all tableaux, standard Young tableaux and
hook tableaux of shape λ by T(λ), SYT(λ) and H(λ), respectively.

The celebrated hook-length formula [4] determines the number of standard Young
tableaux of a fixed shape:

# SYT(λ) =
n!∏

(i,j)∈λ

hλ(i, j)
. (2.1)

Since # T(λ) = n! and # H(λ) =
∏

(i,j)∈λ hλ(i, j) it is possible to prove (2.1) bijectively
by constructing a bijection

Φ : T(λ)→ SYT(λ)× H(λ).

Such a construction was found by Novelli, Pak and Stoyanovskii [12, 11]. We are now
going to describe the map Φ. See Figure 2 for an example.

First note that given a permutation σ ∈ Sn and a tableau T ∈ T(λ), we obtain a
new tableau T ′ = σ ◦ T by setting T ′(i, j) = σ(T (i, j)). In particular if σ = (k,m) is a
transposition, then (k,m) ◦ T arises from T by exchanging the two entries k and m.

Impose the reverse lexicographic order � on the cells of λ, that is, (i, j) � (i′, j′) if
j < j′ or if j = j′ and i 6 i′. Let (i1, j1) � (i2, j2) � · · · � (in, jn) be the cells of λ in
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decreasing order and set kr = T (ir, jr). Moreover, set T0 = T and let H0 be the hook
tableau with all entries equal to zero.

Given a pair tableau (Tr−1, Hr−1) we first construct the tableau Tr from Tr−1 as follows:

E0 Set T = Tr−1.

E1 Set (i, j) = T−1(kr).

E2 If (i, j) is a corner of λ, then return Tr = T .

E3 Otherwise set m = minT−1(λ ∩ {(i+ 1, j), (i, j + 1)}).

E4 If kr < m then return Tr = T .

E5 Otherwise m < kr. In this case exchange the entries m and kr, that is, set T =
(kr,m) ◦ T , and return to step E1.

Note that Tr is obtained from Tr−1 by applying a jeu-de-taquin-like move to the entry kr.
Next we construct Hr from Hr−1 as follows:

H0 Set H = Hr−1, (i, j) = T−1r−1(kr) and (i′, j′) = T−1r (kr).

H1 For each s = i, . . . , i′ − 1 set H(s, j) = Hr−1(s+ 1, j)− 1.

H2 Set H(i′, j) = j′ − j.

H3 Return Hr = H.

These rules give rise to a sequence (T0, H0), (T1, H1), . . . , (Tn, Hn) of pairs of a tableau
and a hook tableau. We define Φ(T ) = (Tn, Hn). While it is not too difficult to show that
Tn is a standard Young tableau and that Hn is a hook tableau, it takes considerably more
effort to prove that Φ is a bijection. For details we refer to [6, 11, 15].

Given a tableau T we denote by n(T ) the number of exchanges performed during
the application of the NPS algorithm, that is, the number of times step E5 is visited
during the construction of all tableaux T1, . . . , Tn. The average case complexity of the
NPS algorithm is now defined as

C(λ) =
1

n!

∑
T∈T(λ)

n(T ).

The worst case complexity is defined as

W (λ) = max
T∈T(λ)

n(T ).

We remark that due to the chosen order of the cells of λ the defined algorithm is also
called the column-wise NPS algorithm. In principle, other orders can be chosen and some
will result in bijections. Another result anticipated by Krattenthaler and Müller is that
the average case complexities of the column-wise and the row-wise NPS algorithms on a
fixed shape λ are the same. In other words C(λ) = C(λ′). See [10] for a proof of this
result and more details in this direction.
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Figure 3: The partition λ = (4, 4, 2, 1, 1, 1) depicted in Russian convention.

3 Convergence and hook coordinates

We shall work with the following coordinate system corresponding to a rotation by π/2
and a rescaling by

√
n

u = u(x, y) =

√
n√
2

(x+ y), v = v(x, y) =

√
n√
2

(y − x),

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ = n. (3.1)

Given a partition λ of n define

Dλ =
{

(x, y) ∈ R2 : 0 < v, 0 < u 6 λdve or 0 6 u, 0 6 v, uv = 0
}
. (3.2)

We define the boundary function γ : R→ R of λ via

γ(x) = sup{y ∈ R : (x, y) ∈ Dλ}. (3.3)

The set Dλ and function γ describe the (rescaled) partition λ in the so-called Russian
convention.

Let (λ(n))n∈N be a sequence of partitions, such that λ(n) is a partition of n and has the
boundary function γn. Denote by Γ the set of all 1-Lipschitz functions γ : R → R such
that there exists an interval (a, b) with γ(x) = |x| for all x /∈ (a, b). Moreover, denote by
Γ1 the set of all functions γ ∈ Γ such that∫

R
γ(x)− |x| dx = 1.

Clearly γn ∈ Γ1 for all n ∈ N. We say the sequence λ(n) converges uniformly to a limit
curve γ ∈ Γ1 if

lim
n→∞

sup
x∈R
|γ(x)− γn(x)| = 0

and there exists a uniform interval (a, b) such that γn(x) = |x| for all x /∈ (a, b) and all
n ∈ N.
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For any γ ∈ Γ set

Dγ =
{

(x, y) ∈ R2 : |x| 6 y 6 γ(x)
}
,

and let (x, y) be an interior point of Dγ. We define three functions via

aγ(x, y) =
√

2 sup{t ∈ R : (x+ t, y + t) ∈ Dγ},
`γ(x, y) =

√
2 sup{t ∈ R : (x− t, y + t) ∈ Dγ},

dγ(x, y) =
√

2 sup{s+ t : s, t > 0, (x+ s− t, y + s+ t) ∈ Dγ}.

Geometrically aγ(x, y) is the distance from (x, y) to the curve γ in u-direction, `γ(x, y) is
the distance from (x, y) to the curve γ in v-direction, and dγ(x, y) is half of the maximal
perimeter among all rectangles confined in Dγ with sides parallel to the u- and v-axes,
whose lower corner is (x, y). Extend aγ, `γ and dγ from the interior of Dγ to R2 by
assigning zero to all other points.

With regard to the subsequent sections we need to give the following question some
thought. Suppose γ, η ∈ Γ are close with respect to the supremum norm, then what can
be said about the relationship between aγ and aη on their common domain Dγ ∩Dη? The
following example demonstrates that ||aγ − aη||∞ does not need to be small. Let

γ(x) =


√

2n+ x if − n√
2
6 x 6 − 1√

2

(
n− 1

n

)
,

√
2
n
− x if − 1√

2

(
n− 1

n

)
6 x 6 1

n
√
2
,

|x| else,

and η(x) = γ(−x).

Then ||γ − η||∞ =
√
2
n

but ||aγ − aη||∞ = ||`γ − `η||∞ = n− 1
n
.

We show, however, in Lemma 3.2 that when γ and η agree outside of a fixed interval
(a, b), then the exceptional set of points on which aγ and aη diverge is small when ||γ−η||∞
is small. The proof of Lemma 3.2 is based on a geometric argument. In Lemma 3.3 and
Lemma 3.4 we deduce analogous results for `γ and dγ, which causes little effort once
Lemma 3.2 is established.

For a (measurable) subset A of Rn, let |A| denote the Lebesgue measure of A.

Lemma 3.1. Let γ, η ∈ Γ such that γ(x) = |x| = η(x) for all x /∈ (a, b). Then the
Lebesgue measure of the symmetric difference of the sets Dγ and Dη is bounded by∣∣(Dγ −Dη) ∪ (Dη −Dγ)

∣∣ < (b− a)||γ − η||∞.

Proof. It follows immediately from the definition of Dγ that

∣∣(Dγ −Dη) ∪ (Dη −Dγ)
∣∣ =

∫ b

a

|γ(x)− η(x)| dx 6 (b− a)||γ − η||∞.

The inequality is strict since γ and η agree at a and b and are continuous.
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Lemma 3.2. Let ε > 0 and (a, b) be an interval. Then there exists a constant K such
that for all functions γ, η ∈ Γ with γ(x) = |x| = η(x) for all x /∈ (a, b) we have∣∣{(x, y) ∈ Dγ ∩Dη : |aγ(x, y)− aη(x, y)| > ε

}∣∣ 6 K

ε
||γ − η||∞.

Proof. Let ||γ − η||∞ = δ.
We first prove the claim under the assumption that γ(x) 6 η(x) for all x ∈ (a, b). To

this end let k =
⌈
b−a
δ

⌉
and x0, x1, . . . , xk be a subdivision of the interval [a, b] such that

x0 = a, xk = b and xi − xi−1 = b−a
k

6 δ. Furthermore, subdivide the curve of γ into
segments σ1, . . . , σk such that

σi =
{

(x, γ(x)) : x ∈ [xi−1, xi]
}

for i ∈ {1, . . . , k}.

Define

τi =
{

(x, γ(x) + δ) : x ∈ [xi−1, xi]
}

for i ∈ {1 . . . , k},

and add τ0 = {(x, a+ δ) : x ∈ [a− δ, a]} and τk+1 = {(x, b+ δ) : x ∈ [b, b+ δ]}.
A crucial observation is that γ(x) 6 η(x) 6 τ(x) for all x ∈ R and consequently

aγ(x, y) 6 aη(x, y) 6 aτ (x, y) for all (x, y) ∈ Dγ. Here τ ∈ Γ denotes the concatenation
of the segments τi extended by τ(x) = |x| for all x /∈ (a− δ, b+ δ).

Let P : R2 → R2 be the orthogonal projection onto the line {(x,−x) : x ∈ R}. Set
P (σi) = {P (x, y) : (x, y) ∈ σi} and define P (τi) analogously. If (x, y), (x′, y′) are points
in Dγ such that P (x, y) = P (x′, y′) then it follows that aγ(x, y) − aη(x, y) = aγ(x

′, y′) −
aη(x

′, y′). Thus we should investigate the set of points {(x, |x|) : a 6 x 6 0}. Note that
the sets P (σi) cover the set {(x, |x|) : a 6 x 6 0} in such a way that P (σi) ∩ P (σi+1)
consists of a single point, and P (σi)∩P (σj) is empty unless all sets P (σi+1), . . . , P (σj−1)
collapse to a single point.

Suppose that (x, |x|) ∈ P (σi) with |aγ(x, |x|) − aη(x, |x|)| > ε then (x, |x|) ∈ P (σi) ∩
P (τi+m) for some m with

m
√

2δ > ε. (3.4)

In this case observe that ∣∣∣∣∣
m⋃
j=0

P (σi+j)

∣∣∣∣∣ 6 5√
2
δ. (3.5)

Choose sequences (i1, i2, . . . ) and (m1,m2, . . . ) as follows. Let i1 be the minimal i ∈
{1, . . . , k} such that for some (x, |x|) ∈ P (σi) we have |aγ(x, |x|)− aη(x, |x|)| > ε. Given
ij let mj be maximal such that P (σij) ∩ P (τij+mj) 6= ∅. Given ij and mj, if there is an
i ∈ {ij + mj + 1, . . . , k} such that |aγ(x, |x|) − aη(x, |x|)| > ε for some (x, |x|) ∈ P (σi),
then let ij+1 be the minimal i with this property. Otherwise terminate both sequences.
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Clearly the sequence (i1, i2, . . . , ir) is finite. Because of (3.4) we have mj > ε
δ
√
2

for all
j, and hence

(j − 1)
ε

δ
√

2
< ij 6 k <

b− a+ 1

δ
.

In particular,

r <

√
2(b− a+ 1)

ε
+ 1. (3.6)

By definition of the sequences (ij)j and (mj)j for every point (x, y) ∈ Dγ with |aγ(x, y)−
aη(x, y)| > ε the projection P (x, y) is contained in P (σij) ∪ · · · ∪ P (σij+mj) for some
j ∈ {1, . . . , r}. But now, using (3.5) and (3.6) we obtain∣∣{(x, y) : |aγ(x, y)− aη(x, y)| > ε

}∣∣
6
∣∣{(x, y) : P (x, y) ∈ P (σij) ∪ · · · ∪ P (σij+mj) for some 1 6 j 6 r

}∣∣
< rb
√

2
5√
2
δ

<
1 + 5b(b− a+ 1)

√
2

ε
δ. (3.7)

Now drop the condition γ 6 η, and assume ||γ−η||∞ < δ
2
. Consider the function ρ defined

by ρ(x) = max{γ(x) − δ
2
, |x|}. Clearly ρ 6 γ, ||ρ − γ||∞ < δ and ρ 6 η, ||ρ − η||∞ < δ.

Thus, appealing to (3.7) twice, the inclusion{
(x, y) : |aγ(x, y)− aη(x, y)| > ε

}
⊆
{

(x, y) : |aρ(x, y)− aγ(x, y)| > ε
}
∪
{

(x, y) : |aρ(x, y)− aη(x, y)| > ε
}

∪ (Dρ −Dγ) ∪ (Dγ −Dρ) ∪ (Dρ −Dη) ∪ (Dη −Dρ)

holds and Lemma 3.1 completes the proof.

The analogous result on `γ follows easily.

Lemma 3.3. Let ε > 0 and (a, b) be an interval. Then there exists a constant K such
that for all γ, η ∈ Γ with γ(x) = |x| = η(x) for all x /∈ (a, b) we have∣∣{(x, y) ∈ Dγ ∩Dη : |`γ(x, y)− `η(x, y)| > ε

}∣∣ < K

ε
||γ − η||∞.

Proof. The claim follows directly from Lemma 3.2 and the symmetry

aγ(x, y) = `ρ(−x, y),

where ρ ∈ Γ is the function defined by ρ(x) = γ(−x).

Finally there is a similar result for the function dγ.
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Lemma 3.4. Let ε > 0 and (a, b) be an interval. Then there exists a constant K such
that for all γ, η ∈ Γ with γ(x) = |x| = η(x) for all x /∈ (a, b) we have∣∣{(x, y) ∈ Dγ ∩Dη : |dγ(x, y)− dη(x, y)| > ε

}∣∣ < K

ε
||γ − η||∞.

Proof. The claim follows from Lemma 3.2 and Lemma 3.3 and the estimation

|dγ(x, y)− dη(x, y)| 6 |aγ(x, y)− aη(x, y)|+ |`γ(x, y)− `η(x, y)|+
√

2||γ − η||∞.

s t

•

Figure 4: The hook coordinates (s, t) of an interior point (x, y) ∈ Dλ.

We conclude this section by introducing the so-called hook coordinates, which were
named (to the best of the authors’ knowledge) by Dan Romik, and appear naturally in
the study of limit shapes of partitions, see for example [8]. Namely, we set

s = x− `γ(x, y)√
2

, t = x+
aγ(x, y)√

2
. (3.8)

Note that

s+ γ(s) = x+ y, t− γ(t) = x− y,

which yields

x =
1

2
(s+ t+ γ(s)− γ(t)), y =

1

2
(s− t+ γ(s) + γ(t)),

and ∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ =
1

2
(1 + γ′(s))(1− γ′(t)),

where the derivative γ′ is defined almost everywhere since γ is 1-Lipschitz.
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Figure 5: Three tableaux that exhibit the worst case complexity of the NPS algorithm on their respective
shapes.

4 Worst case complexity

In this section we analyze the asymptotic behavior of the worst case complexity of the
NPS algorithm. We first demonstrate in Proposition 4.1 that a trivial combinatorial upper
bound for the worst case complexity of the NPS algorithm on a fixed shape W (λ) is in
fact tight. Furthermore, Theorem 4.2 provides the first order asymptotics of W (λ(n)),
where (λ(n))n∈N converges uniformly, in terms of the limit curve γ.

For a cell (i, j) ∈ λ denote by

w(i, j) = max
{
i′ − i+ j′ − j : (i′, j′) ∈ λ, i 6 i′ and j 6 j′

}
(4.1)

the maximal distance of the cell (i, j) to a cell (i′, j′) ∈ λ South-East of (i, j). Let W (λ)
denote the worst case complexity of the NPS algorithm on λ. Clearly

W (λ) 6
∑

(i,j)∈λ

w(i, j).

We first show that this upper bound is tight.

Proposition 4.1. Let λ be a partition. Then

W (λ) =
∑

(i,j)∈λ

w(i, j) (4.2)

Proof. We construct an explicit tableau T ∈ T(λ) such that the number of exchanges
n(T ) equals the right hand side of (4.2).

If λ is a rectangle, that is, λ has only one corner, then let (i1, j1) � · · · � (in, jn) be
the cells of λ. Define the tableau T by setting T (ir, jr) = r. During the application of the
NPS algorithm to T every entry is moved to the corner of λ and (4.2) holds.

If λ is of general form we construct T and a sequence of cells (i1, j1), . . . , (il, jl) as
follows. Set (i1, j1) = (1, 1). Given (ir, jr) let

Xr =
{

(i, j) ∈ λ : ir 6 i, jr 6 j, w(ir, jr) = i− ir + j − jr
}

denote the set of corners South-East of (ir, jr) with maximal distance to (ir, jr). Fix any
corner (i′r, j

′
r) ∈ Xr and let

Rr =
{

(i, j) ∈ λ : ir 6 i 6 i′r, jr 6 j 6 j′r
}
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denote the rectangle inside λ that contains (ir, jr) and (i′r, j
′
r). Now define T on Rr by

assigning the numbers

{( r−1∑
k=1

(i′k − ik + 1)(j′k − jk + 1)
)

+ 1, . . . ,
r∑

k=1

(i′k − ik + 1)(j′k − jk + 1)
}

to the cells in the rectangle Rr using the reverse lexicographic order as above. If T is
not defined on all cells of λ then let (ir+1, jr+1) be a cell of λ with maximal hook-length
among all cells for which T is not yet defined. Compare to Figure 5.

By construction each entry T (i, j) of a cell (i, j) ∈ Rr drops to the corner (i′r, j
′
r) of

the rectangle Rr during the application of the NPS algorithm. Thus n(T ) is given by the
right hand side of (4.2).

Approximating the right hand side of (4.1) by an integral and making use of the
preparatory results in Section 3 we are able to draw conclusions on the asymptotics of
the worst case complexity.

Theorem 4.2. Let (λ(n))n∈N be a sequence of partitions converging uniformly to the limit
shape γ ∈ Γ1. Then

W (λ(n)) = n3/2

∫∫
Dγ

dγ(x, y) dx dy + o(n3/2) as n→∞. (4.3)

Before we turn to the proof let us state some remarks.
First, let us argue the existence of the integral in (4.3). Since dγ(x, y) is bounded and

Dγ is the union of a compact set and a null set, the integral is proper. Furthermore, the

function dγ(x, y) is decreasing in y and hence integrable. The function
∫ γ(x)
|x| dγ(x, y) dy is

even continuous in x.
Secondly, since the right hand side of (4.3) is a priori not straight forward to compute,

we offer the estimation∫∫
Dγ

dγ(x, y) dx dy 6

√
2

2

∫ ∞
−∞

∫ ∞
s

(t− s)
(
1 + γ′(s)

)(
1− γ′(t)

)
dt ds,

which is obtained from dγ(x, y) 6 aγ(x, y)+`γ(x, y) by a substitution of hook coordinates.

Proof of Theorem 4.2. First rewrite W (λ(n)) as an integral as follows: A cell (i, j) ∈ λ(n)
corresponds to the square

Z(i, j) =
{

(x, y) : i− 1 6 v 6 i, j − 1 6 u 6 j
}
⊆ Dn.

Let (x, y) be an interior point of Z(i, j). Then

√
ndγn(x, y) = w(i, j) + i+ j − u− v.
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Hence

n3/2

∫∫
Z(i,j)

dγn(x, y) dx dy = n

∫∫
Z(i,j)

w(i, j) + i+ j − u− v dx dy

=

∫ i

i−1

∫ j

j−1
w(i, j) + i+ j − u− v du dv

= w(i, j) + 1

and ∑
(i,j)∈λ(n)

w(i, j) = −n+ n3/2

∫∫
Dn

dγn(x, y) dx dy.

Now fix ε > 0. It suffices to show that∣∣∣∣∣
∫∫

Dγ

dγ(x, y) dx dy −
∫∫

Dn

dγn dx dy

∣∣∣∣∣ < ε

for all sufficiently large n. In order to do so choose an interval (a, b) such that γn(x) = |x|
for all x /∈ (a, b) and all n ∈ N. It follows that also γ(x) = |x| outside of (a, b). By
Lemma 3.1 the Lebesgue measure of the symmetric difference of the sets Dγ and Dn

tends to zero as n tends to infinity. Since both dγ and dγn are bounded by the constant
(b− a)

√
2, ∫∫

Dn−Dγ
dγn(x, y) dx dy +

∫∫
Dγ−Dn

dγ(x, y) dx dy < ε

when ||γ − γn||∞ < ε/((b− a)2
√

2). On the other hand by Lemma 3.4 there exist sets A
and B and a constant K such that Dγ ∩Dn = A ∪ B, |dγ(x, y)− dγn(x, y)| < ε/2 for all
(x, y) ∈ A and |B| < K||γ − γn||∞/ε. Hence,∫∫

Dγ∩Dn
|dγ(x, y)− dγn(x, y)| dy dx <

ε

2
+ (b− a)

√
2
K||γ − γn||∞

ε
< ε

if ||γ − γn||∞ is sufficiently small.

5 Average case complexity

The main result of this section is an asymptotic lower bound for the average case complex-
ity of the NPS algorithm, which we obtain in three steps. Proposition 5.1 obtains a com-
binatorial bound for the average case complexity of the NPS algorithm on a fixed shape
C(λ). Proposition 5.2 approximates this combinatorial bound by an integral. Finally,
in Theorem 5.3 we derive an asymptotic bound for C(λ(n)), where (λ(n))n∈N converges
uniformly, in terms of the limit curve γ.

Given a hook tableau H of shape λ denote

|H| =
∑

(i,j)∈λ

|H(i, j)| .
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Proposition 5.1. Let λ be a partition of n, and H be a hook tableau of shape λ chosen
uniformly at random. Then

C(λ) > E(|H|).

Proof. During the application of the NPS algorithm to a tableau T of shape λ a hook
tableau of the same shape is built from the zero tableau, that is, the hook tableau with
|H| = 0. This is done by applying the following transformations. Suppose the entry of the
cell (i, j) drops to the cell (i′, j′). Then H(s, j) is set to H(s+1, j)−1 for s = i, . . . , i′−1,
and H(i′, j) is set to j′− j. Thereby |H| is increased by no more than i′− i+ j′− j which
is exactly the number of performed exchanges. Since the NPS algorithm produces each
hook tableau equally often as T ranges over all possible tableaux of shape λ, we conclude
the following lower bound on the average number of exchanges

C(λ) >
fλ

n!

∑
H

|H|, (5.1)

where the sum is taken over all hook tableaux of shape λ. The number of hook tableaux
is given by the hook product ∏

(i,j)∈λ

hλ(i, j).

By use of the hook-length formula, the right hand side of (5.1) is just the expected value
of the random variable |H|.

In a next step we replace the combinatorial lower bound C(λ) > E(|H|) by an integral.

Proposition 5.2. Let λ be a partition of n with boundary γ ∈ Γ1. Then

C(λ) >
n3/2

2

∫∫
Dγ

aγ(x, y)2 + `γ(x, y)2

aγ(x, y) + `γ(x, y) + 1√
n

dx dy +
n

2
.

Proof. Recall that C(λ) > E(|H|), where H ranges over the hook tableaux of shape λ by
Proposition 5.1. By linearity

E(|H|) =
∑

(i,j)∈λ

E(|H(i, j)|)

=
∑

(i,j)∈λ

arm(i, j)2 + arm(i, j) + leg(i, j)2 + leg(i, j)

2h(i, j)

=

( ∑
(i,j)∈λ

arm(i, j)2 + leg(i, j)2

2h(i, j)

)
+
n

2
−
∑

(i,j)∈λ

1

2h(i, j)
.

For any cell (i, j) ∈ λ let Z(i, j) = {(x, y) : i− 1 6 v 6 i, j − 1 6 u 6 j} as in the proof
of Theorem 4.2. If (x, y) is an interior point of Z(i, j) then

aγ(x, y)
√
n = arm(i, j) + j − u and `γ(x, y)

√
n = leg(i, j) + i− v.
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Throughout the remainder of this proof denote aij = arm(i, j), lij = leg(i, j), hij = h(i, j),
w = i− v and z = j − u. A straightforward computation yields

n√
n

aγ(x, y)2

aγ(x, y) + `γ(x, y) + 1√
n

−
a2ij
hij

=
(aij + z)2

hij + w + z
−
a2ij
hij

=
(aij + lij + 1)(a2ij + 2aijz + z2)− (aij + lij + w + z + 1)a2ij

hij(hij + w + z)

=
a2ijz + aijz

2 + 2aijlijz + lijz
2 + 2aijz + z2 − a2ijw

hij(hij + w + z)

=
a2ij
hij

z − w
hij + w + z

+
aijlij + aij

hij

2z

hij + w + z
+
aij + lij + 1

hij

z2

hij + w + z
.

Thus

a2ij
hij

= n

∫∫
Z(i,j)

a2ij
hij

dx dy

= n3/2

∫∫
Z(i,j)

aγ(x, y)2

aγ(x, y) + `γ(x, y) + 1√
n

dx dy

− n
a2ij
hij

∫∫
Z(i,j)

w − z
hij + w + z

dx dy (5.2)

− naijlij + aij
h2ij

∫∫
Z(i,j)

2hijz

hij + w + z
dx dy (5.3)

− n
∫∫

Z(i,j)

z2

hij + w + z
dx dy. (5.4)

The error term (5.2) vanishes by symmetry in z and w. We have

n

∫∫
Z(i,j)

w − z
hij + w + z

dy dx =

∫ 1

0

∫ 1

0

w − z
hij + w + z

dz dw = 0.

The other two error terms, (5.3) and (5.4), could be neglected as the integrands are non-
negative. However, there is no harm in showing that they are also small. This can be
seen easily since the integrands converge uniformly to 2z and 0 respectively. Thus

lim
m→∞

∫ 1

0

∫ 1

0

2mz

m+ w + z
dz dw = 1, lim

m→∞

∫ 1

0

∫ 1

0

z2

m+ w + z
dz dw = 0.

In particular, the integrals in (5.3) and (5.4) are uniformly bounded no matter how large
hij is.

Approximating `2ij/hij by an analogous integral and summing over all cells of λ yields
the claim.

Using the preparatory results of Section 3, we obtain the main theorem of this section.
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Theorem 5.3. Let (λ(n))n∈N be a sequence of partitions converging uniformly to the limit
curve γ ∈ Γ1. Then

C(λ(n)) >

√
2n3/2

8

∫ ∞
−∞

∫ ∞
s

(
(t− s) +

(γ(t)− γ(s))2

t− s

)(
1 + γ′(s)

)(
1− γ′(t)

)
dt ds

+ o(n3/2) (5.5)

as n→∞.

Before we give a proof let us argue that the right hand side of (5.5) is well-defined.
First note that the integral is really taken over a compact set. Suppose that γ(x) = |x| for
all x /∈ (a, b) then γ′(s) = −1 for all s < a and γ′(t) = 1 for all t > b, and the integrand
vanishes. Because γ is Lipschitz continuous, its derivative exists almost everywhere, is
Lebesgue integrable and fulfils

∫ b
a
γ′(s) ds = γ(b) − γ(a). Thus the limit of the quotient

(γ(t)− γ(s))/(t− s) as t tends to s exists almost everywhere. The integrand is therefore
essentially bounded and integrable.

Proof of Theorem 5.3. Let γn ∈ Γ1 be the boundary function of λ(n) and choose an interval
(a, b) such that γn(x) = |x| for all x /∈ (a, b). We begin by noting that∣∣∣∣∣
∫∫

Dγn

aγn(x, y)2 + `γn(x, y)2

aγn(x, y) + `γn(x, y) + 1√
n

dx dy −
∫∫

Dγ

aγ(x, y)2 + `γ(x, y)2

aγ(x, y) + `γ(x, y)
dx dy

∣∣∣∣∣→ 0 (5.6)

as n tends to infinity. To see this, first note that the functions aγn , aγ, `γn and `γ are all
non-negative and bounded by (b−a)

√
2. Thus also the integrands in (5.6) are non-negative

and bounded. By Lemma 3.1 it suffices to consider the common domain Dγn ∩ Dγ. It
then follows from the Lemmata 3.2 and 3.3 that

C(λ(n)) >
n3/2

2

∫∫
Dγ

aγ(x, y)2 + `γ(x, y)2

aγ(x, y) + `γ(x, y)
dx dy + o(n3/2) as n→∞. (5.7)

To finish the proof we use our hook coordinates. Substitution gives

1

2

∫∫
Dγ

a2γ(x, y) + `γ(x, y)2

aγ(x, y) + `γ(x, y)
dx dy

=
1

2

∫∫
Dγ

2(t− x)2 + 2(x− s)2√
2(t− s)

dx dy

=

√
2

2

∫∫
Dγ

(
t− s+t+γ(s)−γ(t)

2

)2
+
(
s+t+γ(s)−γ(t)

2
− s
)2

t− s
dx dy

=

√
2

8

∫∫
Dγ

(
(t− s) + (γ(t)− γ(s))

)2
+
(
(t− s)− (γ(t)− γ(s))

)2
t− s

dx dy

=

√
2

8

∫∫
Dγ

2(t− s)2 + 2(γ(t)− γ(s))2

t− s
dx dy
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=

√
2

8

∫ ∞
−∞

∫ ∞
s

(
(t− s) +

(γ(t)− γ(s))2

t− s

)
(1 + γ′(s))(1− γ′(t)) dt ds.

Perhaps the only step that needs comment is the last one. Each pair (s, t) with s 6 t
gives rise to a unique point (x, y) ∈ Dγ unless γ′(s) = −1 or γ′(t) = 1. This follows from
the Lipschitz property of γ. However, the integrand vanishes when either of the two cases
γ′(s) = −1 or γ′(t) = 1 occurs. Hence, we can relax the limits of the integral without
altering its evaluation.

6 Imbalanced scaling

Some types of partitions, for example partitions with a fixed number of parts, do not
converge to a limit curve γ ∈ Γ1 in the sense of Section 3. However, they might converge
if an alternative scaling, that is, not by a factor of

√
n in both u- and v-direction, is

chosen. In this section we study the asymptotic behaviour of the average case and worst
case complexity of the NPS algorithm when the partitions under consideration converge
after an imbalanced scaling.

For p, q ∈ Q ∪ {∞} such that p, q > 0 and

1

p
+

1

q
= 1

consider the coordinates given by

u = u(x, y) =
n1/p

√
2

(x+ y), v = v(x, y) =
n1/q

√
2

(y − x),

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ = n. (6.1)

To each partition λ of n we associate a set Dλ and a p, q-boundary function γ, defined
exactly as in (3.2) and (3.3) but with u and v now given by (6.1).

Let (λ(n))n∈N be a sequence of partitions such that λ(n) is a partition of n and has
p, q-boundary γn. We say (λ(n))n∈N converges p, q-uniformly to the limit curve γ ∈ Γ1 if

lim
n→∞

sup
x∈R
|γ(x)− γn(x)| = 0

and there exists an interval (a, b) such that γn(x) = |x| for all x /∈ (a, b) and all n ∈ N.

The main result of this section provides the first order asymptotics of C(λ(n)) and
W (λ(n)), where (λ(n))n∈N converges p, q-uniformly, in terms of the limit curve γ. They
turn out to be of order n1+max{1/p,1/q} as n tends to infinity.

Theorem 6.1. Let (λ(n))n∈N be a sequence of partitions converging p, q-uniformly to the
limit curve γ ∈ Γ1. If p < q then

C(λ(n)) = n(p+1)/p I1
2

+ o(n(p+1)/p) as n→∞, (6.2)
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and

W (λ(n)) = n(p+1)/pI1 + o(n(p+1)/p) as n→∞, (6.3)

where

I1 =

∫∫
Dγ

aγ(x, y) dx dy =

√
2

4

∫ ∞
−∞

∫ ∞
s

(t− s+ γ(t)− γ(s))(1 + γ′(s))(1− γ′(t)) dt ds.

On the other hand, if p > q then

C(λ(n)) = n(p+1)/p I2
2

+ o(n(p+1)/p) as n→∞, (6.4)

and

W (λ(n)) = n(p+1)/pI2 + o(n(p+1)/p) as n→∞, (6.5)

where

I2 =

∫∫
Dγ

`γ(x, y) dx dy =

√
2

4

∫ ∞
−∞

∫ ∞
s

(t− s− γ(t) + γ(s))(1 + γ′(s))(1− γ′(t)) dt ds.

Proof. Suppose that p < q. Recall from the proof of Proposition 5.2 that

1

2

∑
(i,j)∈λ(n)

arm(i, j)2 + leg(i, j)2

arm(i, j) + leg(i, j) + 1
+
n

2
< E(|H|) < C(λ(n)). (6.6)

For any cell (i, j) ∈ λ(n) let Z(i, j) = {(x, y) : i− 1 6 v 6 i, j − 1 6 u 6 j}. If (x, y) is an
interior point of Z(i, j) then

n1/paγn(x, y) = arm(i, j) + j − u and n1/q`γn(x, y) = leg(i, j) + i− v,

where γn denotes the p, q-boundary of λ(n). The asymptotically dominant term in the left
hand side of (6.6) can be approximated by an integral∑

(i,j)∈λ

arm(i, j)2

2h(i, j)
=
n(p+1)/p

2

∫∫
Dγn

aγn(x, y)2

aγn(x, y) + n1/q−1/p`γn(x, y) + n−1/p
dx dy.

By use of the Lemmata 3.1 and 3.2 it follows that∣∣∣∣∣
∫∫

Dγn

aγn(x, y)2

aγn(x, y) + n1/q−1/p`γn(x, y) + n−1/p
dx dy −

∫∫
Dγ

aγ(x, y) dx dy

∣∣∣∣∣→ 0

as n→∞. This establishes the asymptotic lower bound

C(λ(n)) >
n(p+1)/p

2

∫∫
Dγ

aγ(x, y) dx dy + o(n(p+1)/p) as n→∞.
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In order to obtain an upper bound for the average case complexity, recall the algorithm
for constructing the hook tableau during the application of the NPS algorithm described
in Section 2. The reason why |H| can be less than C(λ(n)) is that there might be a
cancellation in step H1. However, the total cancellation cannot exceed

∑
(i,j)∈λ(n) leg(i, j)

such that

C(λ(n)) < E(|H|) +
∑

(i,j)∈λ(n)
leg(i, j).

Since the term ∑
(i,j)∈λ(n)

leg(i, j) = n(q+1)/q

∫∫
Dγn

`γn(x, y) dx dy +
n

2

is of order less than n(p+1)/p as n→∞, we conclude (6.2).
Our starting point for the analysis of the worst case complexity is the inequality∑

(i,j)∈λ

arm(i, j) 6 W (λ(n)) 6
∑

(i,j)∈λ(n)
arm(i, j) + leg(i, j), (6.7)

which is a trivial consequence of Proposition 4.1. The right hand side of (6.7) equals

n(p+1)/p

∫∫
Dγn

aγn(x, y) dx dy + n(q+1)/q

∫∫
Dγn

`γn(x, y) dx dy + n.

Again the term corresponding to the leg function is of lower order and can be dropped.
Thus W (λ(n)) is asymptotically equivalent to the left hand side of (6.7). Lemmata 3.1
and 3.2 imply that∣∣∣∣∣

∫∫
Dγn

aγn(x, y) dx dy −
∫∫

Dγ

aγ(x, y) dx dy

∣∣∣∣∣→ 0 as n→∞,

which yields (6.3). The alternative formula in terms of hook coordinates is simply obtained
by substitution, which completes the first part of the proof. The second part, that is, the
case p > q, follows similarly.

7 Partitions with two parts

The main result of this section is a nice formula for the average case complexity of the
NPS algorithm when the partition consists of only two rows.

Theorem 7.1. Let λ = (λ1, λ2) be a partition with two parts. Then the average case
complexity of the NPS algorithm on λ is given by

C(λ) =
λ1(λ1 − 1)

4
+
λ2(λ2 − 3)

4
− 2

λ2∑
k=1

(
λ2
k

)
(−1)k(2k − 2)!

(λ1 − λ2 + 2)2k−1
. (7.1)
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Our starting point for proving Theorem 7.1 is the following formula for the average
case complexity of the NPS algorithm for general partitions.

Theorem 7.2. ([20, Thm 2.4]) Let n ∈ N and λ be a partition of n. Then

C(λ) =
∑
x∈λ

n∑
k=1

|x| f
λ(x, k)

fλ
(Hn −Hn−k − 1), (7.2)

where the outer sum is taken over all cells x of the Young diagram of λ, |x| = i + j − 2
denotes the distance of a cell x = (i, j) to the top left cell, fλ denotes the number of SYT
of shape λ, fλ(x, k) denotes the number of SYT of shape λ such that the cell x contains
the entry k, and Hn =

∑n
`=1

1
`

denotes the n-th harmonic number.

While the appearance of harmonic numbers in (7.2) is quite surprising, the most
challenging expressions are the numbers fλ(x, k). For partitions with only two parts we
derive a first explicit expression for the average case complexity in terms of five double
sums, each of which contains a harmonic number in the summand.

Lemma 7.3. Let λ = (λ1, λ2) be a partition with two parts. Then

fλ =
λ1 − λ2 + 1

λ1 + 1

(
λ1 + λ2
λ2

)
and

C(λ) =

((
λ1
2

)
+

(
λ2 + 1

2

))
(Hλ1+λ2 − 1) (7.3)

− 1

fλ

λ2∑
j=1

2j−1∑
k=j

(j − 1)(2j − k)

k

(
k

j

)(
λ1 + λ2 − k
λ1 − j

)
Hλ1+λ2−k

+
1

fλ

λ2∑
j=1

2j−1∑
k=j

(j − 1)(2j − k)

k

(
k

j

)(
λ1 + λ2 − k
λ2 − j − 1

)
Hλ1+λ2−k

− 1

fλ

λ1∑
j=λ2+1

λ2+j∑
k=j

(j − 1)(2j − k)

k

(
k

j

)(
λ1 + λ2 − k
λ1 − j

)
Hλ1+λ2−k

− 1

fλ

λ2∑
j=1

λ1+j∑
k=2j

j(k − 2j + 2)

k

(
k

j − 1

)(
λ1 + λ2 − k
λ2 − j

)
Hλ1+λ2−k

+
1

fλ

λ2∑
j=1

λ2+j∑
k=2j

j(k − 2j + 2)

k

(
k

j − 1

)(
λ1 + λ2 − k
λ1 − j + 1

)
Hλ1+λ2−k.

Proof. The formula for fλ is a simple consequence of the hook-length formula (2.1) Next
note that

n∑
k=1

fλ(x, k)

fλ
= 1,
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and therefore∑
x∈λ

n∑
k=1

|x| f
λ(x, k)

fλ
(Hn − 1) = (Hn − 1)

∑
x∈λ

|x| = (Hn − 1)

((
λ1
2

)
+

(
λ2 + 1

2

))
.

Thus only the terms involving a harmonic numbers that depends on k remain. For a cell
x ∈ λ let S(x) denote the set of all values k ∈ [n] such that fλ(x, k) > 0. We observe
three cases,

S((1, j)) = {j, . . . , 2j − 1} for j ∈ [λ2],

S((1, j)) = {j, . . . , λ2 + j} for j ∈ [λ1]− [λ2] and

S((2, j)) = {2j, . . . , λ1 + j} for j ∈ [λ2].

Suppose x = (1, j) is a cell of λ, k ∈ S(x), and let T be a SYT of shape λ with T (x) = k.
Then the cells y ∈ λ with T (y) < k constitute the partition µ̃ = (j − 1, k − j). On the
other hand the cells y ∈ λ with T (y) > k form the skew shape λ/µ where µ = (j, k − j).
Moreover note that the set of SYT of shape λ in which the cell x contains the entry k is
in bijection with pairs of a SYT of shape µ̃ and a SYT of skew shape λ/µ. Consequently

fλ(x, k) = f µ̃fλ/µ.

While f µ̃ is given by the hook-length formula, the number of SYT of skew shape fλ/µ can
be computed using Aitken’s determinant formula [3]

fλ/µ = (|λ| − |µ|)! · det
i,j

(
1/(λi − µj − i+ j)!

)
.

In the present case

fλ/µ = (λ1 + λ2 − k)! · det

(
1/(λ1 − j)! 1/(λ1 + j − k + 1)!

1/(λ2 − j − 1)! 1/(λ2 + j − k)!

)
=

(
λ1 + λ2 − k
λ1 − j

)
−
(
λ1 + λ2 − k
λ2 − j − 1

)
.

Summing

∑
k∈S(x)

|x| f
µ̃fλ/µ(x, k)

fλ
(−Hλ1+λ2−k)

over all cells x = (1, j) of the first row of λ, accounts for the first three double sums in
(7.3). The case where x = (2, j) is a cell of the second row of λ is treated in the same
way, except that now µ̃ = (k − j, j − 1) and µ = (k − j, j), and accounts for the fourth
and fifth double sums in (7.3).
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While the proof of Lemma 7.3 is not too complicated, we begin to appreciate how
remarkably simple the expression in (7.1) really is, consisting of a single sum devoid of
harmonic numbers.

In the following we will prove Theorem 7.1. More precisely, denoting the right hand
sides of (7.1) and (7.3) by A(λ1, λ2) and B(λ1, λ2), respectively, we will show that

A(λ1, λ2) = B(λ1, λ2) (7.4)

holds for all λ1, λ2 ∈ N with 0 6 λ2 6 λ1.
Looking at the given problem, one could be tempted to try the following rather general

summation tactic: compute for each of the sums a homogeneous recurrence relation in one
of the discrete parameters, say λ2 (using, e.g., the package MultiSum [21]), and combine
the found recurrences to one linear homogeneous recurrence for the expression

T (λ1, λ2) := A(λ1, λ2)−B(λ1, λ2) (7.5)

(using, e.g., the Mathematica package GeneratingFunctions [9]). However, in this par-
ticular situation this tactic seems rather clumsy: already the calculation of the linear
recurrences for each single sum is a hard nut, and assembling the recurrences to a big
recurrence for (7.5) is rather hopeless.

Therefore we will follow an alternative tactic: Given such an expression in terms of
complicated multi-sums, try to simplify the involved sums, and try to show that this
identity holds in terms of these simpler objects. For definite hypergeometric sums this
strategy has been worked out in the well known summation book A = B [14]. E.g.,
suppose that we are given the definite sum on the left hand side of

λ2∑
i=1

2−i
(
i+ λ2
i

)
= 2λ2 − 1, (7.6)

which we denote by S(λ2). Then one can find the right hand side by computing a linear
recurrence for S(λ2) using Zeilberger’s summation paradigm of creative telescoping. We
postpone any details and just present the found recurrence

S(λ2 + 1)− 2S(λ2) = 1.

Now one can read off the solution 2λ2 − 1, and with the first initial value S(1) = 1
the identity (7.6) is established. For more involved examples, one might start with a
hypergeometric sum and obtains a linear recurrence of higher order (and not just of order
one as above). Then one can use in addition, e.g., Petkovšek’s recurrence solver [14] to
find all hypergeometric solutions. In the end, one can possibly express the definite sum
in terms of these objects.

However, the types of sums arising in (7.4) are not as simple as the one in (7.6),
in particular the hypergeometric technology from [14] is not general enough to prove
identity (7.4). To overcome this situation, we will utilize the summation algorithms in the
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setting of difference rings [5, 18, 19]. Namely, instead of working only with hypergeometric
products, we will apply symbolic summation tools that are tuned for expressions in terms
indefinite nested sums defined over hypergeometric products. This more general class of
summation objects can be defined as follows.

Definition. Let f(n) be an expression that evaluates at non-negative integers (from a
certain point on) to elements of a field K containing the rational numbers Q. Then f(n)
is called an expression in terms of indefinite nested sums over hypergeometric products
w.r.t. n if it is composed by elements from the rational function field K(n), by the three
operations (+,−, ·), by hypergeometric products of the form

∏n
k=l h(k) with l ∈ N and

a rational function h(k) ∈ K(k) \ {0}, and by sums of the form
∑n

k=l F (k) with l ∈ N
and where F (k), being free of n, is an expression in terms of indefinite nested sums over
hypergeometric products w.r.t. k.

More precisely, the summation package Sigma [16] based on the algorithmic difference
ring theory [5, 18, 19] can tackle the following definite summation problem.

Problem T: Transformation of a definite sum to indefinite nested sums.
Given a definite sum, say S(n) =

∑n
k=0 f(n, k), where f(n, k) is given in terms of indefinite

nested sums over hypergeometric products w.r.t.a k
find an expression T (n) in terms of indefinite nested sums over hypergeometric products
w.r.t. n and find a λ ∈ N such that S(ν) = T (ν) holds for all ν ∈ N with ν > λ.

aHere n is considered as a parameter which does not occur in any summation bound of the indefinite
nested sums of f(n, k).

In order to tackle Problem T, the following summation steps can be carried out in Sigma.

1. Compute a linear recurrence of S(n) in n, say of order d.

2. Solve the recurrence in terms of d’Alembertian solutions [2], i.e., in terms of all
solutions that are expressible in terms of indefinite nested sums over hypergeometric
products w.r.t. n.

3. Combine the derived solutions yielding an expression T (n) in terms of indefinite
nested sums over hypergeometric products such that S(ν) = T (ν) holds for ν =
λ, λ+ 1, . . . λ+ d for some appropriately chosen λ ∈ N.

If one succeeds in this strategy, it follows with some mild side conditions that S(ν) = T (ν)
holds for all ν > λ. In other words, one has solved Problem T. Otherwise, if one succeeds
in computing a recurrence, but fails to combine the solutions accordingly, it follows that
there does not exist such a representation of S(n) in terms of indefinite nested sums.

We remark that not any definite sum as specified in Problem T can be transformed to a
representation in terms of indefinite nested sums over hypergeometric products. But as it
will turn out below, Sigma’s summation toolbox, in particular its solution for Problem T,
can be used iteratively to handle the multi-sums arising in (7.1).
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Now suppose that we derived an alternative representation of (7.5) in terms of our
class of indefinite nested sums defined over hypergeometric products. Then we will be in
the position to utilize the following very special feature [19, Prop. 7.3].

Problem S: Simplification of indefinite nested sums.
Given an expression T (n) in terms of indefinite nested sums over hypergeometric products;
find an expression T̃ (n) in terms of indefinite nested sums over hypergeometric products and
find a δ ∈ N with the following properties:

1. T (ν) = T̃ (ν) for all ν ∈ N with ν > δ;

2. the nested sums and hypergeometric products in T̃ (k) (except products of the form αk

with α being a root of unity) are algebraically independent among each other.

We emphasize that such a computed T̃ (n) has the following special property: If T (ν) = 0
holds for all ν > δ for some δ ∈ N, then T̃ (n) is the zero-expression (or it can be simpli-
fied to 0 by simple polynomial arithmetic). Precisely this will happen to our expression
in (7.5), after we transformed it to indefinite nested sums and eliminated all algebraic
relations among the arising summation objects.

Summarizing, we will prove that T (λ1, λ2) from (7.5) evaluates to zero for any λ1, λ2 ∈
N with 0 6 λ2 6 λ1 by executing the following two main steps.

(DEF) Using Sigma’s definite summation toolbox (see Problem T), we will find alter-
native sum representations where the occurring sums are indefinite nested w.r.t. to
the discrete parameter λ2. In a nutshell, we will rewrite the expression T (λ1, λ2)
given in terms of 6 definite sums to an expression in terms of indefinite nested sums
w.r.t. λ2.

(IND) Using Sigma’s indefinite summation toolbox (see Problem S), we will rewrite
the expression (7.5) further such that no algebraic relations exist among the arising
indefinite nested sums and products. As we will see below, the derived expression
of T̃ (λ1, λ2) will collapse to zero, which will prove (7.4) and thus will establish
Theorem 7.1.

We start our proposed summation tactic by loading in the package

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider c© RISC-Linz

into the Mathematica system. First we tackle the definite sum

S0(λ1, λ2) =

λ2∑
k=1

(
λ2
k

)
(−1)k(2k − 2)!

(λ1 − λ2 + 2)2k−1
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given in A(λ1, λ2), i.e., given in the right hand side of (7.1). After entering this sum into
Mathematica

In[2]:= S0 = SigmaSum[
(−1)kSigmaBinomial[λ2, k](−2 + 2k)!

SigmaPochhammer[2 + λ1 − λ2,−1 + 2k]
, {k, 1, λ2}]

Out[2]=

λ2∑
k=1

(−1)k
(λ2
k

)
(−2+ 2k)!(

2+ λ1 − λ2
)
−1+2k

we use Sigma’s recurrence finder to calculate the following recurrence relation:

In[3]:= rec = GenerateRecurrence[S0, λ2][[1]]

Out[3]= 2
(
λ2 + 1

)
SUM[λ2] +

(
− 3− λ1 − 3λ2

)
SUM[λ2 + 1] +

(
2+ λ1 + λ2

)
SUM[λ2 + 2] =

−λ1 − λ2 − 2

λ1 − λ2

This means that S0(λ1, λ2) = S0 = SUM[λ2] is a solution of Out[3]. Internally, the creative
telescoping paradigm is used: given the summand

f(λ1, λ2, k) =

(
λ2
k

)
(−1)k(2k − 2)!

(λ1 − λ2 + 2)2k−1

of S0(λ1, λ2), Sigma computes the constants c0(λ1, λ2) = 2
(
λ2 +1

)
, c1(λ1, λ2) = −3−λ1−

3λ2 and c2(λ1, λ2) = 2 + λ1 + λ2 together with the expression

g(λ1, λ2, k) =
k
(
λ2+1

)(
2k+λ1−λ2

)(
−1+2k+λ1−λ2

)(
2+λ1+λ2

)(
−2+k−λ2

)(
−1+k−λ2

)(
−λ1+λ2

)(
−1−λ1+λ2

) (−1)k−1
(
λ2
k

)
(2k − 2)!(

2 + λ1 − λ2
)
2k−1

such that the summand recurrence

c0(λ1, λ2)f(λ1, λ2, k) + c1(λ1, λ2)f(λ1, λ2 + 1, k) + c2(λ1, λ2)f(λ1, λ2 + 2, k)

= g(λ1, λ2, k + 1)− g(λ1, λ2, k) (7.7)

holds. Note that the special case λ1 = λ2 is problematic and will be treated separately.
For all other cases, i.e., for all λ1, λ2, k ∈ N with λ1 > λ2 > k > 0 the correctness of this
relation can be checked easily by simple polynomial arithmetic. Hence summing (7.7) over
k yields the recurrence Out[3]. In particular, since (7.7) has been verified, we proved that
S0(λ1, λ2) is a solution of Out[3] for all λ1, λ2 ∈ N with λ1 > λ2. We remark further that in
this particular instance also simpler algorithms, like the Mathematica implementation [13]
of Zeilberger’s creative telescoping algorithm [14] for hypergeometric terms, could have
been used.

Next, we exploit Sigma’s recurrence solver to compute all d’Alembertian solutions [2,
14] by executing the function call

In[4]:= recSol = SolveRecurrence[rec, SUM[λ2]]//ToSpecialFunction

Out[4]= {{0,−1− λ1 + λ2}, {0,
2λ2λ2!(
λ1 + 2

)
λ2

+
1

2

(
1+ λ1 − λ2

) λ2∑
i=1

2ii!

i
(
2+ λ1

)
i

}, {1,−
(
− 1− λ1 + λ2

) λ2∑
i=1

1

1− i+ λ1
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+
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2ii!
∑i

j=1

2−j
(
2+λ1

)
j

j!

i
(
2+ λ1

)
i

−
2λ2λ2!(
λ1 + 2

)
λ2

λ2∑
i=1

2−i
(
2+ λ1

)
i

i!
+

1

2

(
1+ λ1 − λ2

) λ2∑
i=1

1

i
}}

This means that

h1(λ1, λ2) = −1− λ1 + λ2,

h2(λ1, λ2) =
2λ2λ2!(
λ1 + 2

)
λ2

+
1

2

(
1 + λ1 − λ2

) λ2∑
i=1

2ii!

i
(
2 + λ1

)
i

are two linearly independent solutions of the homogeneous version of the recurrence Out[3]
and that

p(λ1, λ2) =
(
− 1− λ1 + λ2

)(
−

λ2∑
i=1

1

1− i+ λ1
−

λ2∑
i=1

1

i
+

1

2

λ2∑
i=1

2ii!
∑i

j=1

2−j
(
2+λ1

)
j

j!

i
(
2 + λ1

)
i

)
− 2λ2λ2!(

λ1 + 2
)
λ2

λ2∑
i=1

2−i
(
2 + λ1

)
i

i!

is a particular solution of the recurrence Out[3] itself. In other words, letting d1(λ1) and
d2(λ1) be arbitrary constants we obtain the general solution

d1(λ1)h1(λ1, λ2) + d2(λ1)h2(λ1, λ2) + p(λ1, λ2) (7.8)

of the recurrence Out[3]. By the underlying algorithms the d’Alembertian solutions are
produced in a rather complicated form and Sigma’s built in simplifier worked hard to
drop the nice solutions. In addition, the arising sums within the output are algebraically
independent among each other. For further details on these aspects we refer to [17, 18, 19]
and references therein. We emphasize further that one can verify straightforwardly with
simple polynomial arithmetic that (7.8) is indeed a solution of the recurrence Out[3] for
all λ1, λ2 ∈ N with λ1 > λ2.

Finally, we determine the values d1(λ1) = − 1
λ1+1

and d2(λ1) = −1 such that S0(λ1, λ2)
and (7.8) agree for λ2 = 1, 2. Since both expressions are a solution of Out[3] by con-
struction, it follows that they agree for all λ2 ∈ N. This last step can be performed by
computing the first two initial values at λ2 = 1, 2, namely

In[5]:= initial = Table[S0, {λ2, 1, 2}]

Out[5]=
{
−

1

λ1 + 1
,−

2
(
λ21 + 3λ1 + 1

)
λ1
(
λ1 + 1

)(
λ1 + 2

)}
and using Sigma’s function call to combine the solutions accordingly:

In[6]:= FindLinearCombination[recSol, {1, initial}, λ2, 2]

Out[6]=
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2ii!
∑i

j=1

2−j
(
2+λ1

)
j

j!

i
(
2+ λ1

)
i

+
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2ii!

i
(
2+ λ1

)
i

−
2λ2λ2!(
λ1 + 2

)
λ2

λ2∑
i=1

2−i
(
2+ λ1

)
i

i!
−
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2λ2λ2!(
λ1 + 2

)
λ2

+
(
1+ λ1 − λ2

) λ2∑
i=1

1

1− i+ λ1
+

1

2

(
1+ λ1 − λ2

) λ2∑
i=1

1

i
+

1+ λ1 − λ2
λ1 + 1

Summarizing, we showed that S0(λ1, λ2) equals the expression calculated in Out[6] for all
λ1, λ2 ∈ N with 1 6 λ2 < λ1.

This “hand calculation” with the computer is reasonable if one treats the simplest
of the sums in (7.5). However, if one is faced with one of the double sums in (7.3),
this mechanical task gets more and more tedious. Luckily, we can use the package
EvaluateMultiSums [17] that has been originally designed for similar and even worse
expressions arising in the field of particle physics, see [1] and references therein. Namely,
after loading in the package

In[7]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider c© RISC-Linz

we can carry out the above calculations completely automatically using internally the
functionality of Sigma. For instance, typing in the command

In[8]:= solSum0 = EvaluateMultiSum[
(−1)k

(λ2
k

)
(−2 + 2k)!(

2 + λ1 − λ2
)
−1+2k

, {{k, 1, λ2}}, {λ2, λ1}, {1, 1}, {λ1,∞}]

Out[8]=
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2ii!
∑i

j=1

2−j
(
2+λ1

)
j

j!

i
(
2+ λ1

)
i

+
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2ii!

i
(
2+ λ1

)
i

−
2λ2λ2!(
λ1 + 2

)
λ2

λ2∑
i=1

2−i
(
2+ λ1

)
i

i!
−

2λ2λ2!(
λ1 + 2

)
λ2

+
(
1+ λ1 − λ2

) λ2∑
i=1

1

1− i+ λ1
+

1

2

(
1+ λ1 − λ2

) λ2∑
i=1

1

i
+

1+ λ1 − λ2
λ1 + 1

we arrive at an equivalent result solSum0 in terms of factorials and the Pochhammer
symbol. Within the function call the input {λ2, λ1}, {1, 1}, {λ1,∞} specifies that the
discrete parameters λ1, λ2 fulfill the constraints 1 6 λ2 6 λ1 and 1 6 λ1 6∞.
Finally, we rewrite the objects in solSum0 in terms of the harmonic numbers and the
binomial coefficient. This rewriting can be accomplished by the function call

In[9]:= solSum0 = SigmaReduce[solSum0, λ2,Tower→
{(λ1 + λ2

λ2

)
,Hλ1+λ2 ,Hλ1−λ2 ,Hλ2

}
]

Out[9]=
2λ2(λ1+λ2
λ2

) (− λ2∑
i=1

2−i
(i+ λ1

i

)
− 1
)
+

1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2i
∑i

j=1 2
−j
(j+λ1

j

)
i
(i+λ1

i

) +
1

2

(
− 1− λ1 + λ2

) λ2∑
i=1

2i

i
(i+λ1

i

) +

(
− 1− λ1 + λ2

)
Hλ1−λ2 +

(
1+ λ1 − λ2

)
Hλ1 +

1

2

(
1+ λ1 − λ2

)
Hλ2 + 1

Remark 7.4. Internally, the underlying difference ring machinery of Sigma is activated [17].
Loosely speaking, the Pochhammer symbols and harmonic numbers arising in Out[8] are
rewritten in terms of

(
λ1+λ2
λ2

)
, and as a consequence also the arising sums are then rephrased

in terms of
(
λ1+i
i

)
and

(
λ1+j
j

)
. Here any polynomial in terms of the summation variables

i or j that occurs in the summands of the numerators or denominators is expanded
using partial fraction decomposition. This might lead to several new sums with simpler
summands. Inside of this construction also Problem S is carried out: a subset of these
sums is taken whose elements are algebraically independent among each other, and the
other sums are rewritten in terms of these algebraic independent sums. This finally leads
to the output in Out[9].
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Summarizing, we end up at the following alternative representation

S0(λ1, λ2) = − 2λ2(
λ1+λ2
λ2

)( λ2∑
i=1

(
i+λ1
i

)
2i

+ 1
)

+
−1− λ1 + λ2

2

λ2∑
i=1

2i
i∑

j=1

(j+λ1j )
2j

i
(
i+λ1
i

)
− 1 + λ1 − λ2

2

λ2∑
i=1

2i

i
(
i+λ1
i

) +
(
1 + λ1 − λ2

)(
+Hλ1 +

1

2
Hλ2 −Hλ1−λ2

)
+ 1 (7.9)

where all the sums are indefinite nested w.r.t. the outer most summation index λ2.

Finally, we have to address the special case λ1 = λ2. In this particular case the sum
S0(λ2, λ2) simplifies to

In[10]:= solSum0Equal = EvaluateMultiSum[
(−1)k

(λ2
k

)
(2k− 2)!

(2)2k−1
, {{k, 1, λ2}}, {λ2}, {1}, {∞}]

Out[10]= −
22λ2λ2!2

(2λ2)!
+

Hλ2
2

+ 1

which can be easily rewritten in terms of the binomial coefficient:

In[11]:= SigmaReduce[solSum0Equal, λ2,Tower→ {
(2λ2
λ2

)
]

Out[11]= −
22λ2(2λ2
λ2

) +
Hλ2
2

+ 1

Hence we calculated the nice simplification

S0(λ2, λ2) = − 22λ2(
2λ2
λ2

) +
Hλ2

2
+ 1. (7.10)

Note further that our result solSum0, i.e., the right hand side of (7.9) is a well defined
expression for λ1 = λ2. More precisely, we get

In[12]:= solSum0Subst = solSum0/.λ1 → λ2

Out[12]= −
1

2

λ2∑
i=1

2i
∑i

j=1 2
−j
(j+λ2

j

)
i
(i+λ2

i

) −
2λ2(2λ2
λ2

) λ2∑
i=1

2−i
(i+ λ2

i

)
−

1

2

λ2∑
i=1

2i

i
(i+λ2

i

) − 2λ2(2λ2
λ2

) +
3Hλ2
2

+ 1

Observe further that the arising sums in solSum0Subst can be simplified with our ma-
chinery (see Problem T). Namely, for all λ2 ∈ N we calculate the right hand sides of the
identities given in (7.6) and

λ2∑
i=1

2i

i
(
i+λ2
i

) = 2−λ2
λ2∑
i=1

2i

i
,

λ2∑
i=1

2i

i
(
i+λ2
i

) i∑
j=1

2−j
(
j + λ2
j

)
= −2−λ2

λ2∑
i=1

2i

i
+ 2Hλ2 .
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Inserting these simplifications in solSum0Subst we arrive at the same result as given
in Out[10]. Note that the described calculations can be carried out straightforwardly by
simply typing in

In[13]:= EvaluateMultiSum[solSum0Equal, {}, {λ2}, {1}, {∞}];

Out[13]= −
22λ2(2λ2
λ2

) +
Hλ2
2

+ 1

Since this result is precisely the same expression as given on the right hand side of (7.10),
it follows that our identity (7.9) holds also for the special case λ2 = λ1, i.e., it holds for
all λ1, λ2 ∈ N with 1 6 λ2 6 λ1.

Next, we turn to the first double sum

S1(λ1, λ2) =

λ2∑
j=1

2j−1∑
k=j

(j − 1)(2j − k)

k

(
k

j

)(
λ1 + λ2 − k
λ1 − j

)
Hλ1+λ2−k

of the expression B(λ1, λ2), i.e., of the right hand side of (7.3). For convenience, we adapt
the sum so that the lower bounds of the summation quantifiers are non-negative integers.
This yields

S1(λ1, λ2) =

λ2∑
j=1

h(λ1, λ2, j) (7.11)

with

h(λ1, λ2, j) =

−1+j∑
k=0

(−1 + j)(j − k)

j + k

(
j + k

j

)(
−j − k + λ1 + λ2
−j + λ1

)
H−j−k+λ1+λ2 .

Here we apply iteratively our summation machinery for Problem T. We start with the
inner sum h(λ1, λ2, j). First, we compute a linear recurrence of h(λ1, λ2, j) in j of order 2,
and afterwards we compute two linearly independent solutions plus one particular solution
of the found recurrence. Finally, taking the first two initial values yields a rather huge
expression (which is too big to be printed here) in terms of indefinite nested sums w.r.t. the
integer parameter j. Precisely this form enables one to apply Sigma’s summation toolbox
again to solve Problem T for the definite sum (7.11) where j is the main summation
variable: we can calculate a linear recurrence of (7.11) in λ2, solve the recurrence in terms
of d’Alembertian solutions, and obtain finally a representation where the occurring sums
are indefinite nested w.r.t. the parameter λ2. In order to carry out all the calculations
steps automatically, we execute simply the function call

In[14]:= solSum1 = EvaluateMultiSum[
(−1 + j)

(j+k
j

)(−j−k+λ1+λ2
−j+λ1

)
(j− k)H−j−k+λ1+λ2

j + k
,

{{k, 0, j}, {j, 1, λ2}}, {λ2, λ1}, {1, 1}, {λ1,∞}];

and get the result in terms of Pochhammer symbols and factorials. As explained in
Remark 7.4 this result (which we did not print here) can be rewritten in terms of the
binomial coefficient

(
λ1+λ2
λ2

)
by executing the following command:

In[15]:= solSum1 = SigmaReduce[solSum1, λ2,Tower→ {
(λ1+λ2

λ2

)
}]
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Out[15]=

(λ1 + λ2

λ2

) 1

16

(
7λ1 − 3λ21 − 7λ2 + 4λ1λ2 − λ22

)(
−

λ2∑
i=1

2i
∑i

j=1 2
−j
(j+λ1

j

)
i
(i+λ1

i

) + Hλ2 −
λ2∑
i=1

2i

i
(i+λ1

i

))
+ 2λ2−4

(
− 8+ 3λ1 + λ21 − λ2 − 2λ1λ2 + λ22

)(
Hλ1
(
1− 2

λ2∑
i=1

2−i
(i+ λ1

i

))
+
( λ2∑
i=1

2i

i
(i+λ1

i

) ) λ2∑
i=1

2−i
(i+ λ1

i

)
+

2λ2+1(λ1+λ2
λ2

)(
1+ λ1 + λ2

)( λ2∑
i=1

2−i
(i+ λ1

i

))2
+ 2

λ2∑
i=1

2−i
(i+ λ1

i

)
H−i+λ1

−
λ2∑
i=1

2i
∑i

j=1 2
−j
(j+λ1

j

)
i
(i+λ1

i

) +
( λ2∑
i=1

2−i
(i+ λ1

i

)) λ2∑
i=1

2i
∑i

j=1 2
−j
(j+λ1

j

)
i
(i+λ1

i

) − 2

λ2∑
i=1

2i
(∑i

j=1 2
−j
(j+λ1

j

))2(i+λ1
i

)(
1+ i+ λ1

)
− Hλ2

( λ2∑
i=1

(i+λ1
i

)
2i

− 1
)
+

λ2∑
i=1

(i+λ1
i

)
Hi+λ1

2i

)
+

(λ1+λ2
λ2

)(
− Hλ1−λ2 + Hλ1

)
8(λ1 + 1)

(
3λ1 + 4λ21 + λ31 − 3λ2 + 5λ1λ2 − 9λ22 −

5λ1λ
2
2 + 4λ32

)
− 2λ2−5

(
14− 3λ1 + 3λ21 + λ2 − 6λ1λ2 + 3λ22

)( λ2∑
i=1

2−i
(i+ λ1

i

)
+ 1
)

+

(λ1+λ2
λ2

)(
λ1 + 1

)2 1

32

(
14+ 3λ41 + λ31

(
3− 16λ2

)
− 5λ2 − 51λ22 + 24λ32 + λ21

(
5λ22 − 5λ2 + 11

)
+ λ1

(
8λ32 − 30λ22 + 38λ2 + 25

))
+

(λ1+λ2
λ2

)
λ1 + 1

1

16

(
8+ 5λ1 − 4λ21 − λ31 + 7λ2 − 9λ1λ2 + 17λ22 + 9λ1λ

2
2 − 8λ32

)
Hλ1+λ2

We emphasize that each calculation step of this transformation can be verified in the
same fashion as it has been worked out for the sum S0(λ1, λ2) from above. Completely,
analogously we obtain the representations solSum2, solSum3, solSum4, solSum5 (together
with correctness proofs) of the remaining four sums in (7.3) in terms of indefinite nested
sums over hypergeometric products which are all valid for all λ1, λ2 with 1 6 λ2 6 λ1.
This completes step (DEF) of our summation tactic.

Now we are ready to carry out step (IND). With the function call

In[16]:= {solSum0, solSum1, solSum2, solSum3, solSum4, solSum5} =

SigmaReduce[{solSum0, solSum1, solSum2, solSum3, solSum4, solSum5}, λ2];

we synchronize the arising sums and products within the representations of the six sums.
More precisely, after this transformation all expressions depend only on the following
indefinite nested sums defined over hypergeometric products

2λ2 ,

(
λ1 + λ2
λ2

)
, Hλ1 , Hλ1−λ2 , Hλ2 , Hλ1+λ2 ,

λ2∑
i=1

2−i
(
i+ λ1
i

)
,

λ2∑
i=1

2−i
(
i+ λ1
i

)
H−i+λ1 ,

λ2∑
i=1

2−i
(
i+ λ1
i

)
Hi+λ1 ,

λ2∑
i=1

2i

i
(
i+λ1
i

) , λ2∑
i=1

2i
∑i

j=1 2−j
(
j+λ1
j

)
i
(
i+λ1
i

) ,

λ2∑
i=1

2i
(∑i

j=1 2−j
(
j+λ1
j

))2(
i+λ1
i

)(
1 + i+ λ1

)
(7.12)

whose sequences produced by the objects in (7.12) are algebraically independent among
each other.

Putting all the building blocks together

In[17]:= T̃ =
λ1(λ1 − 1)

4
+
λ2(λ2 − 3)

4
− 2 solSum0−

(((λ1

2

)
+
(λ2 + 1

2

))
(Hλ1+λ2 − 1) +

λ1 − λ2 + 1

λ1 + 1

(λ1 + λ2

λ2

)(
− solSum1 + solSum2− solSum3− solSum4 + solSum5

))
;
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yields an alternative representation T̃ of our expression T (λ1, λ2) given in terms of (7.5)
which is valid for all λ1, λ2 ∈ N with 1 6 λ2 6 λ1. In a nutshell, we solved Problem S
and obtained the simplification T̃ where all arising sums and products are algebraically
independent among each other. Finally, we consider all the sums and products in this
expression as variables, put them over a common denominator and expand the derived
numerator. More precisely, we apply the standard Mathematica command Together to
T̃ and obtain by simple polynomial arithmetic the answer

In[18]:= Together[T̃]

Out[18]= 0

This implies that T (λ1, λ2) = 0 holds or equivalently that (7.4) holds for all λ1, λ2 ∈ N
with 1 6 λ2 6 λ1. This completes the proof of Theorem 7.1.

As a reward for all our calculations we obtain besides a proof of Conjecture 3 in
addition new representations of C(λ). Using (7.1) together with (7.9) yields

C(λ) = C(λ1, λ2) =
λ1(λ1 − 1)

4
+
λ2(λ2 − 3)

4

− 2
(
− 2λ2(

λ1+λ2
λ2

)( λ2∑
i=1

(
i+λ1
i

)
2i

+ 1
)

+
−1− λ1 + λ2

2

λ2∑
i=1

2i
i∑

j=1

(j+λ1j )
2j

i
(
i+λ1
i

)
− 1 + λ1 − λ2

2

λ2∑
i=1

2i

i
(
i+λ1
i

) +
(
1 + λ1 − λ2

)(
Hλ1 +

1

2
Hλ2 −Hλ1−λ2

)
+ 1
)
.

This expression is of particular interest if one wants to calculate C(λ1, λ2) efficiently for
λ2 = 0, 1, 2, 3, . . . and keeping λ1 symbolic. In addition, we obtain the specially nice
formula

C(λ2, λ2) =
λ2(λ2 − 2)

2
− 2
(
− 22λ2(

2λ2
λ2

) +
Hλ2

2
+ 1
)

using the identity (7.10). Similarly, if one is interested in an efficient evaluation of C(λ)
for a symbolic λ2 and a fixed distance δ = λ1−λ2 > 0, we can derive with our summation
toolbox the following representation for the sum S0(λ1, λ2):

In[19]:= resDelta = EvaluateMultiSum[
(−1)k

(λ2
k

)
(−2 + 2k)!(

2 + λ1 − λ2
)
−1+2k

/.λ1 → δ + λ2,

{{k, 1, λ2}}, {δ, λ2}, {0, 1}, {∞,∞}];

In[20]:= SigmaReduce[resDelta, δ,Tower→
{(δ + λ2

δ

)
,
(δ + 2λ2

δ

)
,Hδ+λ2 ,Hδ+2λ2 ,Hδ

}
]

Out[20]=
(
− 1− δ +

(δ + 1)22λ2(2λ2
λ2

) ) δ∑
i=1

2i
(i+λ2

i

)(i+2λ2
i

)(
1+ i+ 2λ2

) +
2δ+2λ2

(
1+ δ + λ2

)(δ+λ2
δ

)(δ+2λ2
δ

)(
1+ δ + 2λ2

) δ∑
i=1

2−i
(i+2λ2

i

)(i+λ2
i

)(
i+ 2λ2

)

− 2(δ + 1)λ2

δ∑
i=1

2i
(i+λ2

i

) i∑
j=1

2−j
(j+2λ2

j

)(j+λ2
j

)(
j+ 2λ2

)
(i+2λ2

i

)(
1+ i+ 2λ2

) +
22λ2 (δ + 1)(2λ2
λ2

)(
2λ2 + 1

) +
2δ+1

(
1+ δ + λ2

)(δ+λ2
δ

)(δ+2λ2
δ

)(2λ2
λ2

)(
1+ δ + 2λ2

) ×
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×
(
− 22λ2 +

(2λ2
λ2

))
−

δ + 1

2λ2 + 1
+ (δ + 1)Hδ+2λ2 +

1

2
(δ + 1)Hλ2 − (δ + 1)H2λ2 − (δ + 1)Hδ

This yields

C(λ) = C(λ1, λ2) =
λ1(λ1 − 1)

4
+
λ2(λ2 − 3)

4

−2

((
− 1− δ +

(δ + 1)22λ2(
2λ2
λ2

) ) δ∑
i=1

2i
(
i+λ2
i

)(
i+2λ2
i

)(
1 + i+ 2λ2

)
+

2δ+2λ2
(
1 + δ + λ2

)(
δ+λ2
δ

)(
δ+2λ2
δ

)(
1 + δ + 2λ2

) δ∑
i=1

2−i
(
i+2λ2
i

)(
i+λ2
i

)(
i+ 2λ2

)

− 2(δ + 1)λ2

δ∑
i=1

2i
(
i+λ2
i

) i∑
j=1

2−j
(
j+2λ2
j

)(
j+λ2
j

)(
j + 2λ2

)(
i+2λ2
i

)(
1 + i+ 2λ2

)
+

22λ2(δ + 1)(
2λ2
λ2

)(
2λ2 + 1

) +
2δ+1

(
1 + δ + λ2

)(
δ+λ2
δ

)(
δ+2λ2
δ

)(
2λ2
λ2

)(
1 + δ + 2λ2

)(− 22λ2 +

(
2λ2
λ2

))
− δ + 1

2λ2 + 1
+ (δ + 1)Hδ+2λ2 +

1

2
(δ + 1)Hλ2 − (δ + 1)H2λ2 − (δ + 1)Hδ

)

with λ1 = λ2 + δ for a positive integer parameter λ2 and a non-negative integer δ.
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