Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries

Nicola Durante
Dipartimento di Matematica e Applicazioni "Renato Caccioppoli"
Università degli Studi di Napoli Federico II
Napoli, Italy
ndurante@unina.it
Alessandro Siciliano
Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata
Potenza, Italy
alessandro.siciliano@unibas.it

Submitted: Apr 29, 2016; Accepted: May 16, 2017; Published: Jun 16, 2017
Mathematics Subject Classifications: 94B05, 15A63

Abstract

In this paper we construct infinite families of non-linear maximum rank distance codes by using the setting of bilinear forms of a finite vector space. We also give a geometric description of such codes by using the cyclic model for the field reduction of finite geometries and we show that these families contain the non-linear maximum rank distance codes recently provided by Cossidente, Marino and Pavese.

1 Introduction

Let $M_{m, m^{\prime}}\left(\mathbb{F}_{q}\right), m \leqslant m^{\prime}$, be the rank metric space of all the $m \times m^{\prime}$ matrices with entries in the finite field \mathbb{F}_{q} with q elements, $q=p^{h}, p$ a prime. The distance between two matrices by definition is the rank of their difference. An ($m, m^{\prime}, q ; s$)-rank distance code (also rank metric code) is any subset \mathcal{X} of $M_{m, m^{\prime}}\left(\mathbb{F}_{q}\right)$ such that the minimum distance between two of its distinct elements is $s+1$. An $\left(m, m^{\prime}, q ; s\right)$-rank distance code is said to be linear if it is a linear subspace of $M_{m, m^{\prime}}\left(\mathbb{F}_{q}\right)$.

It is known [11] that the size of an $\left(m, m^{\prime}, q ; s\right)$-rank distance code \mathcal{X} is bounded by the Singleton-like bound:

$$
|\mathcal{X}| \leqslant q^{m^{\prime}(m-s)}
$$

When this bound is achieved, \mathcal{X} is called an $\left(m, m^{\prime}, q ; s\right)$-maximum rank distance code, or ($m, m^{\prime}, q ; s$)-MRD code, for short.

Although MRD codes are very interesting by their own and they caught the attention of many researchers in recent years $[1,9,32]$, such codes have also applications in errorcorrection for random network coding [18, 22, 37], space-time coding [38] and cryptography [17, 36].

Obviously, investigations of MRD codes can be carried out in any rank metric space isomorphic to $M_{m, m^{\prime}}\left(\mathbb{F}_{q}\right)$. In his pioneering paper [11], Ph. Delsarte constructed linear MRD codes for all the possible values of the parameters m, m^{\prime}, q and s by using the framework of bilinear forms on two finite-dimensional vector spaces over a finite field (Delsarte used the terminology Singleton systems instead of maximum rank distance codes).

Few years later, Gabidulin [16] independently constructed Delsarte's linear MRD codes as evaluation codes of linearized polynomials over a finite field [26]. That construction was generalized in [21] and these codes are now known as Generalized Gabidulin codes.

In the case $m^{\prime}=m$, a different construction of Delsarte's MRD codes was given by Cooperstein $[7]$ in the framework of the tensor product of a vector space over \mathbb{F}_{q} by itself. Very recently, Sheekey [35] and Lunardon, Trombetti and Zhou [28] provide some new linear MRD codes by using linearized polynomials over $\mathbb{F}_{q^{m}}$.

In finite geometry, $(m, m, q ; m-1)$-MRD codes are known as spread sets [12]. To the extent of our knowledge the only non-linear MRD codes that are not spread sets are the $(3,3, q ; 1)$-MRD codes constructed by Cossidente, Marino and Pavese in [8]. They got such codes by looking at the geometry of certain algebraic curves of the projective plane $\operatorname{PG}\left(2, q^{3}\right)$. Such curves, called C_{F}^{1}-sets, were introduced and studied by Donati and Durante in [13]. In this paper, we construct infinite families of non-linear ($m, m, q ; m-2$)MRD codes, for $q \geqslant 3$ and $m \geqslant 3$. We also show that the Cossidente, Marino and Pavese non-linear MRD codes belong to these families. Our investigation will carry out in the framework of bilinear forms on a finite dimensional vector space over \mathbb{F}_{q}.

Let $\Omega=\Omega(V, V)$ be the set of all bilinear forms on V, where $V=V(m, q)$ denotes an m-dimensional vector space over \mathbb{F}_{q}. Clearly, Ω is an m^{2}-dimensional vector space over \mathbb{F}_{q}.

The left radical $\operatorname{Rad}(f)$ of any $f \in \Omega$ by definition is the subspace of V consisting of all vectors v satisfying $f\left(v, v^{\prime}\right)=0$ for every $v^{\prime} \in V$. The rank of f is the codimension of $\operatorname{Rad}(f)$, i.e.

$$
\operatorname{rk}(f)=m-\operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{Rad}(f)) .
$$

Let u_{1}, \ldots, u_{m} be a basis of V. For a given $f \in \Omega$, the matrix $\left(f\left(u_{i}, u_{j}\right)\right)_{i, j=1, \ldots, m}$, is called the matrix of f in the basis u_{1}, \ldots, u_{m} and the map

$$
\begin{aligned}
\nu=\nu_{\left\{u_{1}, \ldots, u_{m}\right\}}: \Omega & \rightarrow \quad M_{m, m}\left(\mathbb{F}_{q}\right) \\
f & \mapsto\left(f\left(u_{i}, u_{j}\right)\right)_{i, j=1, \ldots, m}
\end{aligned}
$$

is an isomorphism of rank metric spaces giving $\operatorname{rk}(f)=\operatorname{rk}(\nu(f))$.
The group $H=\operatorname{GL}(V) \times \operatorname{GL}(V)$ acts on Ω as a subgroup of $\operatorname{Aut}_{\mathbb{F}_{q}}(\Omega)$: for every $\left(g, g^{\prime}\right) \in H$, the $\left(g, g^{\prime}\right)$-image of any $f \in \Omega$ is defined to be the bilinear form $f^{\left(g, g^{\prime}\right)}$ given
by

$$
f^{\left(g, g^{\prime}\right)}\left(v, v^{\prime}\right)=f\left(g v, g^{\prime} v^{\prime}\right)
$$

Any $\theta \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ naturally defines a semilinear transformation of V. For any $f \in \Omega$ and $\theta \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, we define the bilinear form $f^{\theta}\left(v, v^{\prime}\right)=f\left(v^{\theta^{-1}}, v^{\theta^{-1}}\right)^{\theta}$.

The involutorial operator $\top: f \in \Omega \rightarrow f^{\top} \in \Omega$, where f^{\top} is given by

$$
f^{\top}\left(v, v^{\prime}\right)=f\left(v^{\prime}, v\right)
$$

is an automorphism of Ω. It turns out that the above automorphisms are all the elements in $\operatorname{Aut}_{\mathbb{F}_{q}}(\Omega)$, i.e. $\operatorname{Aut}_{\mathbb{F}_{q}}(\Omega)=(\operatorname{GL}(V) \times \operatorname{GL}(V)) \rtimes\langle T\rangle \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)$.

Two MRD codes \mathcal{X}_{1} and \mathcal{X}_{2} are said to be equivalent if there exists $\varphi \in \operatorname{Aut}_{\mathbb{F}_{q}}(\Omega)$ such that $\mathcal{X}_{2}=\mathcal{X}_{1}^{\varphi}$.

This paper is organized as follows. In Section 2 we introduce a cyclic model of Ω. In this model we construct infinite families of non-linear MRD codes. More precisely, for $q \geqslant 3, m \geqslant 3$ and I any subset of $\mathbb{F}_{q} \backslash\{0,1\}$, we provide a subset $\mathcal{F}_{m, q ; I}$ of Ω which turns out to be a non-linear ($m, m, q ; m-2$)-MRD code (Theorem 19).

In Section 3 we give a geometric description of such codes. If a given rank distance code \mathcal{X} is considered as a subset of $V\left(m^{2}, q\right)$, then one can consider the corresponding set of projective points in $\operatorname{PG}\left(m^{2}-1, q\right)$ under the canonical homomorphism $\psi: \operatorname{GL}\left(V\left(m^{2}, q\right)\right) \rightarrow \operatorname{PGL}\left(m^{2}, q\right)$. We prove (Theorem 24) that the projective set defined by $\mathcal{F}_{m, q ; I}$, with $|I|=k$, is a subset of a Desarguesian m-spread of $\operatorname{PG}\left(m^{2}-1, q\right)$ [34] consisting of two spread elements, k pairwise disjoint Segre varieties $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$ [20] and $q-1-k$ hyperreguli [30]. Additionally, if one consider the projective space $\mathrm{PG}\left(m^{2}-1, q\right)$ as the field reduction of $\mathrm{PG}\left(m-1, q^{m}\right)$ over \mathbb{F}_{q}, then the projective set defined by $\mathcal{F}_{m, q ; I}$ is, in fact, the field reduction of the union of two projective points, k mutually disjoint ($m-1$)-dimensional \mathbb{F}_{q}-subgeometries and $q-1-k$ scattered \mathbb{F}_{q}-linear sets of pseudoregulus type of $\mathrm{PG}\left(m-1, q^{m}\right)[13,24,29]$. The main tool we use to get the above geometric description is the field reduction of $V\left(m, q^{m}\right)$ over \mathbb{F}_{q} in the cyclic model for the tensor product $\mathbb{F}_{q^{m}} \otimes V$ as described in [7].

2 The non-linear MRD codes in the cyclic model of bilinear forms

In the paper [7], the cyclic model of the m-dimensional vector space $V=V(m, q)$ over \mathbb{F}_{q} was introduced by taking eigenvectors, say v_{1}, \ldots, v_{m}, of a given Singer cycle σ of V, where a Singer cycle of V is an element of $\mathrm{GL}(V)$ of order $q^{m}-1$. Since the vectors v_{1}, \ldots, v_{m} have distinct eigenvalues over $\mathbb{F}_{q^{m}}$, they form a basis of the extension $\widehat{V}=V\left(m, q^{m}\right)$ of V. In this basis the vector space V is represented by

$$
\begin{equation*}
V=\left\{\sum_{j=1}^{m} a^{q^{j-1}} v_{j}: a \in \mathbb{F}_{q^{m}}\right\} \tag{1}
\end{equation*}
$$

We call v_{1}, \ldots, v_{m} a Singer basis of V and the above representation is called the cyclic model for $V[19,15]$.

The set of all 1 -dimensional \mathbb{F}_{q}-subspaces of \widehat{V} spanned by vectors in the cyclic model for V is called the cyclic model for the projective space $\mathrm{PG}(V)$. Note that the above cyclic model corresponds to the cyclic model of $\mathrm{PG}(V)$ where the points are identified with the elements of the group $\mathbb{Z}_{q^{m-1}+q^{m-2}+\cdots+q+1}$ [19, pp. 95-98] [15]. Very recently, the cyclic model for $V(3, q)$ has been used to give an alternative model for the triality quadric $Q^{+}(7, q)$ [2].

Let \widehat{V}^{*} be the dual vector space of \widehat{V} with basis $v_{1}^{*}, \ldots, v_{m}^{*}$, the dual basis of the Singer basis v_{1}, \ldots, v_{m}. Then the dual vector space of V is

$$
V^{*}=\left\{\sum_{i=1}^{m} \alpha^{q^{i-1}} v_{i}^{*}: \alpha \in \mathbb{F}_{q^{m}}\right\} .
$$

A linear transformation from V to itself is called an endomorphism of V. We will denote the set of all endomorphisms of V by $\operatorname{End}(V)$.

An $m \times m$ Dickson matrix (or q-circulant matrix) over $\mathbb{F}_{q^{m}}$ is a matrix of the form

$$
D_{\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)}=\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{m-1} \\
a_{m-1}^{q} & a_{0}^{q} & \cdots & a_{m-2}^{q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{q^{m-1}} & a_{2}^{q^{m-1}} & \cdots & a_{0}^{q^{m-1}}
\end{array}\right)
$$

with $a_{i} \in \mathbb{F}_{q^{m}}$. We say that the above matrix is generated by the array $\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)$.
Let $\mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right)$ denote the Dickson matrix algebra formed by all $m \times m$ Dickson matrices over $\mathbb{F}_{q^{m}}$. The set $\mathcal{B}_{m}\left(\mathbb{F}_{q^{m}}\right)$ of all invertible Dickson $m \times m$ matrices is known as the BettiMathieu group [6].
Proposition 1. [39, Lemma 4.1] $\operatorname{End}(V) \simeq \mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right)$ and $\mathrm{GL}(V) \simeq \mathcal{B}_{m}\left(\mathbb{F}_{q^{m}}\right)$.
A polynomial of the form

$$
L(x)=\sum_{i=0}^{m-1} \alpha_{i} x^{q^{i}}, \quad \alpha_{i} \in \mathbb{F}_{q^{m}},
$$

is called a linearized polynomial (or q-polynomial) over $\mathbb{F}_{q^{m}}$. It is known that every endomorphism of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} can be represented by a unique q-polynomial [33].

Let $\mathcal{L}_{m}\left(\mathbb{F}_{q^{m}}\right)$ be the set of all q-polynomials over $\mathbb{F}_{q^{m}}$. In the paper [39], it was showed that the map

$$
\varphi: \begin{array}{clc}
\mathcal{L}_{m}\left(\mathbb{F}_{q^{m}}\right) & \longrightarrow & \mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right) \\
\sum_{i=0}^{m-1} \alpha_{i} x^{q^{i}} & \longmapsto & D_{\left(\alpha_{0}, \ldots, \alpha_{m-1}\right)}
\end{array}
$$

is an isomorphism between the non-commutative \mathbb{F}_{q}-algebras $\mathcal{L}_{m}\left(\mathbb{F}_{q^{m}}\right)$ and $\mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right)$. From Proposition 1 we see that any Singer basis of V realizes this isomorphism.

Proposition 2. Let v_{1}, \ldots, v_{n} be a Singer basis of V. Then the matrix of any $f \in \Omega$ with respect to v_{1}, \ldots, v_{n} is an $m \times m$ Dickson matrix. Conversely, every $m \times m$ Dickson matrix defines a bilinear form on $V \times V$.

Proof. Let $D_{\mathbf{a}}$ be an $m \times m$ Dickson matrix generated by the m-ple $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)$ over $\mathbb{F}_{q^{m}}$. Let $f_{\mathbf{a}}$ be the bilinear mapping on $\widehat{V} \times \widehat{V}$ defined by

$$
f_{\mathbf{a}}\left(v_{i}, v_{j}\right)=a_{m-i+j}^{q^{i-1}} \quad \text { for } i, j=1, \ldots, m
$$

where subscripts are taken modulo m, and then extended over \widehat{V} by linearity. Set $L_{\mathbf{a}}(x)=$ $\sum_{i=0}^{m-1} a_{i} x^{q^{i}}$ and let Tr denote the trace function from $\mathbb{F}_{q^{m}}$ onto \mathbb{F}_{q} :

$$
\operatorname{Tr}: y \in \mathbb{F}_{q^{m}} \rightarrow \operatorname{Tr}(y)=\sum_{j=0}^{m-1} y^{q^{j}} \in \mathbb{F}_{q} .
$$

It is easily seen that the action of $f_{\mathbf{a}}$ on $V \times V$ is given by

$$
\begin{equation*}
f_{\mathbf{a}}\left(v, v^{\prime}\right)=f_{\mathbf{a}}\left(x, x^{\prime}\right)=\operatorname{Tr}\left(L_{\mathbf{a}}\left(x^{\prime}\right) x\right), \tag{2}
\end{equation*}
$$

with $v=\sum_{i=1}^{m} x^{q^{i-1}} v_{i}, v^{\prime}=\sum_{j=1}^{m} x^{\prime q q^{j-1}} v_{j}$, which is a bilinear form on $V \times V$. The assertion follows from consideration on the size of $\mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right)$.

For any m-ple $\mathbf{a}=\left(a_{0}, \ldots, a_{m-1}\right)$ over $\mathbb{F}_{q^{m}}, f_{\mathbf{a}}$ will denote the bilinear form having matrix D_{a} in the Singer basis v_{1}, \ldots, v_{m}. For any set \mathcal{A} of m - ples over $\mathbb{F}_{q^{m}}$ we put

$$
\mathcal{F}_{\mathcal{A}}=\left\{f_{\mathbf{a}} \in \Omega: \mathbf{a} \in \mathcal{A}\right\} .
$$

Corollary 3. Let $\mathbf{a}=\left(a_{0}, \ldots, a_{m-1}\right)$. Then

$$
\begin{align*}
\nu_{\left\{v_{1}, \ldots, v_{m}\right\}}: & \rightarrow \mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right) \tag{3}\\
f_{\mathbf{a}} & \mapsto D_{\left(a_{0}, \ldots, a_{m-1}\right)}
\end{align*}
$$

is an isomorphism of rank metric spaces giving $\operatorname{rk}\left(f_{\mathbf{a}}\right)=\operatorname{rk}\left(D_{\left(a_{0}, \ldots, a_{m-1}\right)}\right)$.
Remark 4. By Proposition 1, $\operatorname{Aut}_{\mathbb{F}_{q}}(\Omega)$ is represented by the $\operatorname{group}\left(\mathcal{B}_{m}\left(\mathbb{F}_{q^{m}}\right) \times \mathcal{B}_{m}\left(\mathbb{F}_{q^{m}}\right)\right) \rtimes$ $\langle t\rangle \rtimes \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ in the Singer basis v_{1}, \ldots, v_{m}. Here, t denote transposition in $M_{m, m}\left(\mathbb{F}_{q^{m}}\right)$ and it corresponds to the operator T.

Remark 5. Note that (2) coincides with the bilinear form (6.1) in [11] when $m^{\prime}=m$.
Remark 6. Since a change of basis in $\widehat{V} \times \widehat{V}$ preserves the rank of bilinear forms, for any given $f \in \Omega$ we can consider its matrix representation in the Singer basis v_{1}, \ldots, v_{m}. Therefore, we can assume $f=f_{\mathbf{a}}$ for some m-ple a over $\mathbb{F}_{q^{m}}$, so that $\operatorname{Rad}\left(f_{\mathbf{a}}\right)$ is the set of vectors $v^{\prime}=x^{\prime} v_{1}+\cdots+x^{\prime q^{m-1}} v_{m} \in V, x^{\prime} \in \mathbb{F}_{q^{m}}$, such that $L_{\mathbf{a}}\left(x^{\prime}\right)=0$.

We are now in position to construct non-linear MRD codes as subsets of Ω.
Let N denote the norm map from $\mathbb{F}_{q^{m}}$ onto \mathbb{F}_{q} :

$$
N: x \in \mathbb{F}_{q^{m}} \rightarrow N(x)=\prod_{j=0}^{m-1} x^{q^{j}} \in \mathbb{F}_{q} .
$$

For every nonzero element $\alpha \in \mathbb{F}_{q^{m}}$, let

$$
\pi_{\alpha}=\left\{\left(\lambda x, \lambda \alpha x^{q}, \lambda \alpha^{1+q} x^{q^{2}}, \ldots, \lambda \alpha^{1+q+\cdots+q^{m-2}} x^{q^{m-1}}\right): \lambda, x \in \mathbb{F}_{q^{m}} \backslash\{0\}\right\} .
$$

Remark 7. The matrix of the Singer cycle σ of V in the basis v_{1}, \ldots, v_{m} is given by $\operatorname{diag}\left(\mu, \mu^{q}, \ldots, \mu^{q^{m-1}}\right)$, where μ is a generator of the multiplicative group of $\mathbb{F}_{q^{m}}[7]$. If S is the Singer cyclic group generated by σ, then the set $\mathcal{F}_{\pi_{a}}$ is the $(S \times S)$-orbit of the bilinear form $f_{\mathbf{a}}$, with $\mathbf{a}=\left(1, \alpha, \alpha^{1+q}, \ldots, \alpha^{1+\cdots+q^{m-2}}\right)$. It turns out that the bilinear forms in $\mathcal{F}_{\pi_{a}}$ have constant rank.

Proposition 8. $\pi_{\alpha}=\pi_{\beta}$ if and only if $N(\alpha)=N(\beta)$.
Proof. Let $\alpha, \beta \in \mathbb{F}_{q^{m}} \backslash\{0\}$ such that $N(\alpha)=N(\beta)$. By Remark 7 it suffices to show that $\left(1, \alpha, \alpha^{1+q}, \ldots, \alpha^{1+q+\cdots+q^{m-2}}\right)$ is in π_{β}.

Since $N(\alpha)=N(\beta)$, then $\alpha=\beta c^{q-1}$ for some $c \in \mathbb{F}_{q^{m}} \backslash\{0\}$. As $\left(1+q+\cdots+q^{k}\right)(q-1)=q^{k+1}-1$, we have

$$
\alpha^{1+q+\cdots+q^{k}}=c^{-1} \beta^{1+q+\cdots+q^{k}} c^{q^{k+1}} .
$$

Conversely, let $\pi_{\alpha}=\pi_{\beta}$. Then

$$
\begin{align*}
1 & =\lambda x \\
\alpha & =\lambda \beta x^{q} \tag{4}\\
\alpha^{1+\cdots+q^{m-2}} & =\lambda \beta^{1+\cdots+q^{m-2}} x^{q^{m-1}}
\end{align*}
$$

for some $\lambda, x \in \mathbb{F}_{q^{m}} \backslash\{0\}$. From the last equation we get

$$
\alpha^{q+q^{2}+\cdots+q^{m-1}}=\lambda^{q} \beta^{q+q^{2}+\cdots+q^{m-1}} x .
$$

By taking into account the first and second equation of (4) we get $N(\alpha)=\lambda^{q} \lambda N(\beta) x x^{q}=$ $N(\beta)$.

We will write π_{a} instead of π_{α}, if α is an element of $\mathbb{F}_{q^{m}} \backslash\{0\}$ with $N(\alpha)=a$.
Lemma 9. Every π_{a} has size $\left(q^{m}-1\right)^{2} /(q-1)$.
Proof. Let $\alpha \in \mathbb{F}_{q^{m}} \backslash\{0\}$ with $N(\alpha)=a$. Clearly, we have

$$
\left(\lambda x, \lambda \alpha x^{q}, \lambda \alpha^{1+q} x^{q^{2}}, \ldots, \lambda \alpha^{1+\cdots+q^{m-2}} x^{q^{m-1}}\right)=\left(\rho y, \rho \alpha y^{q}, \rho \alpha^{1+q} y^{q^{2}}, \ldots, \rho \alpha^{1+\cdots+q^{m-2}} x^{q^{m-1}}\right)
$$

if and only if $\lambda x^{q^{i}}=\rho y^{q^{i}}$, for $i=0, \ldots, m-1$. If we compare the equalities with $i=0$ and $i=1$, we get $x^{q-1}=y^{q-1}$. For every fixed $x \in \mathbb{F}_{q^{m}}$ there are exactly $q-1$ elements y in $\mathbb{F}_{q^{m}}$ such that $y^{q-1}=x^{q-1}$.

Let λ and x be fixed elements in $\mathbb{F}_{q^{m}} \backslash\{0\}$. Then, for each element $y \in \mathbb{F}_{q^{m}}$ such that $y^{q-1}=x^{q-1}$ we get the unique element $\rho=\lambda x y^{-1}$ and the result is proved.

Lemma 10. i) If $\mathbf{a} \in \pi_{1}$, then $\operatorname{rk}\left(f_{\mathbf{a}}\right)=1$.
ii) If $a \in \mathbb{F}_{q} \backslash\{0,1\}$, then $\operatorname{rk}\left(f_{\mathbf{a}}\right)=m$, for any $\mathbf{a} \in \pi_{a}$.
iii) If $a, b \in \mathbb{F}_{q} \backslash\{0,1\}$, then $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$, for any $\mathbf{a} \in \pi_{a}$ and $\mathbf{b} \in \pi_{b}$, with $\mathbf{b} \neq \mathbf{a}$ if $a=b$.

Proof. i) Let $\mathbf{a}=\left(\lambda x, \lambda x^{q}, \ldots, \lambda x^{q^{m-1}}\right) \in \pi_{1}$. It suffices to note that $L_{\mathbf{a}}(z)=(\lambda x) z+$ $\left(\lambda x^{q}\right) z^{q}+\cdots\left(\lambda x^{q^{m-1}}\right) z^{q^{m-1}}=0$ is the equation of a hyperplane in the cyclic model of V.
ii) By Remark 7, we may assume $\mathbf{a}=\left(1, \alpha, \ldots, \alpha^{1+\cdots+q^{m-2}}\right)$, with $N(\alpha)=a \neq 1$.

For any $z \in \operatorname{Rad}\left(f_{\mathbf{a}}\right)$, we have

$$
\begin{equation*}
L_{a}(z)=z+\alpha z^{q}+\cdots+\alpha^{1+\cdots+q^{m-2}} z^{q^{m-1}}=0 \tag{5}
\end{equation*}
$$

giving $\alpha\left[L_{\mathbf{a}}(z)\right]^{q}-L_{\mathbf{a}}(z)=(N(\alpha)-1) z=0$. As $N(\alpha)=a \neq 1$, we get $z=0$.
iii) Let $\mathbf{a}=\left(1, \alpha, \ldots, \alpha^{1+\cdots+q^{m-2}}\right)$, with $N(\alpha)=a \neq 1$, and

$$
\mathbf{b}=\left(\lambda x, \lambda \beta x^{q}, \ldots, \lambda \beta^{1+q+\cdots+q^{m-2}} x^{q^{m-1}}\right),
$$

with $N(\beta)=b \neq 1$.
For any $z \in \operatorname{Rad}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right)$, we have

$$
\begin{align*}
L_{\mathbf{a}-\mathbf{b}}(z)= & (1-\lambda x) z+\left(\alpha-\lambda \beta x^{q}\right) z^{q}+ \\
& \cdots+\left(\alpha^{1+\cdots+q^{m-2}}-\lambda \beta^{1+\cdots+q^{m-2}} x^{q^{m-1}}\right) z^{q^{m-1}}=0 \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\alpha^{\left.q+\cdots+q^{m-1}-\lambda^{q} \beta^{q+\cdots+q^{m-1}} x\right) z+\left(1-\lambda^{q} x^{q}\right) z^{q}+}\right. \\
& \quad \cdots+\left(\alpha^{q+\cdots+q^{m-2}}-\lambda^{q} \beta^{q+\cdots+q^{m-2}} x^{q^{m-1}}\right) z^{q^{m-1}}=0 \tag{7}
\end{align*}
$$

for $i=1,2$.
After subtracting Equation (6) side-by-side from Equation (7) multiplied by α, we get

$$
\begin{align*}
& {\left[a-1+\left(\lambda-\lambda^{q} \alpha \beta^{q+\cdots+q^{m-1}}\right) x\right] z+\left(\lambda \beta-\lambda^{q} \alpha\right) x^{q} z^{q}+} \\
& \cdots+\left(\lambda \beta-\lambda^{q} \alpha\right) \beta^{q+\cdots+q^{m-2}} x^{q^{m-1}} z^{q^{m-1}}=0 . \tag{8}
\end{align*}
$$

Suppose $\lambda \beta=\lambda^{q} \alpha$. Then, $[a-1-(b-1) \lambda x] z=0$. Suppose $a-1-(b-1) \lambda x=0$, i.e. $\lambda=\frac{a-1}{b-1} x^{-1}$. By plugging this value in \mathbf{b}, we get

$$
\mathbf{b}=\frac{a-1}{b-1}\left(1, \beta x^{q-1}, \beta^{1+q} x^{q^{2}-1}, \ldots, \beta^{1+q+\cdots+q^{m-2}} x^{q^{m-1}-1}\right)
$$

Note that if $b=a$, we can assume $\beta=\alpha$ giving $x \notin \mathbb{F}_{q}$ as $\mathbf{b} \neq \mathbf{a}$.
We claim that the bilinear form $f_{\mathbf{a}}-f_{\mathrm{b}}$ has maximum rank m. Indeed, suppose there exists a nonzero $z \in \mathbb{F}_{q^{m}}$ such that $L_{\mathbf{a}-\mathbf{b}}(z)=0$. By plugging that value of λ in Equation (8) we get

$$
\begin{aligned}
& \frac{a-1}{b-1}\left[\left(\beta-\alpha\left(x^{-1}\right)^{q-1}\right) \beta^{q+\cdots+q^{m-1}} z+\left(\beta x^{q-1}-\alpha\right) z^{q}+\right. \\
& \left.\cdots+\left(\beta x^{q^{m-1}-1}-\alpha x^{q^{m-1}-q}\right) \beta^{q+\cdots+q^{m-2}} z^{q^{m-1}}\right]=0
\end{aligned}
$$

or, equivalently,

$$
\left(\frac{\beta}{x}-\frac{\alpha}{x^{q}}\right)\left(\beta^{q+\cdots+q^{m-1}} x z+(x z)^{q}+\beta^{q}(x z)^{q^{2}}+\cdots+\beta^{q+\cdots+q^{m-2}}(x z)^{q^{m-1}}\right)=0
$$

where $\frac{\beta}{x}-\frac{\alpha}{x^{q}} \neq 0$ since either $b \neq a$ or $x^{q} \neq x$ if $b=a$. Therefore, the following equation holds:

$$
\begin{equation*}
\beta^{q+\cdots+q^{m-1}} y+y^{q}+\beta^{q} y^{q^{2}}+\beta^{q+q^{2}} y^{q^{3}}+\cdots+\beta^{q+\cdots+q^{m-2}} y^{q^{m-1}}=0 \tag{9}
\end{equation*}
$$

given

$$
\begin{equation*}
\beta^{q^{2}+\cdots+q^{m-1}} y+\beta^{1+q^{2}+\cdots+q^{m-1}} y^{q}+y^{q^{2}}+\beta^{q^{2}} y^{q^{3}}+\cdots+\beta^{q^{2}+\cdots+q^{m-2}} y^{q^{m-1}}=0 . \tag{10}
\end{equation*}
$$

By subtracting Equation (9) from (10) multiplied by β^{q} we get $b=1$, a contradiction. Hence, we may assume $a-1-(b-1) \lambda x \neq 0$, giving $z=0$.

If $\Delta=\lambda \beta-\lambda^{q} \alpha \neq 0$, we set $\nabla=a-1+\left(\lambda-\lambda^{q} \alpha \beta^{q+\cdots+q^{m-1}}\right) x$. From Equation (8), then we get

$$
\begin{equation*}
\frac{\nabla}{\Delta} z+(x z)^{q}+\cdots+\beta^{q+\cdots+q^{m-2}}(x z)^{q^{m-1}}=0 . \tag{11}
\end{equation*}
$$

If we multiply by β^{q} the q-th power of equation (11) and then subtract it from (11), we get the q-polynomial

$$
\begin{equation*}
\left(x^{q}-\beta^{q} \frac{\nabla^{q}}{\Delta^{q}}\right) z^{q}+\left(\frac{\nabla}{\Delta}-\beta^{q+\cdots+q^{m-1}} x\right) z=0 . \tag{12}
\end{equation*}
$$

If $\nabla-\beta^{q+\cdots+q^{m-1}} x \Delta=0$, then $\lambda=\frac{a-1}{b-1} x^{-1}$ which implies $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right)=m$. Therefore, we may assume $\beta^{q+\cdots+q^{m-1}} x \Delta-\nabla \neq 0$, giving (12) is a nonzero polynomial of degree at most q. This means, $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$.

For every nonzero element $\alpha \in \mathbb{F}_{q^{m}}$, let

$$
J_{\alpha}=\left\{\left(\lambda x, 0, \ldots, 0,-\lambda \alpha x^{q^{m-1}}\right): \lambda, x \in \mathbb{F}_{q^{m}} \backslash\{0\}\right\} .
$$

Remark 11. Note that the set $\mathcal{F}_{J_{\alpha}}$ is the $(S \times S)$-orbit of the bilinear form $f_{\mathbf{a}}$, with $\mathbf{a}=(1,0, \ldots, 0,-\alpha)$. It turns out that the bilinear forms in $\mathcal{F}_{J_{\alpha}}$ have constant rank.

By arguing similarly to the proof of Proposition 8 and Lemma 9, we get the following result.

Lemma 12. Each set J_{α} has size $\left(q^{m}-1\right)^{2} /(q-1)$ and $J_{\alpha}=J_{\beta}$ if and only if $N(\alpha)=$ $N(\beta)$.

We will write J_{a} instead of J_{α}, if α is an element of $\mathbb{F}_{q^{m}}$ with $N(\alpha)=a$.
Lemma 13. For any $\mathbf{a}=(x, 0, \ldots, 0, y)$ with $x, y \in \mathbb{F}_{q^{m}}$ not both zero, $\operatorname{rk}\left(f_{\mathbf{a}}\right) \geqslant m-1$.
Proof. The bilinear form $f_{\mathbf{a}}$, is equivalent to the bilinear form $f_{\hat{\mathbf{a}}}$, with $\hat{\mathbf{a}}=\left(x, y^{q}, 0, \ldots, 0\right)$, via the automorphism T. The result then follows from Remark 5 and Theorem 6.3 in [11].

Corollary 14. Let a, b be nonzero elements in \mathbb{F}_{q}. Then $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$, for any $\mathbf{a} \in J_{a}$ and $\mathbf{b} \in J_{b}$, with $\mathbf{a} \neq \mathbf{b}$ if $a=b$.

Lemma 15. Let a, b be distinct nonzero elements in \mathbb{F}_{q}. Then $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$ for any $\mathbf{a} \in \pi_{a}$ and $\mathbf{b} \in J_{b}$.

Proof. By Remark 7 we can assume $\mathbf{a}=\left(1, \alpha, \ldots, \alpha^{1+\cdots+q^{m-2}}\right)$ with $N(\alpha)=a$. By arguing as in the proof of Lemma 10 we see that the triple

$$
\begin{equation*}
\left(a-1+\left(\lambda+\alpha \beta^{q} \lambda^{q}\right) x,-\alpha \lambda^{q} x^{q},-\lambda \beta x^{q^{m-1}}\right) \tag{13}
\end{equation*}
$$

is a solution of the linear system

$$
\left\{\begin{array}{l}
z_{1} X_{1}+z_{1}^{q} X_{2}+z_{1}^{q^{m-1}} X_{3}=0 \tag{14}\\
z_{2} X_{1}+z_{2}^{q} X_{2}+z_{2}^{q^{m-1}} X_{3}=0
\end{array}\right.
$$

for some $z_{1}, z_{2} \in \mathbb{F}_{q^{m}}$ linearly independent over \mathbb{F}_{q} with $\Delta=\left|\begin{array}{ll}z_{1} & z_{1}^{q} \\ z_{2} & z_{2}^{q}\end{array}\right| \neq 0$. Any solution $\left(x_{1}, x_{2}, x_{3}\right)$ of (14) satisfies

$$
x_{2}=-\frac{\Delta^{\prime}}{\Delta} x_{3}
$$

where $\Delta^{\prime}=\left|\begin{array}{ll}z_{1} & z_{1}^{q^{m-1}} \\ z_{2} & z_{2}^{q^{m-1}}\end{array}\right|$. Since $\Delta^{\prime q}=\left|\begin{array}{ll}z_{1}^{q} & z_{1} \\ z_{2}^{q} & z_{2}\end{array}\right|=-\Delta$ we get $x_{2}=\frac{1}{\Delta^{\prime q-1}} x_{3}$ giving $N\left(x_{2}\right)=$ $N\left(x_{3}\right)$. As a solution of (14), the triple (13) must satisfies $a N(\lambda) N(x)=b N(\lambda) N(x)$ giving either $\lambda x=0$ or $a=b$, a contradiction.

Let $A_{1}=\left\{(x, 0,0, \ldots, 0): x \in \mathbb{F}_{q^{m}} \backslash\{0\}\right\}$ and $A_{2}=\left\{(0,0,0, \ldots, x): x \in \mathbb{F}_{q^{m}} \backslash\{0\}\right\}$.
Lemma 16. $\mathrm{rk}\left(f_{\mathbf{a}}\right)=m$, for any $\mathbf{a} \in A_{i}, i=1,2$. Further, $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$, for any $\mathbf{a} \in A_{1}$ and $\mathbf{b} \in A_{2}$.

Proof. The first part can be easily proved by taking the Dickson matrix $D_{\mathbf{a}}$ with $\mathbf{a} \in A_{i}$. The second part follows from Lemma 13.

Lemma 17. Let $a \in \mathbb{F}_{q} \backslash\{0,1\}$. Then $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$, for any $\mathbf{a} \in \pi_{a}$ and $\mathbf{b} \in A_{i}$, $i=1,2$.

Proof. By Remark 7 we can assume $\mathbf{a}=\left(1, \alpha, \ldots, \alpha^{1+\cdots+q^{m-2}}\right)$ with $N(\alpha)=a$. Let $\mathbf{b}=$ $(x, 0, \ldots, 0)$. By proceeding as in the proof of Lemma 10 we see the pair $\left(a-(1-x),-\alpha x^{q}\right)$ is a solution of the linear system

$$
\left\{\begin{array}{l}
z_{1} X_{1}+z_{1}^{q} X_{2}=0 \\
z_{2} X_{1}+z_{2}^{q} X_{2}=0
\end{array}\right.
$$

with $\Delta=\left|\begin{array}{ll}z_{1} & z_{1}^{q} \\ z_{2} & z_{2}^{q}\end{array}\right| \neq 0$. Then the above linear system has the unique solution (0,0) giving $x=0$ and $a=1$, a contradiction.

For $i=2$, similar arguments lead to the same contradiction.

Lemma 18. Let $a \in \mathbb{F}_{q} \backslash\{0\}$. Then $\operatorname{rk}\left(f_{\mathbf{a}}-f_{\mathbf{b}}\right) \geqslant m-1$, for any $\mathbf{a} \in J_{a}$ and $\mathbf{b} \in A_{i}$, $i=1,2$.

Proof. Use Lemma 13.
Finally, we have the main theorem.
Theorem 19. Let $q>2$ be a prime power and $m \geqslant 3$ a positive integer. For any subset I of $\mathbb{F}_{q} \backslash\{0,1\}$, put $\Pi_{I}=\bigcup_{a \in I} \pi_{a}, \Gamma_{I}=\bigcup_{b \in \mathbb{F}_{q} \backslash(I \cup\{0\})} J_{b}$ and set

$$
\mathcal{A}_{m, q ; I}=\Pi_{I} \cup \Gamma_{I} \cup A_{1} \cup A_{2} \cup\{\mathbf{0}\}
$$

where $\mathbf{0}$ is the zero m-ple. Then the subset $\mathcal{F}_{m, q ; I}=\left\{f_{\mathbf{a}}: \mathbf{a} \in \mathcal{A}_{m, q ; I}\right\}$ of Ω is a non-linear ($m, m, q ; m-2$)-MRD code.

Proof. By Lemmas 9, 12 we get that $\mathcal{A}_{m, q ; I}$ has size $q^{2 m}$. By Lemmas $10,13,15,16,17$ and Corollary 14, we see that $\mathcal{F}_{m, q ; I}$ has minimum distance $m-1$, i.e. it is a $(m, m, q ; m-2)$ MRD code. To show the non-linearity of $\mathcal{F}_{m, q ; I}$, it suffices to find two distinct elements in it whose \mathbb{F}_{q}-span is not contained in $\mathcal{F}_{m, q ; I}$.

Let $f_{\mathbf{a}} \in \mathcal{F}_{A_{2}}$ and $f_{\mathbf{b}} \in \mathcal{F}_{\pi_{a}}, a \in I$. By corollary 3, we can work with the Dickson matrices $D_{\mathbf{a}}$ and $D_{\mathbf{b}}$, or equivalently, with m-ples a and \mathbf{b} as arrays in $V\left(m, q^{m}\right)$. Let $\mathbf{a}=(0, \ldots, 0, \mu)$ and $\mathbf{b}=\left(\lambda x, \lambda \alpha x^{q}, \ldots, \lambda \alpha^{1+\cdots+q^{m-2}} x^{q^{m-1}}\right)$. Suppose $\mathbf{a}+\mathbf{b} \in \pi_{b}$, for some $b \in \mathbb{F}_{q}$. Then

$$
\left(\frac{\lambda \alpha^{1+\cdots+q^{m-3}} x^{q^{m-2}}}{\lambda \alpha^{1+\cdots+q^{m-4}} x^{q^{m-3}}}\right)^{q}=\alpha^{q^{m-2}} x^{q^{m-1}-q^{m-2}}=\frac{\mu+\lambda \alpha^{1+\cdots+q^{m-2}} x^{q^{m-1}}}{\lambda \alpha^{1+\cdots+q^{m-3}} x^{q^{m-2}}}
$$

giving $\mu=0$. Therefore, the subspace spanned by a and \mathbf{b} meets trivially every π_{b} if $b \neq a$, or just in the 1-dimensional subspace spanned by \mathbf{b} if $b=a$. The result then follows.

3 A geometric description for the non-linear MRD codes

Let $\mathrm{PG}\left(t-1, q^{s}\right)$ be the projective space whose points are the 1-dimensional subspaces of $V\left(t, q^{s}\right)$. For any $v \in V\left(t, q^{s}\right) \backslash\{0\},[v]$ will denote the corresponding point of $\mathrm{PG}\left(t-1, q^{s}\right)$. For any subset X of $V\left(t, q^{s}\right) \backslash\{0\}$, we set $[X]=\{[v]: v \in X, v \neq 0\}$. The set $[X]$ is said to be an \mathbb{F}_{q}-linear set of rank r if X is an r-dimensional \mathbb{F}_{q}-linear subspace of $V\left(t, q^{s}\right)$. An \mathbb{F}_{q}-linear set $[X]$ of rank r is said to be scattered if the size of $[X]$ equals $|\mathrm{PG}(r-1, q)|$; see [31] for more details on \mathbb{F}_{q}-linear sets and [27] for a relationship between linear MRD-codes and \mathbb{F}_{q}-linear sets.

Consider the set $\mathcal{A}_{m, q ; I}$ defined in Theorem 19 as a subset of $\widehat{V}=V\left(m, q^{m}\right)$, by setting $a_{0} v_{1}+a_{1} v_{2}+\cdots+a_{m-1} v_{m}$, for any $\mathbf{a}=\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{A}_{m, q ; I} ;$ here, v_{1}, \ldots, v_{m} is the Singer basis of V defined in Section 2. Therefore, $\left[\pi_{1}\right]=[V]$ is a scattered \mathbb{F}_{q}-linear set of rank m of $\mathrm{PG}\left(m-1, q^{m}\right)$ isomorphic to the projective space $\operatorname{PG}(m-1, q)$.

For any $\alpha \in \mathbb{F}_{q^{m}} \backslash\{0\}$, the endomorphism

$$
\begin{array}{cccc}
\tau_{\alpha}: & \widehat{V} & \rightarrow & \widehat{V} \\
& a_{0} v_{1}+a_{1} v_{2}+\cdots+a_{m-1} v_{m} & \mapsto & a_{0} v_{1}+\alpha a_{1} v_{2}+\cdots+\alpha^{1+\cdots+q^{m-2}} a_{m-1} v_{m}
\end{array}
$$

maps π_{1} into π_{a}, with $a=N(\alpha)$, and J_{1} into J_{b}, with $b=a^{m-1}$.
Let W be the span of v_{1} and v_{m} in \widehat{V}. For any $a \in \mathbb{F}_{q} \backslash\{0\},\left[J_{a}\right]$ is a scattered \mathbb{F}_{q}-linear set of rank m of $[W]$. In particular $\left[J_{a}\right]$ is a maximum scattered \mathbb{F}_{q}-linear set of pseudoregulus type of $[W][24,29]$.

Summarizing we have the following result.
Theorem 20. Let $q>2$ be a prime power and $m>2$ a positive integer. Let I be any nonempty subset of $\mathbb{F}_{q} \backslash\{0,1\}$ with $k=|I|$. Then, the projective image of $\mathcal{A}_{m, q ; I}$ in $\mathrm{PG}\left(m-1, q^{m}\right)$ is union of two points $\left[A_{1}\right],\left[A_{2}\right], k$ mutually disjoint $(m-1)$-dimensional \mathbb{F}_{q}-subgeometries $\left[\pi_{a}\right], a \in I$, and $q-1-k$ mutually disjoint \mathbb{F}_{q}-linear sets $\left[J_{b}\right], b \in$ $\mathbb{F}_{q} \backslash(I \cup\{0\})$, of pseudoregulus type of rank m contained in the line spanned by $\left[A_{1}\right]$ and $\left[A_{2}\right]$.

We now investigate the geometry in $\operatorname{PG}\left(m^{2}-1, q\right)$ of the projective set defined by each MRD code $\mathcal{F}_{m, q ; I}$ viewed as a subset of $V\left(m^{2}, q\right)$.

Let $V=V(m, q)$ be the $\mathbb{F}_{q^{-}}$span of u_{1}, \ldots, u_{m} and set $\widehat{V}=V\left(m, q^{m}\right)=\mathbb{F}_{q^{m}} \otimes V(m, q)$. The rank of a vector $v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{m} u_{m} \in \widehat{V}$ by definition is the maximum number of linearly independent coordinates a_{i} over \mathbb{F}_{q}.

If we consider $\mathbb{F}_{q^{m}}$ as the m-dimensional vector space V, then every $\alpha \in \mathbb{F}_{q^{m}}$ can be uniquely written as $\alpha=x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{m} u_{m}$, with $x_{i} \in \mathbb{F}_{q}$. Hence, \widehat{V} can be viewed as $V \otimes V$, the tensor product of V with itself, with basis $\left\{u_{(i, j)}=u_{i} \otimes u_{j}: i, j=1, \ldots, m\right\}$. Elements of $V \otimes V$ are called tensors and those of the form $v \otimes v^{\prime}$, with $v, v^{\prime} \in V$ are called fundamental tensors. In $\operatorname{PG}(V \otimes V)$, the set of fundamental tensors correspond to the Segre variety $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$ of $\mathrm{PG}(V \otimes V)$ [20].

Let ϕ be the map defined by

$$
\begin{array}{lccc}
\phi=\phi_{\left\{u_{1}, \ldots, u_{m}\right\}}: & \widehat{V} & \longrightarrow & V \otimes V \\
\alpha_{1} u_{1}+\cdots+\alpha_{m} u_{m} & \longmapsto & \sum_{i=1}^{m} x_{i 1} u_{(i, 1)}+\cdots+\sum_{i=1}^{m} x_{i m} u_{(i, m)},
\end{array}
$$

with $\alpha_{k}=x_{1 k} u_{1}+x_{2 k} u_{2}+\cdots+x_{m k} u_{m}, x_{i k} \in \mathbb{F}_{q}$. We call this map the field reduction of \widehat{V} over \mathbb{F}_{q} with respect to the basis u_{1}, \ldots, u_{m}. The projective space $\operatorname{PG}(V \otimes V)$ is the the field reduction of $\mathrm{PG}(\widehat{V})$ over \mathbb{F}_{q} with respect to the basis u_{1}, \ldots, u_{m}.

Under ϕ, every 1-dimensional subspace $\langle v\rangle$ of \widehat{V} is mapped to the m-dimensional $\mathbb{F}_{q^{-}}$ subspace $k_{v}=\phi(\langle v\rangle)$ of $V \otimes V$. It turns out that the set $\mathcal{K}=\left\{k_{v}: v \in \widehat{V}, v \neq 0\right\}$ is a partition of the nonzero vectors of $V \otimes V$. In particular \mathcal{K} is a Desarguesian partition, i.e. the stabilizer of \mathcal{K} in $\mathrm{GL}(V \otimes V)$ contains a cyclic subgroup acting regularly on the components of $\mathcal{K}[14,34]$.

To any component k_{v} of \mathcal{K} there corresponds a projective $(m-1)$-dimensional subspace $\left[k_{v}\right]$ of $\operatorname{PG}(V \otimes V)$. The set $\mathcal{S}=\left\{\left[k_{v}\right]: v \in \widehat{V}, v \neq 0\right\}$ is so called a Desarguesian ($m-1$)-spread of $\mathrm{PG}(V \otimes V)$ [34], [14].

In addition, the projective set of $\mathrm{PG}(V \otimes V)$ corresponding to the ϕ-image of the 1-dimensional subspaces spanned by non-zero vectors in V is the Segre variety $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$.

Let ν be the map defined by

$$
\begin{array}{clc}
\nu=\nu_{\left\{u_{1}, \ldots, u_{m}\right\}}: & V \otimes V & \longrightarrow \\
\sum_{m, m}\left(\mathbb{F}_{q}\right) \\
\sum_{i, j} x_{i j} u_{(i, j)} & \longrightarrow & \left(x_{i j}\right)_{i, j=1, \ldots, m} .
\end{array}
$$

For every $v=\alpha_{1} u_{1}+\cdots+\alpha_{m} u_{m} \in \widehat{V}$, the k-th column of the matrix $\nu(\phi(v))$ is the m-ple $\left(x_{1 k}, \ldots, x_{m k}\right)$ of the coordinates of α_{k} with respect to the basis u_{1}, \ldots, u_{m} of $\mathbb{F}_{q^{m}}$. From [16], the rank of v equals the rank of $\nu(\phi(v))$, for all $v \in \widehat{V}$. In addition, the ν-image of fundamental tensors is precisely the set of rank 1 matrices.

Remark 21. Evidently, ν is an isomorphism of rank metric spaces which also provides an isomorphism between the field reduction $V \otimes V$ of \widehat{V} with respect to u_{1}, \ldots, u_{m} and the metric space Ω of all bilinear forms on $V=\left\langle u_{1}, \ldots, u_{m}\right\rangle_{\mathbb{F}_{q}}$.

Now embed $V \otimes V$ into $\widehat{V} \otimes \widehat{V}$ by extending the scalars from \mathbb{F}_{q} to $\mathbb{F}_{q^{m}}$. By taking a Singer basis v_{1}, \ldots, v_{m} of V defined by the Singer cycle σ, Cooperstein [7] defined a cyclic model for $V \otimes V$ within $\widehat{V} \otimes \widehat{V}$ with basis $v_{(i, j)}=v_{i} \otimes v_{j}, i, j=1, \ldots, m$. Let

$$
\Phi(j)=\left\{\sum_{i=1}^{m} a^{q^{i-1}} v_{(i, j-1+i)}: a \in \mathbb{F}_{q^{m}}\right\},
$$

where the subscript $j-1+i$ is taken modulo m. As an \mathbb{F}_{q}-space, $\Phi(j)$ has dimension m and by consideration on dimension we have

$$
V \otimes V=\bigoplus_{j=1}^{m} \Phi(j) ;
$$

see [7]. We call this representation the cyclic representation of the tensor product $V \otimes V$.
Proposition 22. Let v_{1}, \ldots, v_{m} be a Singer basis of V and $\widetilde{\phi}$ be the map defined by

$$
\begin{array}{rccc}
\widetilde{\phi}=\phi_{\left\{v_{1}, \ldots, v_{m}\right\}}: & \widehat{V} & \widehat{V} \otimes \widehat{V} \\
& \alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m} & \longmapsto \sum_{i=1}^{m} \alpha_{1}^{q^{i-1}} v_{(i, i)}+\cdots+\sum_{i=1}^{m} \alpha_{m}^{q^{i-1}} v_{(i, m-1+i)} .
\end{array}
$$

Then $\operatorname{Im}(\widetilde{\phi})$ is precisely $\operatorname{Im}(\phi)$ within $\widehat{V} \otimes \widehat{V}$.
Proof. We notice that, for any given vector $u \in V$ we may write $u=\sum_{i=1}^{m} x_{i} u_{i}=$ $\sum_{i=1}^{m} a^{q^{i-1}} v_{i}$, for some $x_{i} \in \mathbb{F}_{q}, i=1, \ldots, m$ and $a \in \mathbb{F}_{q^{m}}$. Let $v=\sum_{i=1}^{m} \alpha_{i} v_{i} \in \widehat{V}$ be linear combination of k vectors of rank $1,1 \leqslant k \leqslant m$.

Assume first $k=1$, i.e. $v=\lambda\left(\sum_{i=1}^{m} a^{q^{i-1}} v_{i}\right)$, and set $\lambda=\sum_{i=1}^{m} l_{i} u_{i}, a=\sum_{i=1}^{m} x_{i} u_{i}$, with $l_{i}, x_{i} \in \mathbb{F}_{q}$. Therefore, $v=\lambda\left(\sum_{i=1}^{m} x_{i} u_{i}\right)$ and

$$
\begin{aligned}
\widetilde{\phi}(v) & =\left(\sum_{i=1}^{m} \lambda^{q^{i-1}} v_{i}\right) \otimes\left(\sum_{i=1}^{m} a^{q^{i-1}} v_{i}\right) \\
& =\left(\sum_{i=1}^{m} l_{i} u_{i}\right) \otimes\left(\sum_{i=1}^{m} x_{i} u_{i}\right) \\
& =\sum_{i=1}^{m} l_{i} x_{1} u_{(i 1)}+\cdots+\sum_{i=1}^{m} l_{i} x_{m} u_{(i m)} \\
& =\phi(v) .
\end{aligned}
$$

Now assume $v=\lambda_{1}\left(\sum_{i=1}^{m} a_{1}^{q^{i-1}} v_{i}\right)+\cdots+\lambda_{k}\left(\sum_{i=1}^{m} q_{k}^{q^{i-1}} v_{i}\right), k>1$. Set $\lambda_{j}=\sum_{i=1}^{m} l_{i j} u_{i}$, $a_{j}=\sum_{i=1}^{m} x_{i j} u_{i}$, with $l_{i j}, x_{i j} \in \mathbb{F}_{q}$. Therefore,

$$
v=\lambda_{1}\left(\sum_{i=1}^{m} x_{i 1} u_{i}\right)+\cdots+\lambda_{k}\left(\sum_{i=1}^{m} x_{i k} u_{i}\right)=\sum_{i=1}^{m}\left(\lambda_{1} x_{i 1}+\cdots+\lambda_{k} x_{i k}\right) u_{i}
$$

giving $\phi(v)=\sum_{i=1}^{m}\left(l_{i 1} x_{11}+\cdots+l_{i k} x_{1 k}\right) u_{(i, 1)}+\cdots+\sum_{i=1}^{m}\left(l_{i 1} x_{m 1}+\cdots+l_{i k} x_{m k}\right) u_{(i, m)}$.
On the other hand, we have

$$
\begin{aligned}
\widetilde{\phi}(v)= & \left(\sum_{i=1}^{m} \lambda_{1}^{q^{i-1}} v_{i}\right) \otimes\left(\sum_{i=1}^{m} a_{1}^{q^{i-1}} v_{i}\right)+\cdots+\left(\sum_{i=1}^{m} \lambda_{k}^{q^{i-1}} v_{i}\right) \otimes\left(\sum_{i=1}^{m} a_{k}^{q^{i-1}} v_{i}\right) \\
= & \left(\sum_{i=1}^{m} l_{i 1} u_{i}\right) \otimes\left(\sum_{i=1}^{m} x_{i 1} u_{i}\right)+\cdots+\left(\sum_{i=1}^{m} l_{i k} u_{i}\right) \otimes\left(\sum_{i=1}^{m} x_{i k} u_{i}\right) \\
= & \sum_{i=1}^{m} l_{i 1} x_{11} u_{(i 1)}+\cdots+\sum_{i=1}^{m} l_{i 1} x_{m 1} u_{(i m)}+\cdots \\
& +\sum_{i=1}^{m} l_{i k} x_{1 k} u_{(i 1)}+\cdots+\sum_{i=1}^{m} l_{i k} x_{m k} u_{(i m)} \\
= & \sum_{i=1}^{m}\left(l_{i 1} x_{11}+\cdots+l_{i k} x_{1 k}\right) u_{(i 1)}+\cdots+\sum_{i=1}^{m}\left(l_{i 1} x_{m 1}+\cdots+l_{i k} x_{m k}\right) u_{(i m)} \\
= & \phi(v) .
\end{aligned}
$$

We call the map $\widetilde{\phi}$ the field reduction of \widehat{V} over \mathbb{F}_{q} with respect to the Singer basis v_{1}, \ldots, v_{m} and its image the cyclic model for the field reduction of \widehat{V} over \mathbb{F}_{q}. The projective space whose points are the 1-dimensional \mathbb{F}_{q}-subspaces generated by the elements of $\widetilde{\phi}(\widehat{V})$ is the cyclic model for the field reduction of $\operatorname{PG}(\widehat{V})$ over \mathbb{F}_{q}.

Let $\widetilde{\nu}$ be the map defined by

$$
\widetilde{\nu}=\nu_{\left\{v_{1}, \ldots, v_{m}\right\}}: \begin{array}{clc}
\widehat{V} \otimes \widehat{V} & \longrightarrow & M_{m, m}\left(\mathbb{F}_{q^{m}}\right) \\
\sum_{i, j} x_{i j} v_{(i, j)} & \longrightarrow & \left(x_{i j} j_{i=1, \ldots, m, m}^{j=1, \ldots, m} .\right.
\end{array}
$$

Then, for any $v=\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m} \in \widehat{V}$, the matrix $\widetilde{\nu}(\widetilde{\phi}(v))$ is the Dickson matrix $D_{\left(\alpha_{1}, \ldots, \alpha_{m}\right)}$. Since the cyclic model for the field reduction of \widehat{V} is obtained from the field reduction $\phi(\widehat{V})$ by changing a basis in $\widehat{V} \otimes \widehat{V}$, we get that the rank of $\widetilde{\nu}(\widetilde{\phi}(v))$ equals the rank of $\nu(\phi(v))$, for any $v \in \widehat{V}$.

In addition, the element $k_{v}=\widetilde{\phi}(\langle v\rangle)$ of the m-partition \mathcal{K} is

$$
k_{v}=\left\{\sum_{i=1}^{m}\left(\lambda \alpha_{1}\right)^{q^{i-1}} v_{(i, i)}+\cdots+\sum_{i=1}^{m}\left(\lambda \alpha_{m}\right)^{q^{i-1}} v_{(i, m-1+i)}: \lambda \in \mathbb{F}_{q^{m}}\right\} .
$$

In particular, $\bigcup_{v \in V \backslash\{0\}} \widetilde{\nu}\left(k_{v}\right)$ is the set of all rank 1 matrices in $\mathcal{D}_{m}\left(\mathbb{F}_{q^{m}}\right)$.
From the arguments above, we see that the set $\mathcal{F}_{m, q ; I}$ can be considered, via the isomorphism (3), as the field reduction of the set $\mathcal{A}_{m, q ; I}$ with respect to the Singer basis v_{1}, \ldots, v_{m}.

As $\left[\pi_{1}\right]=[V]$, then the set $\mathcal{F}_{\pi_{1}}=\widetilde{\phi}\left(\pi_{1}\right)$ defines the Segre variety $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$ of $\operatorname{PG}(V \otimes V)$ and $\mathcal{F}_{\pi_{a}}$ defines a Segre variety projectively equivalent to $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$ under the element of $\operatorname{PGL}(V \otimes V)$ corresponding to the linear transformation τ_{α} with $N(\alpha)=a$.
Remark 23. Note that, whenever $a \neq 1$, elements in $\mathcal{F}_{\pi_{a}}$ have rank bigger than 1 by Lemma 10. This is explained by the fact that the linear transformation of $V \otimes V=$ $V\left(m^{2}, q\right)$ corresponding to τ_{α} is not in $\operatorname{Aut}_{\mathbb{F}_{q}}(V \otimes V)$.

Let $W=\left\langle v_{1}, v_{m}\right\rangle \subset \widehat{V}$. Then $\widetilde{\phi}(W)$ is a $2 m$-dimensional vector subspace of $V \otimes V$. In $[\widetilde{\phi}(W)]$, the set $\left[\widetilde{\phi}\left(J_{1}\right)\right]$ is the Bruck norm-surface

$$
\mathcal{N}=\mathcal{N}_{(-1)^{m}}=\left\{\left[\widetilde{\phi}\left(x v_{1}+y v_{m}\right)\right]: x, y \in \mathbb{F}_{q^{m}}, N(y / x)=(-1)^{m}\right\}
$$

introduced in [3] and widely investigated in [4, 5] and recently in [10, 23]. For any $x \in \mathbb{F}_{q^{m}} \backslash\{0\}$ set $J_{x}=\left\{\lambda x v_{1}-\lambda x^{q^{m-1}} v_{m}: \lambda \in \mathbb{F}_{q^{m}}\right\}$. Then $\left[\widetilde{\phi}\left(J_{x}\right)\right] \subset \mathcal{N}$ and the set $\left\{\left[\widetilde{\phi}\left(J_{x}\right)\right]: x \in \mathbb{F}_{q^{m}}\right\}$ is a so-called hyper-regulus of $\operatorname{PG}(\widetilde{W})$ [30]. It turns out, that under the linear transformation τ_{α} with $N(\alpha)=a$, also J_{a} defines a hyper-regulus of $[\widetilde{\phi}(W)]$.

The following result, which summarizes all above arguments, gives a geometric description of the MRD codes $\mathcal{F}_{m, q ; I}$.

Theorem 24. Let $q>2$ be a prime power and $m>2$ a positive integer. Let I be any nonempty subset of $\mathbb{F}_{q} \backslash\{0,1\}$ with $k=|I|$. The projective image of the MRD code $\mathcal{F}_{m, q ; I}$ in $\mathrm{PG}\left(m^{2}-1, q\right)$ is a subset of a Desarguesian spread which is union of two spread elements, k mutually disjoint Segre varieties $\mathcal{S}_{m, m}\left(\mathbb{F}_{q}\right)$ and $q-1-k$ mutually disjoint hypereguli all contained in the $(2 m-1)$-dimensional projective subspace generated by the two spread elements.

4 The Cossidente-Marino-Pavese non-linear MRD code

Recently, Cossidente, Marino and Pavese constructed non-linear ($3,3, q ; 1$)-MRD codesin a totally geometric setting [8, Theorem 3.6].

In $\operatorname{PG}\left(2, q^{3}\right), q \geqslant 3$, let \mathcal{C} be the set of points whose coordinates satisfy the equation $X_{1} X_{2}^{q}-X_{3}^{q+1}=0$, that is a C_{F}^{1}-set of $\mathrm{PG}\left(2, q^{3}\right)$ as introduced and studied in [13]. The set \mathcal{C} is the projective image of a subset of $V\left(3, q^{3}\right)$ which is the union of $A_{1}, A_{2}^{\prime}=\{(0, x, 0)$: $\left.x \in \mathbb{F}_{q^{3}} \backslash\{0\}\right\}$ and the $q-1$ sets $\gamma_{a}=\left\{\left(\lambda,, \lambda x^{q+1}, \lambda x^{q}\right): \lambda, x \in \mathbb{F}_{q^{3}} \backslash\{0\}, N(x)=a\right\}$, with a a nonzero element of \mathbb{F}_{q}.

For any nonzero $a \in \mathbb{F}_{q}$, let $\alpha \in \mathbb{F}_{q^{3}}$ with $N(\alpha)=a$ and set $Z_{a}=\left\{\left(\lambda x,-\lambda \alpha x^{q}, 0\right)\right.$: $\left.\lambda, x \in \mathbb{F}_{q^{3}} \backslash\{0\}\right\}$. Let I be any non-empty subset of $\mathbb{F}_{q} \backslash\{0,1\}$ and put

$$
\mathcal{A}^{\prime}(q ; I)=\bigcup_{a \in I} \gamma_{a} \bigcup_{b \in \mathbb{F}_{q} \backslash(I \cup\{0\})} Z_{b} \cup A_{1} \cup A_{2}^{\prime} \cup\{\mathbf{0}\} .
$$

Up to an endomorphism of $V \otimes V$ viewed as the vector space $V(9, q)$, the image of set $\mathcal{A}^{\prime}(q ; I)$ under $\nu \circ \phi$ is a non-linear $(3,3, q ; 1)$-MRD code [8, Proposition 3.8].
Lemma 25. Let θ be the semilinear transformation of $V\left(3, q^{3}\right)$ defined by

$$
\theta: \begin{array}{rlll}
\theta: & v_{1} & \mapsto & v_{3} \\
& v_{2} & \mapsto & v_{1} \\
& v_{3} & \mapsto & v_{2}
\end{array}
$$

with associated automorphism $x \mapsto x^{q^{2}}$. Then θ maps γ_{a} into $\pi_{a^{-1}}$ and Z_{a} into $J_{a^{-1}}$, for any nonzero element a of \mathbb{F}_{q}.
Proof. Every element $x \in \mathbb{F}_{q^{3}}$ with $N(x)=a$ can be written as $x=\alpha t^{q-1}$ for some $t \in \mathbb{F}_{q^{3}}$ and α a fixed element in $\mathbb{F}_{q^{3}}$ such that $N(\alpha)=a$. By straightforward calculations, we may write $\gamma_{a}=\left\{\left(\lambda x, \lambda \alpha^{q+1} x^{q}, \lambda \alpha^{q} x^{q^{2}}\right): \lambda, x \in \mathbb{F}_{q^{3}}\right\}$. Then, we get $\theta\left(\gamma_{a}\right)=$ $\left\{\left(\lambda x, \lambda\left(\alpha^{-1}\right)^{q^{2}} x^{q}, \lambda\left(\alpha^{-1}\right)^{\left(q^{2}+1\right)} x^{q^{2}}\right): \lambda, x \in \mathbb{F}_{q^{3}}\right\}=\pi_{a^{-1}}$ as $N\left(\alpha^{-q^{2}}\right)=N\left(\alpha^{-1}\right)=a^{-1}$.

The last part of the statement follows from straightforward calculations.
Corollary 26. Let I be any non-empty subset I of $\mathbb{F}_{q} \backslash\{0,1\}$ and put $I^{-1}=\left\{a^{-1}: a \in I\right\}$. Then, up to the endomorphism θ of $V\left(3, q^{3}\right)$ and the changing of basis in $V\left(3, q^{3}\right) \otimes V\left(3, q^{3}\right)$ from $u_{(i, j)}$ to $v_{(i, j)}$, the Cossidente-Marino-Pavese family of non-linear MRD codes is the set $\mathcal{F}_{3, q, I^{-1}}$.

Let L be any line of $\operatorname{PG}\left(2, q^{3}\right)$ disjoint from a subgeometry $\operatorname{PG}(2, q)$. The set of points of L that lie on some proper subspace spanned by points of $\operatorname{PG}(2, q)$ is called the exterior splash of $\mathrm{PG}(2, q)$ on $L[25]$.
Proposition 27. [10] The exterior splash of the subgeometry $\left[\pi_{a}\right]$ on the line $[W]$ is the set $\left[J_{b}\right]$ with $b=a^{m-1}$.
Proof. First we note that $[W]$ is disjoint from $\left[\pi_{1}\right]$. The $\mathbb{F}_{q^{m}}$-span of some hyperplane in the cyclic model of V is a hyperplane of \widehat{V} with equation $\sum_{i=1}^{m} \alpha^{q^{i-1}} X_{i}=0$, for some nonzero $\alpha \in \mathbb{F}_{q^{m}}$. As the Singer cycle σ acts on the hyperplanes of V by mapping the hyperplane with equation $\sum_{i=1}^{m} \alpha^{q^{i-1}} X^{q^{i-1}}=0$ to the hyperplane with equation $\sum_{i=1}^{m}(\mu \alpha)^{q^{i-1}} X^{q^{i-1}}=0$, then σ maps the hyperplane of \widehat{V} with equation $\sum_{i=1}^{m} \alpha^{q^{i-1}} X_{i}=0$ into the hyperplane with equation $\sum_{i=1}^{m}(\mu \alpha)^{q^{i-1}} X_{i}=0$. Note that σ fixes W.

The hyperplane $\sum_{i=1}^{m} X_{i}=0$ of \widehat{V} meets W in the $\mathbb{F}_{q^{m}}$-subspace spanned by $v_{1}-v_{m}$. By looking at the action of the Singer cyclic group $S=\langle\sigma\rangle$ on W, we see that the exterior splash of $\left[\pi_{1}\right]$ on $[W]$ is the set $\left[J_{1}\right]$. By using he map τ_{α} defined above with $N(\alpha)=a$, we get the result.
Remark 28. Let U be the $\mathbb{F}_{q^{m}-\text { span }}$ of v_{1} and v_{2} in \widehat{V}. It is evident that the semilinear transformation θ maps the exterior splash of $\left[\gamma_{a}\right]$ on $[U]$ into the exterior splash of $\left[\pi_{a^{-1}}\right]$ on $[W]$.

The exterior splash of $\left[\gamma_{a}\right]$ on $[U]$ is

$$
\left[\gamma_{a}\right]=\left\{[(1, x, 0)]: x \in \mathbb{F}_{q^{3}}, N(x)=-a^{2}\right\} .
$$

In [8], the splash of $\left[\gamma_{a}\right]$ was erroneusly given as the set $\left[Z_{a}\right]$. Note that, $\left[Z_{a}\right]$ never coincides with $\left[\gamma_{a}\right]$, unless $a=1$.

References

[1] D. Augot, P. Loidreau, G. Robert, Rank metric and Gabidulin codes in characteristic zero, Proceedings ISIT 2013, 509-513.
[2] L. Bader, G. Lunardon, Some remarks on the Spin Module Representation of $\mathrm{Sp}_{6}\left(2^{e}\right)$, Discrete Math. 339 (2016), 1265-1273.
[3] R.H. Bruck, Construction problems of finite projective planes, in: Proc. Conf. on Combinatorics, University of North Carolina at Chapell Hill, April 10-14, 1967, University of North Carolina Press, Chapel Hill, 1969, pp. 426-514.
[4] R.H. Bruck, Circle geometry in higher dimensions. II. Geometriae Dedicata 2 (1973), 133-188.
[5] R.H. Bruck, The automorphism group of a circle geometry, J. Combin. Theory Ser. A 32 (1982), 256-263.
[6] L. Carliz, A Note on the Betti-Mathieu group, Portugaliae mathematica 22 (3) (1963), 121-125.
[7] B.N. Cooperstein, External flats to varieties in PG($\left.M_{n, n} \mathrm{GF}(q)\right)$, Linear Algebra Appl. 267 (1997), 175-186.
[8] A. Cossidente, G. Marino, F. Pavese, Non-linear maximum rank distance codes, Des. Codes Cryptogr., 79 (3) (2016), 597-609.
[9] J. de la Cruz, M. Kiermaier, A. Wassermann, W. Willems, Algebraic structures of MRD Codes, Adv. Math. Commun. 10 (2016), 499-510.
[10] B. Csajbók, C. Zanella, On scattered linear sets of pseudoregulus type in $\operatorname{PG}\left(1, q^{t}\right)$, Finite Fields Appl. 41 (2016), 34-54.
[11] Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226-241.
[12] P. Dembowski, Finite Geometries. Springer 1968.
[13] G. Donati, N. Durante, Scattered linear sets generated by collineations between pencils of lines, J. Algebraic Combin. 40 (2014), 1121-1134.
[14] R.H. Dye, Spreads and classes of maximum subgroups of $\mathrm{GL}_{n}(q), \mathrm{SL}_{n}(q), \mathrm{PGL}_{n}(q)$ and $\mathrm{PSL}_{n}(q)$, Ann. Mat. Pura Appl. (4) 158 (1991), 33-50.
[15] G. Faina, G. Kiss, S. Marcugini, F. Pambianco, The cyclic model for PG($n, q)$ and a construction of arcs, European J. Combin. 23 (2002), 31-35.
[16] E.M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii 21 (1985), 3-16.
[17] E.M. Gabidulin, A.V. Paramonov, O.V. Tretjakov, Ideals over a noncommutative ring and their application in cryptology, Advances in cryptology, EUROCRYPT '91, Lecture Notes in Comput. Sci. 547 (1991), 482-489.
[18] E.M. Gabidulin, A.V. Paramonov, O.V. Tretjakov, Rank errors and rank erasures correction, Proceedings of the 4th International Colloquium on Coding Theory, Dilijan, Armenia, Yerevan, 1992, pp. 11-19.
[19] J.W.P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edn, Clarendon Press, Oxford, 1998.
[20] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford University Press, New York, 1991.
[21] A. Kshevetskiy and E. M. Gabidulin, The new construction of rank codes, Proc. IEEE Int. Symp. on Information Theory,pp. 2105-2108, Sept. 2005.
[22] R. Kötter, F. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory 54 (2008), 3579-3591.
[23] M. Lavrauw, J. Sheekey, C. Zanella, On embeddings of minimum dimension of $\mathrm{PG}(n, q) \otimes \mathrm{PG}(n, q)$, Des. Codes Cryptogr. 74 (2015), 427-440.
[24] M. Lavrauw, G. Van de Voorde, Scattered linear sets and pseudoreguli, Electron. J. Combin. 20(1) (2013), \#P15.
[25] M. Lavrauw, C. Zanella, Subgeometries and linear sets on a projective line, Finite Fields Appl. 34 (2015), 95-106.
[26] R. Lidl, H. Niederreiter, Finite fields. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
[27] G. Lunardon, MRD-codes and linear sets, J. Combin. Theory Ser. A 149 (2017), 1-20.
[28] G. Lunardon, R. Trombetti, Y. Zhou, Generalized twisted Gabidulin codes, preprint, arXiv:1507. 07855.
[29] G. Marino, O. Polverino, R. Trombetti, Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n, n}$, J. Algebraic Combin. 39 (2014), no. 4, 807-831.
[30] T.G. Ostrom, Hyper-reguli, J. Geom. 48 (1993), 157-166.
[31] O. Polverino, Linear sets in finite projective spaces, Discrete Math. 310 (2010), 30963107.
[32] A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr. 80 (2016), 197-216.
[33] S. Roman, Field theory. Graduate Texts in Mathematics, 158. Springer, New York, 2006.
[34] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1-76.
[35] J. Sheekey, A new family of linear maximum rank distance codes, Adv. Math. Commun. 10 (2016), 475-488.
[36] D. Silva, F.R. Kschischang, Universal Secure Network Coding via Rank-Metric Codes, IEEE Trans. Inform. Theory 57 (2011), 1124-1135.
[37] D. Silva, F.R. Kschischang, R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory 54 (2008), 3951-3967.
[38] V. Tarokh, N. Seshadri, A.R. Calderbank, Space-time codes for high data rate wireless communication: performance criterion and code construction, IEEE Trans. Inform. Theory 44 (1998), 744-765.
[39] B. Wu, Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013), 79-100.

