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Abstract

An intersection graph defines an adjacency relation between subsets S1, . . . , Sn
of a finite set W = {w1, . . . , wm}: the subsets Si and Sj are adjacent if they inter-
sect. Assuming that the subsets are drawn independently at random according to
the probability distribution P(Si = A) = P (|A|)

(
m
|A|
)−1

, A ⊆W , where P is a prob-

ability on {0, 1, . . . ,m}, we obtain the random intersection graph G = G(n,m,P ).
We establish the asymptotic order of the clique number ω(G) of a sparse random

intersection graph as n,m→ +∞. For m = Θ(n) we show that the maximum clique
is of size

(1− α/2)−α/2n1−α/2(lnn)−α/2(1 + oP (1))

in the case where the asymptotic degree distribution of G is a power-law with
exponent α ∈ (1, 2). It is of size lnn

ln lnn(1 + oP (1)) if the degree distribution has
bounded variance, i.e., α > 2. We construct a simple polynomial-time algorithm
which finds a clique of the optimal order ω(G)(1− oP (1)).

Keywords: clique; random intersection graph; greedy algorithm; complex network;
power-law; clustering

1 Introduction

Bianconi and Marsili [5] observed that “scale-free” real networks can have very large
cliques; they gave an argument suggesting that the clique number can grow polynomially
with graph order n if the degree variance is unbounded. Using a more precise analysis,
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Janson,  Luczak and Norros [14] established exact asymptotics for the clique number in a
power-law random graph model where edge probabilities are proportional to the product
of weights of their endpoints.

Another feature of a real network that affects formation of cliques is the clustering
property: the probability of a link between two randomly chosen vertices increases dra-
matically after we learn about the presence of their common neighbour [24], [25]. An
interesting question is about tracing the relation between the clustering property and the
clique number in a power-law network. This question is addressed in the present paper:
we show precise asymptotics for the clique number of a related random intersection graph
G(n,m, P ), which admits a tunable clustering coefficient and power-law degree distribu-
tion [6, 7, 8, 9]. We find that the effect of clustering on the clique number only shows up
for the degree sequences having finite variance. In particular, for a finite variance power-
law (asymptotic) degree, the clique number of G(n,m, P ) is lnn

ln lnn
(1 + oP (1)) while the

clique number of the random graph of [14] is at most 4. We note that the random graph
of [14] has conditionally independent edges and does not possess the clustering property.
For a power-law (asymptotic) degree with infinite variance the clique number asymptotics
for both random graphs are the same.

In the language of hypergraphs, the question considered in the paper is about the size
of the largest intersecting family in a random hypergraph on the vertex set [m], where n
identically distributed hyperedges are of random sizes distributed according to P .

The paper is organized as follows. In this section we collect several facts about the
random intersection graph G(n,m, P ) and present our main results on the clique number
asymptotics. Proofs of these results are given in Sections 2 and 3. In Section 4 we present
and rigorously analyse algorithms for finding large cliques.

Random intersection graphs first studied by Karoński, Scheinerman and Singer-Cohen
[16] are convenient models of affiliation networks, a class of social networks where two
actors are declared adjacent if they share some common attributes [24]. We denote by
V = {v1, . . . , vn} the set of vertices (actors of the network). Vertices are represented by
the collections of attributes S1, . . . , Sn selected by actors independently at random from
the attribute set W = {w1, . . . , wm} according to the probability distribution P(Si = A) =

P (|A|)
(
m
|A|

)−1
, A ⊆ W . Here P is the probability distribution of the sizes Xi := |Si| of the

attribute sets. We interpret X1, . . . , Xn as weights modelling the actors’ activity. This
model has been introduced by Godehardt and Jaworski [12]. It is related to the random
graph of [14]: in both models, given the weights, edge probabilities are (approximately)
proportional to the product of weights of their endpoints. Consequently, their degree
sequences behave in a similar way. A distinctive feature of G(n,m, P ) is that it admits a
nonvanishing tunable clustering coefficient, defined in (5) below. Analysis and detection
of large cliques in social networks is another source of motivation of our study.

Formally, we will consider a sequence {G(n)} = {G(n), n = 1, 2, . . . } of random
intersection graphs G(n) = G(n,m, P ), where P = P (n) and m = m(n) → +∞ as
n → +∞. Let X = X(n) denote a random variable distributed according to P (n) and
define Y = Y (n) :=

√
n
m
X(n). If not explicitly stated otherwise, the limits below will be

taken as n→ +∞. We use the standard notation o(), O(), Ω(), Θ(), oP (), OP (), see, for
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example, [15]. For positive sequences (an), (bn) we write an ∼ bn if an/bn → 1, an � bn if
an/bn → 0. For a sequence of events {An}, we say that An occurs with high probability
(whp), if P(An)→ 1.

Assuming that Y (n) converges in L1 to some random variable Y0 with EY0 <∞ one
can show that the degree of the typical vertex of G(n), equivalently, the degree D1 =
D1(n) of vertex v1 ∈ V , converges in distribution to a Poisson mixture: P(D1 = k) →
E eλλk/k!, k = 0, 1, . . . , see [7]. Here λ = Y0EY0 is a random variable. Since the Poisson
distribution is tightly concentrated around its mean, one can show that the asymptotic
degree distribution is power-law with an exponent α > 1 whenever the distribution of Y0
is. For our purposes the weak convergence to a power law is not sufficient as we need a
tight control on the tail P(Y (n) > k) for k ≈ n1/2. To this aim we introduce the following
condition: given α > 0 and slowly varying function L there is ε0 > 0 such that for each
sequence {xn} with n0.5−ε0 6 xn 6 n0.5+ε0 we have

P (Y (n) > xn) ∼ L(xn)x−αn . (1)

Our first result concerns the power-law random intersection graph G(n,m, P ) with infinite
degree variance. Its conditions are formulated in terms of parameters defining the random
graph.

Theorem 1.1. Let m,n → +∞. Let 1 < α < 2. Assume that {G(n)} is a sequence of
random intersection graphs. Suppose that {Y (n)} satisfies condition (1) and

EY (n) = O(1). (2)

Suppose that for some β > max{2 − α, α − 1} we have m = m(n) = Ω(nβ). Then the
clique number of G(n) is

ω(G(n)) = (1− α/2)−α/2 L
(
(n lnn)1/2

)
n1−α/2(lnn)−α/2(1 + oP (1)). (3)

We note that (1) and (3) refer to the same function L. For L ≡ 1 we obtain Pareto
tails. We remark that condition (1) can be replaced by a related condition (6) on the tail
of the degree distribution, see Lemma 1.5 below.

The asymptotics in (3) turn out to be the same as in the model of Janson,  Luczak
and Norros [14] with corresponding parameters. Let us mention that the lower bound for
ω(G(n)) follows by an argument of [14]: a clique of order (3) is formed by vertices v ∈ V
with largest set sizes |Sv|. To show a matching upper bound we developed a method
based on a result of Alon, Jiang, Miller and Pritkin [2] in extremal combinatorics. Among
several auxiliary combinatorial lemmas, Lemma 2.10 about distinct representatives may
be of an independent interest.

In the case where the degree distribution has bounded variance, in addition to de-
termining the asymptotic order of ω(G(n)), we also describe the structure of a maximal
clique. To this aim, it is convenient to interpret attributes w ∈ W as colours. The set of
vertices Tw = {v ∈ V : w ∈ Sv} induces a clique in G(n) which we denote also Tw. We
say that every edge of Tw receives colour w and call this clique monochromatic. Note that
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the edges of G(n) are covered by the union of monochromatic cliques Tw, w ∈ W . We
denote the size of the largest monochromatic clique by ω′(G(n)). Another, out of many
ways, when a clique on S ⊆ V arises, is when G(n) contains a rainbow clique on S: for
each pair of vertices {x, y} ⊆ S we can assign a different attribute w = w{x,y} such that
x, y ∈ Tw. The size of the largest rainbow clique in G(n) will be denoted by ωR(G(n)).
Clearly, ω(G(n)) > max{ω′(G(n)), ωR(G(n))}.

Theorem 1.2. Let m,n→ +∞. Assume that {G(n)} is a sequence of random intersec-
tion graphs satisfying (2). Suppose V arY (n) = O(1). Then

ω(G(n)) = ω′(G(n)) +OP (1).

If, additionally, for some positive sequence {εn} converging to zero we have

nP(Y (n) > εnn
1/2)→ 0, (4)

then ω(G(n)) = max{ω′(G(n)), ωR(G(n))} and ωR(G(n)) 6 3 whp.

By Markov’s inquality, condition (4) is satisfied by a uniformly square integrable se-
quence {Y (n)}.

Next, we state a result about the size of the largest monochromatic clique. For this
purpose we can relate the random intersection graph to the balls in bins model. Let every
vertex v ∈ V throw |Sv| balls into the bins w1, . . . , wm uniformly at random, subject to the
condition that every bin receives at most one ball from each vertex. Then ω′(G(n)) counts
the maximum number of balls contained in a bin. Let M(N,m) denote the maximum
number of balls contained in any of m bins after N balls were thrown into m bins uniformly
and independently at random. The asymptotics of M(N,m) are well known, see, e.g.,
Section 6 of Kolchin et al [17].

Denote by dTV (ξ, η) = 2−1
∑

i>0 |P(ξ = i) − P(η = i)| the total variation distance
between probability distributions of non-negative integer valued random variables ξ and
η.

Lemma 1.3. Assume that {G(n)} is a sequence of random intersection graphs satisfying
m = Ω(n), EY (n) = Θ(1) and V arY (n) = O(1). Then

dTV (ω′(G(n)),M(bnEX(n)c,m))→ 0.

The proof of Lemma 1.3 is straightforward, but technical; it can be found in [18]. The
case m = o(n) is omitted, since:

Remark 1.4. No sequence of random intersection graphs {G(n)} satisfiesm = o(n), EY (n)
= Θ(1) and V arY (n) = O(1) simultaneously.

Proof. Suppose the above relations are satisfied. Since X = X(n) is a non-negative
integer, we have EX2 > EX. But EX2 = O(m/n) and EX = Θ((m/n)1/2), so EX2 =
o(EX), a contradiction.
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Let us discuss the relation between the clique number and the clustering coefficient.
We recall that the (global) clustering coefficient of a graph G is the conditional probability

P(v∗1 ∼ v∗2|v∗1 ∼ v∗3, v
∗
2 ∼ v∗3), (5)

where (v∗1, v
∗
2, v
∗
3) is a triple of vertices of G drawn uniformly at random and v∗i ∼ v∗j is the

event that v∗i and v∗j are adjacent in G. It was shown in [7] that the clustering coefficient
of G(n,m, P ) approximately equals to

EX(n)

EX(n)2
=

n1/2EY (n)

m1/2EY 2(n)
.

In particular, it attains a non-trivial asymptotic value when m = Θ(n) and EY 2(n)
= Θ(1). In the latter case Theorem 1.2 and Lemma 1.3 together with the asymptotics
for M(N,m) (Theorem II.6.1 of [17]), imply that

ω(G(n)) =
lnn

ln lnn
(1 + oP (1)) .

It is here where the positive clustering coefficient comes into play: sparse random in-
tersection graphs have cliques of unbounded size even when V ar(D1(n)) = Θ(1), see
Lemma 1.7(i). In contrast, the clique number of a sparse Erdős-Rényi random graph
G(n, c/n) is at most 3, and in the model of [14], with bounded degree variance, the
largest clique whp has at most 4 vertices.

For both of our main results, Theorem 1.1 and Theorem 1.2, we have corresponding
simple polynomial-time algorithms that construct a clique of the optimal order whp. For
a power-law graph with α ∈ (1, 2), it is the greedy algorithm of [14]: sort vertices in
descending order according to their degree; traverse vertices in that order and “grow” a
clique, by adding a vertex if it is connected to each vertex in the current clique. For a
graph with bounded degree variance we propose the following algorithm: for each pair of
adjacent vertices, check if their common neighbours form a clique. Output the vertices of
a largest such clique together with the corresponding pair. More details and analysis of
each of the algorithms are given in Section 4 below.

In practical situations a graph may be assumed to be distributed as a random inter-
section graph, but information about the subset size distribution may not be available. In
such a case, instead of condition (1) for the tail of the normalised subset size Y (n), we may
consider a similar condition for the tail of D1(n): there are constants α′ > 1, ε′ > 0 and a
slowly varying function L′(x) such that for any sequence tn with n1/2−ε′ 6 tn 6 n1/2+ε′

P(D1(n) > tn) ∼ L′(tn)t−α
′

n . (6)

The following two lemmas are proved in [18]. Let IA be the indicator of A.

Lemma 1.5. Assume that {G(n)} is a sequence of random intersection graphs such that
for some ε > 0 we have

EY (n)IY (n)>n1/2−ε → 0. (7)
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Suppose that either (EY (n))2 or ED1(n) converges to a positive number, say, d.
Then both limits exist and are equal, limED1(n) = lim(EY (n))2 = d. Furthermore,

the condition (6) holds if and only if (1) holds. In that case, α′ = α and L′(t) = dα/2L(t).

Thus, under a mild additional assumption (7), condition (1) of Theorem 1.1 can be
replaced by (6). Similarly, the condition V arY (n) = O(1) of Theorem 1.2 can be replaced
by the condition V arD1(n) = O(1).

Lemma 1.6. Assume that {G(n)} is a sequence of random intersection graphs and for
some positive sequence {εn} converging to zero we have

EY 2(n)IY (n)>εnn1/2 → 0. (8)

Suppose that either EY (n) = Θ(1) or ED1(n) = Θ(1). Then

ED1(n) = (EY (n))2 + o(1) (9)

V arD1(n) = (EY (n))2(V arY (n) + 1) + o(1). (10)

Our last lemma exposes a close relationship between Y (n) and D1(n) for m = Θ(n)
under a natural uniform integrability requirement. A recent further work [19] on general
sparse random graphs shows that uniform integrability of an appropriate degree moment
is a necessary and sufficient condition to be able to approximate global subgraph count
statistics by a small number of local samples.

Lemma 1.7. Assume that {G(n)} is a sequence of random intersection graphs, m→ +∞.
Let k be a positive integer.

(i) Assume m = Θ(n). Then ED1(n)k = Θ(1) and D1(n)k is uniformly integrable if
and only if EY (n)k = Θ(1) and Y (n)k is uniformly integrable.

(ii) Assume m = o(n). If ED1(n) = Θ(1) then D1(n) is not uniformly integrable.

Let us end the introduction by a discussion of some related literature. The largest
intersecting subset problem for uniform hypergraphs was considered by Balogh, Bohman
and Mubayi [3]. Although the motivation and the approach of [3] are different from ours,
their result yields Theorem 1.2 for sparse and dense uniform random intersection graphs
(where all sets have the same deterministic size).

Small cliques in random intersection graphs were studied in [16], where edge density
thresholds for emergence of constant size cliques were determined, and in [23], where the
Poisson approximation to the distribution of the number of small cliques was established.
The clique number was studied by Nikoletseas, Raptopoulos and Spirakis [21], see also
Behrisch, Taraz and Ueckerdt [4], in the case, where m ≈ nβ, for some 0 < β < 1. We
note that the papers [4, 16, 21, 23] considered a particular random intersection graph with
the binomial distribution P ∼ Bin(m, p). Sparse graphs G(n,m, P ) with P ∼ Bin(m, p)
and m = o(n) are covered by our Theorem 1.2. However, they are not very interesting:
they consist of n − oP (n) isolated vertices, see the proof of Lemma 1.7(ii). Meanwhile,
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our results include the case m = Ω(n). They were obtained independently of [3, 4, 21]1.
In the bounded variance regime we, as well as [3, 4, 21], discovered the same universal
phenomenon: the largest clique is whp formed by a single attribute.

Similarly as in [5, 14], we have a kind of “phase transition” as the tail index α for the
random subset size (or vertex degree) varies, see (1). Assume, for example, that m = Θ(n)
and P is asymptotically a Pareto distribution. When α < 2, the random graph G(n,m, P )
whp contains cliques of only logarithmic size. When α > 2, it whp contains a “giant”
clique of polynomial size. It would be interesting to determine the clique number in the
case α = 2. Our proofs in Section 2 and the results of [3] show that as G(n) becomes
denser, the property that the largest clique is generated by a single attribute ceases to
hold. For such dense G(n) the exact asymptotics of ω(G(n)) remains an interesting open
problem (but see the recent work [11] and the references therein).

2 Power-law tails

2.1 Proof of Theorem 1.1

We start by introducing some notation. Given a family of subsets {Sv, v ∈ V ′} of an
attribute set W ′, we denote by G(V ′,W ′) the intersection graph on the vertex set V ′

defined by this family: u, v ∈ V ′ are adjacent (denoted u ∼ v) whenever Su ∩ Sv 6= ∅.
Let H = (VH , EH) be a hypergraph where the set of (hyper-)edges EH can be a multiset.
Recall that for w ∈ W ′, Tw = {v ∈ V ′ : w ∈ Sv}. We say that G = G(V ′,W ′) contains
a copy of H on S ⊆ V ′ if there is a bijection σ : VH → S and an injection f : EH → W ′

such that σ(e) ⊆ Tf(e) for each e ∈ EH . Here σ(e) = {σ(x) : x ∈ e}. A hypergraph
H corresponds to a graph C(H) on the vertex set VH , obtained by replacing each edge
e ∈ EH with a clique on e (we merge repeated edges). H is called a clique cover of
C(H). G contains a subgraph isomorphic to G′ if and only if it contains a copy of some
clique cover of G′, see [16]. The number of copies, Q(H,G) of H in G is the number of
different tuples (S, σ, f) that realise a copy of H in G. For v ∈ VH , its degree in H is
dH(v) = |{e ∈ EH : v ∈ e}|. If G contains a copy of H, where H is a graph (each edge is a
pair), we say that G contains a rainbow H; this extends the above definition of a rainbow
clique. The next simple bound generalises an estimate obtained by Karoński et al [16].

Lemma 2.1. Let H be any hypergraph with h vertices of degrees d1, . . . , dh. Suppose H
has k edges. Let G = G(n,m, P ) be a random intersection graph, and let X be distributed
according to P .

EQ(H,G) 6 nhmk

h∏
i=1

EXdi

mdi
.

Proof. Let S1, . . . , Sn be the random sets of G. Given |Si|, the probability that the set
Si contains di fixed attributes is (|Si|)di/(m)di . Thus, the probability that a copy of H is

1 They were first presented at the Lithuanian young scientists’ conference in February, 2012, see [13].
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realised by fixed σ and f is

E
h∏
i=1

(|Si|)di
(m)di

6
h∏
i=1

EXdi

mdi
.

The claim follows by summing over all (m)k = m(m− 1) . . . (m− k + 1) choices of σ and
(n)h choices of f .

We denote by e(G) the size of the set E(G) of edges of a graph G. Given two graphs
G = (V (G), E(G)) and R = (V (R), E(R)) we denote by G ∨ R the graph on vertices
V (G)∪V (R) and with edges E(G)∪E(R). In what follows we assume that V (G) = V (R)
unless stated otherwise. Let t be a positive integer and let R be an arbitrary graph on the
vertex set V ′. Assuming that subsets Sv, v ∈ V ′ are drawn at random, introduce the event
Rainbow(G(V ′,W ′), R, t) that the graph G(V ′,W ′)∨R has a clique H of size |V (H)| = t
with the property that every edge e = xy of the set E(H) \ E(R) can be prescribed an
attribute we such that x, y ∈ Twe so that all prescribed attributes are different.

In the case where every vertex v of the random intersection graph G(n,m, P ) includes
attributes independently at random with probability p = p(n), the size |Sv| of the attribute
set has binomial distribution P ∼ Bin(m, p). We denote such graph G(n,m, p) and call
it a binomial random intersection graph. We note that for mp → +∞ the sizes |Sv| of
random sets are concentrated around their mean value E |Sv| = mp. An application of
Chernoff’s bound (see, e.g., [20])

P(|B −mp| > εmp) 6 2e−
1
3
ε2mp, (11)

where B is a binomial random variable B ∼ Bin(m, p) and 0 < ε < 3/2, implies

P(∃v ∈ [n] : ||Sv| −mp| > y) 6 nP(||Sv| −mp| > y)→ 0 (12)

for any y = y(n) such that y/
√
mp lnn→ +∞ and y/(mp) < 3/2.

Let us prove Theorem 1.1. For a number ε1 ∈ (0, ε0), where ε0 is defined in (1), and
each n define subgraphs Gi ⊆ G(n), i = 0, 1, 2, induced by the vertex sets

V0 = V0(n) = {v ∈ V (G(n)) : |Sv| < θ1};
V1 = V1(n) = {v ∈ V (G(n)) : θ1 6 |Sv| 6 θ2};
V2 = V2(n) = {v ∈ V (G(n)) : θ2 < |Sv|},

respectively. Here

θ1 = θ1(n) = m1/2n−ε1 ; θ2 = θ2(n) = ((1− α/2)m lnn+me1)
1/2 ,

with e1 = e1(n) = max(0, lnL((n lnn)1/2)). Note that e1 = 0 if L(x) = 1 is constant.
Write

K = K(n) = L
(
(n lnn)1/2

)
n1−α/2(lnn)−α/2.

We will prove three lemmas. Let β be as in Theorem 1.1.
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Lemma 2.2. ω(G2) > (1− oP (1)) (1− α/2)−α/2K.

Lemma 2.3. If ε1 <
β
6

then there is δ > 0 such that P
(
ω(G0) > n1−α/2−δ)→ 0.

Lemma 2.4. If ε1 <
β−2+α

24
then ω(G1) = oP (K).

Our proof of Lemma 2.3 (Lemma 2.4) works for any m = Ω(nβ) with β > α − 1
(β > 2− α). The proof of Lemma 2.2 works for arbitrary m = m(n) > 1.

Proof of Theorem 1.1. We choose 0 < ε1 < min{(α − 1)/6, (β − 2 + α)/24, ε0}. The
theorem follows from the inequalities ω(G2) 6 ω(G) 6 ω(G0) + ω(G1) + ω(G2) and
Lemmas 2.2-2.4.

2.2 Proof of Lemma 2.2

In this section we use ideas from [14] to give a lower bound on the clique number. We
first note the following auxiliary facts.

Lemma 2.5. Suppose a = a(n), b = b(n) are sequences of positive real numbers such that
0 < ln b + a → +∞. Let z = z(n) be the positive root of a − ln z − bz2 = 0. Then

z ∼ ((a+ 0.5 ln(2b))/b)1/2.

Proof. Changing the variables t = 2bz2 we get t+ln(t) = 2a+ln(2b). From the assumption
it follows that t+ ln t ∼ t, which proves the claim.

Lemma 2.6 ([10]). Let x → +∞. For any slowly varying function L and any 0 < t1 <
t2 < +∞ the convergence L(tx)/L(x) → 1 is uniform in t ∈ [t1, t2]. Furthermore, we
have lnL(x) = o(lnx).

Proof of Lemma 2.2. Write N = |V2| and let

v(1), v(2), . . . , v(N)

be the vertices of V2 listed in an arbitrary order. We consider a greedy algorithm for
finding a clique in G proposed by Janson,  Luczak and Norros [14]. Let A0 = ∅. In the
step i = 1, 2, . . . , N let Ai = Ai−1 ∪ {v(i)} if v(i) is incident to each of the vertices v(j),
j = 1, . . . , i− 1. Otherwise, let Ai = Ai−1. This algorithm produces a clique H on the set
of vertices AN , so that ω(G2) > |AN |.

Write θ = θ2 and let Lθ = V2 \ AN be the set of vertices that failed to be added to
AN . We will show that

|Lθ|
N

= oP (1)

and
N = (1− α/2)−α/2 L

(
(n lnn)1/2

)
(lnn)−α/2n1−α/2(1− oP (1)).
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From (1) we obtain for N ∼ Bin(n, q) with q = P(X(n) > θ)

EN = nq = nP
(
(m/n)1/2Yn > θ

)
∼ L

(
(n/m)1/2θ

)
n1−α/2mα/2θ−α

∼ (1− α/2)−α/2 L(
√
n lnn)(lnn)−α/2n1−α/2.

Here we used estimates L((n/m)1/2θ) ∼ L(
√
n lnn) and lnL(

√
n lnn) = o(lnn), see

Lemma 2.6. Furthermore, by the concentration property of the binomial distribution,
see, e.g., (11), we have N = (1 + oP (1))EN .

The remaining bound follows from the bound E (Lθ/N) = o(1), shown below (define
this ratio to be 0 on the rare event N = 0).

Let p1 be the probability that two random independent subsets of W = [m] of size dθe
do not intersect. The number of vertices in Lθ is at most the number of pairs in x, y ∈ V2
where Sx and Sy do not intersect. Therefore by the first moment method

E
|Lθ|
N

= EE
(
|Lθ|
N

∣∣∣N) 6 EE

((
N
2

)
p1

N

∣∣∣N) 6
p1EN

2
,

where

p1 =

(
m−θ
θ

)(
m
θ

) 6

(
1− θ

m

)θ
6 e−θ

2/m.

Now it is straightforward to check that for some constant c we have p1EN 6 c(lnn)−α/2 →
0. This completes the proof.

Let us briefly explain the intuition for the choice of θ in the above proof. For simplicity
assume L(x) = 1 for all x so that e1 = 0. Could the same method yield a bigger
clique if θ2 is smaller? We remark that the product p1EN as well as its upper bound
n1−α/2mα/2θ−αe−θ

2/m (which we used above) are decreasing functions of θ. Hence, if we
wanted this upper bound to be o(1) then θ should be at least as large as the solution to
the equation

n1−α/2mα/2θ−αe−θ
2/m = 1

or, equivalently, to the equation

α−1 lnn+
1

2
ln(m/n)− ln θ − θ2

αm
= 0.

After we write the last relation as in Lemma 2.5 where a = α−1 lnn+ (1/2) ln(m/n) and

b = (αm)−1 satisfy be2a = α−1n
2
α
−1 → +∞, we obtain from Lemma 2.5 that the solution

θ satisfies

θ ∼
(

(2/α) lnn− ln(n/m) + ln(2/αm)

2/αm

)1/2

∼ ((1− α/2)m lnn)1/2 .
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2.3 Proof of Lemma 2.3

Before proving Lemma 2.3 we collect some preliminary results.

Lemma 2.7. Let h > 2 be an integer. Let {G(n)} be a sequence of binomial ran-
dom intersection graphs G(n) = G(n,m, p), were m = m(n) and p = p(n) satisfy
pn1/(h−1)m1/2 → a ∈ {0,+∞}. Then

P(G contains a rainbow Kh)→

{
0, if a = 0,

1, if a = +∞.

Proof. The case a = +∞ follows from Claim 2 of [16]. For the case a = 0 we have, by
the first moment method,

P(G contains a rainbow Kh) 6

(
n

h

)
(m)(h2)

p2(
h
2) 6

(
n1/(h−1)m1/2p

)h(h−1) → 0.

Next is an upper bound for the size ω′(G) of the largest monochromatic clique.

Lemma 2.8. Let 1 < α < 2. Assume that {G(n)} is a sequence of random intersection
graphs satisfying (2), (1). Suppose that for some β > α − 1 we have m = Ω(nβ). Then
there is a constant δ > 0 such that whp ω′(G(n)) 6 n1−α/2−δ.

Proof. Let X = X(n) and Y = Y (n) be as defined above (2). Since for any w ∈ W and
v ∈ V

P(w ∈ Sv) =
∞∑
k=0

k

m
P(|Sv| = k) =

EX
m

=
EY√
mn

,

and the number of elements of the set Tw = {v : w ∈ Sv} is binomially distributed

|Tw| ∼ Bin

(
n,

EY√
mn

)
,

we have, for any positive integer k

P(|Tw| > k) 6

(
n

k

)(
EY√
mn

)k
6
(en
k

)k ( EY√
mn

)k
6

(
c1
k

√
n

m

)k
for c1 = e supn EY . Therefore, by the union bound,

P (ω′(G(n)) > k) 6 m

(
c1
k

√
n

m

)k
.

Fix δ with 0 < δ < min((β − α + 1)/4, 1− α/2, β/2). We have

P
(
ω′(G(n)) > n1−α/2−δ) 6 m

(
c1n

α/2−1/2+δm−1/2
)dn1−α/2−δe

= m1−(δ/β)dn1−α/2−δe (c1nα/2−1/2+δm−1/2+δ/β)dn1−α/2−δe → 0

since m→∞, n1−α/2−δ →∞ and m = Ω(nβ) implies

nα/2−1/2+δm−1/2+δ/β → 0.
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The last and the most important fact we need relates the maximum clique size with
the maximum rainbow clique size in an intersection graph. An edge-colouring of a graph
is called t-good if each colour appears at most t times at each vertex. We say that an
edge-coloured graph contains a rainbow copy of H if it contains a subgraph isomorphic
to H with all edges receiving different colours (as in our more general definition given
above.)

Lemma 2.9 ([2]). There is a constant c such that every t-good coloured complete graph
on more than cth3

lnh
vertices contains a rainbow copy of Kh.

Proof of Lemma 2.3. Fix an integer h > 1 + 1
ε1

and denote t = n1−α/2−δ and k = d cth3
lnh
e,

where the positive constants δ and c are from Lemmas 2.8 and 2.9, respectively. We first
show that

P(G0 contains a rainbow Kh) = o(1). (13)

We note that for the binomial intersection graph G̃ = G(n,m, p) with p = p(n) =
m−1/2n−ε1 +m−2/3 Lemma 2.7 implies

P(G̃ contains a rainbow Kh) = o(1). (14)

Let S̃v (respectively Sv), v ∈ V , denote the random subsets prescribed to vertices of G̃
(respectively G(n)). Given the set sizes |Sv|, |S̃v|, v ∈ V , satisfying |S̃v| > θ1, for each
v, we couple the random sets of G0 and G̃ so that Sv ⊆ S̃v, for all v ∈ V0. Now G0

becomes a subgraph of G̃ and, since ε1 < β/6, (13) follows from (14) and the fact that
whp minv |S̃v| > θ1 by (12) applied to G̃ with y = m1/3.

Next, we colour every edge xy of G0 by an arbitrary element of Sx ∩ Sy and observe
that the inequality ω′(G(n)) 6 t (which holds with probability 1 − o(1), by Lemma 2.8)
implies that the obtained colouring is t-good. Furthermore, by Lemma 2.9, every k-clique
of G0 contains a rainbow clique; however the probability of the latter event is negligibly
small by (13). We conclude that P(ω(G0) > k) = o(1) thus proving the lemma.

After the submission of our paper, we became aware that Nikoletseas, Raptopaulos
and Spirakis [21] independently also used the idea that a large clique must contain a large
rainbow clique to analyse the clique number in the binomial random intersection graph.
The proof of [21] heavily relies on the properties of the binomial distribution, and does
not seem to lead to an alternative proof of Lemma 2.3.

2.4 Proof of Lemma 2.4

We start with a combinatorial lemma which is of independent interest.

Lemma 2.10. Given positive integers a1, . . . , ak, let {A1, . . . , Ak} be a family of subsets
of [m] of sizes |Ai| = ai. Let S be a random subset of [m] of size s > k. Suppose that
a1 + · · ·+ ak 6 m. Then the probability

P ({S ∩ A1, . . . , S ∩ Ak} has a system of distinct representatives) (15)

is maximised when {Ai} are pairwise disjoint.
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Proof. Call any of
(
m
s

)
possible outcomes c for S a configuration. Given F = {A1, . . . , Ak}

let CDR(F) be the set of configurations c such that c ∩ F = {c ∩ A1, . . . , c ∩ Ak} has a
system of distinct representatives. Write

d(F) =
∑

16i<j6k

|Ai ∩ Aj|.

Suppose the claim is false. Out of all families that maximize (15) pick a family F with
smallest d(F). Then d(F) > 0 and we can assume that there is an element x ∈ [m] such
that x ∈ A1 ∩ A2. Since

∑k
i=1 |Ai| 6 m, there is an element y in the complement of⋃

A∈F A.
Define A′1 = (A1 \ {x})∪ {y} and consider the family F ′ = {A′1, A2, . . . , Ak}. Observe

that the family of configurations C = CDR(F) \ CDR(F ′) has the following property: for
each c ∈ C we have x ∈ c and it is not possible to find a set of distinct representatives for
c ∩ F where A1 is matched with an element other than x (indeed such a set of distinct
representatives, if existed, would imply c ∈ CDR(F ′)). Consequently, there is a set of
distinct representatives for sets c ∩ A2, . . . , c ∩ Ak which does not use x. Since the latter
set of distinct representatives together with y is a set of distinct representatives for c∩F ′,
we conclude that c ∈ C implies y /∈ c.

Now, for c ∈ C, let cxy = (c ∪ {y}) \ {x} be the configuration with x and y swapped.
Then cxy 6∈ CDR(F) and cxy ∈ CDR(F ′), because y ∈ cxy and can be matched with A1.
Thus each configuration c ∈ C is assigned a unique configuration cxy ∈ CDR(F ′)\CDR(F).
This shows that |CDR(F ′)| > |CDR(F)|. But d(F ′) 6 d(F) − 1, which contradicts our
assumption about the minimality of d(F).

The next lemma is a version of a result of Erdős and Rényi about the maximum clique
of the random graph G(n, p) (see, e.g., [15]).

Lemma 2.11. Let n→ +∞. Assume that a sequence pn with pn ∈ [0, 1] converges to 1.
Let {rn} be a positive sequence, satisfying rn = o(K̃2), where K̃ = 2 lnn

1−pn .

There are positive sequences {δn} and {εn} converging to zero, such that δnK̃ → +∞
and for a sequence of arbitrary graphs {Rn} with V (Rn) = [n] and e(Rn) 6 rn the number
Qn of cliques of size bK̃(1 + δn)c in G(n, pn) ∨Rn satisfies

EQn 6 εn.

Proof. Write p = pn, r = rn. Pick a positive sequence δ = δn so that δn → 0 and

ln−1 n+ (1− p) + r
K̃2 = o(δ). Let a =

⌊
K̃(1 + δ)

⌋
. We have

EQn 6

(
n

a

)
p(

a
2)−r 6

(en
a

)a
p
a(a−1)

2
−r = eaB, (16)

where, by the inequality ln p 6 −(1− p), for n large enough,

B 6 ln(en/a)−
(
a− 1

2
− r

a

)
(1− p)

6 lnn− a(1− p)
2

+
r(1− p)

a
6 (−1 + o(1))δ lnn→ −∞.
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Lemma 2.12. Let {G(n)} be a sequence of binomial random intersection graphs G(n) =
G(n,m, p), where m = mn → +∞ and p = pn → 0 as n → +∞. Let {rn} be a sequence
of positive integers. Set K̄ = 2emp

2
lnn. Assume that rn � K̄2 and

mp2 → +∞, lnn� mp, K̄p→ 0, K̄ 6 n/2. (17)

There are positive sequences {εn}, {δn} converging to zero such that δnK̄ → +∞ and
for an arbitrary sequence of graphs {Rn} with V (Rn) = V (G(n)) and e(Rn) 6 rn

P
(
Rainbow(G(n), Rn, K̄(1 + δn))

)
6 εn, n = 1, 2, . . . (18)

Here we choose {δn} such that K̄(1 + δn) were an integer.

Proof. Let {xn} be a positive sequence such that

pxn → 0, xn � mp and
√
mp lnn� xn

(one can take, e.g., xn = ϕn
√
mp lnn, with ϕn → +∞ satisfying ϕ2

nK̄p→ 0).
Given n, we truncate the random sets Sv, prescribed to vertices v ∈ V of the graph

G(n) to the size M = bmp+ xnc. Denote

S̄v =

{
Sv, if |Sv| 6M,

M element random subset of Sv, otherwise.

We remark that for the event B = {Sv = S̄v,∀v ∈ V } Chernoff’s bound implies

P(B) = 1− o(1). (19)

Now, let t ∈ [K̄, 2K̄] and let T = {u1, . . . , ut} be a subset of V of size t. By RT

we denote the subgraph of Rn induced by the vertex set T . Given i ∈ {1, . . . , t}, let
Ti ⊆ {u1, . . . ui−1} denote the subset of vertices which are not adjacent to ui in RT . Let
AT (i) denote the event that sets {S̄u ∩ Sui , u ∈ Ti} have distinct representatives (in
particular, none of the sets is empty). Furthermore, let AT denote the event that all
AT (i), 1 6 i 6 t hold simultaneously. We shall prove below that whenever n is large
enough

P(AT ) 6
(
1− (1− p)M

)(t2)−e(RT ) . (20)

Next, proceeding as in Lemma 2.11 we find positive sequences {δ′n}, {ε′n} converging to
zero such that the number Q′n of subsets T ⊆ V of size

a′ =
⌊ 2 lnn

(1− p)M
(1 + δ′n)

⌋
that satisfy the event AT has expected value EQ′n 6 ε′n. For this purpose, we apply
(16) to a′ and p′ = 1 − (1 − p)M , and use (20). We remark that a′ = K̄(1 + δ′′n), where
{δ′′n} converges to zero and δ′′nK̄ → +∞. Indeed, we have δ′n lnn/(1 − p)M → +∞, by
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Lemma 2.11, and we have (1 − p)M = e−mp
2−O(pxn+mp3) with pxn + mp3 = o(1). In

particular, for large n, we have a′ ∈ [K̄, 2K̄].
The key observation of the proof is that the events B and Rainbow(G(n), Rn, a

′) imply
Q′n > 0. Hence, by Markov’s inequality,

P(Rainbow(G(n), Rn, a
′) ∩B) 6 P(Q′n > 0) 6 EQ′n 6 ε′n.

Finally, invoking (19) we obtain (18).

It remains to show (20). We write

P(AT ) =
t∏
i=1

P (AT (i)|AT (1), . . . , AT (i− 1))

and evaluate, for 1 6 i 6 t,

P(AT (i)|AT (1), . . . , AT (i− 1)) 6
(
1− (1− p)M

)|Ti|
. (21)

Now (20) follows from the simple identity
∑

16i6t |Ti| =
(
t
2

)
− e(RT ). Let us prove (21).

For this purpose we apply Lemma 2.10. We first condition on {S̄u, u ∈ Ti} and the size
|Sui | of Sui . By Lemma 2.10 the conditional probability

P(AT (i)
∣∣ S̄u, u ∈ Ti, |Sui |)

is maximized when the sets S̄u, u ∈ Ti are pairwise disjoint (at this point we verify that
K̄p→ 0 and t 6 2K̄ implies the condition of Lemma 2.10 that

∑
u∈Ti |S̄u| 6 tM < m, for

large n). Secondly, we drop the conditioning on |Sui | and allow Sui to choose its element
independently at random with probability p. In this way we obtain (21).

Lemma 2.13. Let {G(n)} be a sequence of random binomial intersection graphs G(n) =
G(n,m, p), where m = m(n)→ +∞ and p = p(n)→ 0 as n→ +∞. Assume that

np = O(1), m(np)3 � K̄2,

where K̄ = 2emp
2

lnn. Assume, in addition, that (17) holds.
Then there is a sequence {δn} converging to zero such that δnK̄ → +∞ and

P
(
ω(G(n)) > K̄(1 + δn)

)
→ 0.

Proof. Given n, let U be a random subset of V = V (G(n)) with binomial number of
elements |U | ∼ Bin(n, p) and such that, for any k = 0, 1, . . . , conditionally, given the
event |U | = k, the subset U is uniformly distributed over the class of subsets of V of
size k. Recall that Tw ⊆ V denotes the set of vertices that have chosen an attribute
w ∈ W . We remark that Tw, w ∈ W are iid random subsets having the same probability
distribution as U .

We call an attribute w big if |Tw| > 3, otherwise w is small. Let WB and WS denote
the sets of big and small attributes. Denote by GB (respectively, GS) the subgraph of
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G = G(n) consisting of edges covered by big (respectively, small) attributes (w covers
an edge xy if x, y ∈ Tw). We observe that, given GB, the random sets Tz, z ∈ WS,
defining the edges of GS are (conditionally) independent. We are going to replace them
by bigger sets, denoted T ′z, by adding some more elements as follows. Given Tz, we first
generate independent random variables Iz and |∆z|, where Iz has Bernoulli distribution
with success probability p′ = P(|U | 6 2) and where P(|∆z| = k) = P(|U | = k)/(1 − p′),
k = 3, 4, . . . . Secondly, for Iz = 1 we put T ′z = Tz. Otherwise we put T ′z = Tz ∪∆z, where
∆z is a subset of V \ Tz of size |∆z| − |Tz| > 1 drawn uniformly at random. We note
that given GB, the random sets T ′z, z ∈ WS are (conditionally) independent and have the
same probability distribution as U . Next we generate independent random subsets T ′w of
V , for w ∈ WB, so that they have the same distribution as U and are independent of GS,
GB and T ′z, z ∈ WS. The collection of random sets {T ′w, w ∈ WB ∪WS} defines binomial
random intersection graph G′ having the same distribution as G(n,m, p).

We remark that GS ⊆ G′ and every edge of GS can be assigned a small attribute
that covers this edge and the assigned attributes are all different. On the other hand,
the graph GB is relatively small. Indeed, since each w covers

(|Tw|
2

)
edges, the expected

number of edges of GB is at most

E
∑
w∈W

(
Tw
2

)
I{|Tw|>3} = mE

(
Tw
2

)
I{|Tw|>3} 6 m

∑
k>3

(
k

2

)(
n

k

)
pk.

Invoking the simple bound∑
k>3

(
k

2

)(
n

k

)
pk 6 (np)2(enp − 1)/2 = O((np)3)

we obtain E e(GB) = O(m(n(p)3).
Now we choose an integer sequence {rn} such that m(np)3 � rn � K̄2 and write, for

an integer K ′ > 0,

P (ω(G) > K ′) 6 EP (ω(G) > K ′|GB) I{e(GB)6rn} + P (e(GB) > rn) . (22)

Here, by Markov’s inequality, P(e(GB) > rn) 6 r−1n E e(GB) = o(1). Furthermore, we
observe that ω(G) > K ′ implies the event Rainbow(G′, GB, K

′). Hence,

P (ω(G) > K ′|GB) 6 P (Rainbow(G′, GB, K
′)|GB) .

We choose K ′ = K̄(1 + δn) and apply Lemma 2.12 to the conditional probability on the
right. At this point we specify {δn} and find positive εn → 0 such that

P (Rainbow(G′, GB, K
′)|GB) 6 εn

uniformly in GB satisfying e(GB) 6 rn. Hence, (22) implies P
(
ω(G) > K̄(1 + δn)

)
6

εn + o(1) = o(1).

Now we are ready to prove Lemma 2.4.
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Proof of Lemma 2.4. Let

0 < ε < 2−1 min{1, 1− 2−1α, β − 2 + α− 6αε1}, (23)

define θ > 0 by θ2 = (1 − ε − 2−1α)m lnn and let Ḡ1 be the subgraph of G1 induced by
vertices v ∈ V1 with |Sv| 6 θ. Let D = |V (G1) \ V (Ḡ1)| denote the number of vertices of
G1 that do not belong to Ḡ1.

First, using (1) and Lemma 2.6 we estimate the expected value of D for n→ +∞

ED = n (P(|Sv| > θ)− P(|Sv| > θ2)) 6 (h(ε) + o(1))K. (24)

Note that h(ε) := (1− ε− 2−1α)−α/2 − (1− 2−1α)−α/2 → 0 can be made arbitrarily small
by taking ε small enough. Next, we claim that for any ε satisfying (23),

P
(
ω(Ḡ1) > 4n1−2−1ε−2−1α lnn

)
= o(1). (25)

Note that n1−2−1ε−2−1α lnn� K. Clearly, the lemma follows from (24), Markov’s inequal-
ity and (23), since ω(G1) 6 D+ω(Ḡ1) and we can replace ε by a sequence ε′n → 0 so that
both terms are oP (K).

It remains to prove (25). Let N̄ be a binomial random variable with distribution
Bin(n,P(|Sv| > θ1)), and let

n̄ = (1 + ε)n1−2−1α+αε1L(n0.5−ε1) and p̄2 = (1− 2−1ε− 2−1α)m−1 lnn.

We couple Ḡ1 with the binomial random intersection graph G′ = G(n̄,m, p̄) so that the
event that Ḡ1 is isomorphic to a subgraph of G′, denoted Ḡ1 ⊆ G′, has probability

P(Ḡ1 ⊆ G′) = 1− o(1). (26)

Such a coupling is possible because the events A = {every vertex ofG′ is prescribed at least
θ attributes} and B = {|V (Ḡ1)| 6 n̄} occur whp. Indeed, the bound P(A) = 1 − o(1)
follows from Chernoff’s inequality (12). To get the bound P(B) = 1 − o(1) we first
couple binomial random variables |V (Ḡ1)| ∼ Bin(n,P(θ1 < |Sv| < θ)) and N̄ so that
P(|V (Ḡ1)| 6 N̄) = 1 and then invoke the bound P(N̄ 6 n̄) = 1− o(1), which follows from
(1) and Chernoff’s inequality.

Next we apply Lemma 2.13 to G′ (the conditions of the lemma on n̄, m and p̄ can be
easily checked) and obtain the bound

P
(
ω(G′) > 4n1−2−1ε−2−1α ln n̄

)
= o(1), (27)

which together with (26) implies (25).

One might ask if we could employ the results of [21] in the above proof, since the
random intersection graph is binomial. The answer seems to be “no”: the condition of
m = n̄β with β < 1 required by [21] is not satisfied. In fact m/n̄ grows polynomially with
n. Theorem 3 of [3] suggests G′ is in the range where largest clique is not formed by a
single attribute, and the precise asymptotics of ω(G′) for such dense graphs remains an
open problem.

the electronic journal of combinatorics 24(2) (2017), #P2.5 17



3 Bounded variance

Proof of Theorem 1.2. Fix c > 0. Define truncated probability distribution P ′n = P ′n,c by
setting P ′n(k) = Pn(k) if k < bc

√
mc and P ′n(bc

√
mc) =

∑
i>bc
√
mc Pn(i). Let Gc(n) be

the random intersection graph G(n,m, P ′n) with sets S ′1, . . . , S
′
n defined as follows. Given

a realisation of the random sets S1, . . . , Sn of G(n), for each v ∈ V (G(n)) = V (Gc(n))
with |Sv| 6 c

√
m set S ′v = Sv. For those v where |Sv| > c

√
m, let S ′v be a uniformly

random subset of size bc
√
mc from Sv, chosen for each v independently (conditioned on

S1, . . . , Sn). Write X = X(n), Y = Y (n), and let X ′ = X ′(n) have distribution P ′n.
The graph Gc(n) is a subgraph of G(n) and the edges that differ have at least one

endpoint in the set Rc = {v ∈ V (G(n)) : |Sv| > c
√
m}. Also by Markov’s inequality

|Rc| = OP (1) since

E |Rc| = nP(X > c
√
m) 6

nEX2

c2m
=

EY 2

c2
,

Let H1 be the hypergraph on {1, 2, 3, 4} with edges {{1, 2, 3}, {1, 4}, {2, 3, 4}}. Let H2 be
the hypergraph on {1, 2, 3, 4} with edges {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. By Lemma 2.1
and trivial bounds E (X ′)2 6 EX2, E (X ′)3 6 c

√
mEX2, we get

EQ(H1, Gc(n)) 6 n4m3

(
E (X ′)2

m2

)4

6
(EY 2)4

m
; (28)

EQ(H2, Gc(n)) 6 n4m4

(
E (X ′)2

m2

)3 E (X ′)3

m3
6
c(EY 2)4√

m
; (29)

EQ(K4, Gc(n)) 6 n4m6

(
E (X ′)3

m3

)4

6 (cEY 2)4. (30)

Thus Gc(n) whp contains no copy of H1 or H2. We claim that whp

ω(Gc(n)) = max(ω′(Gc(n)), ωR(Gc(n))). (31)

Indeed, let S be a set of vertices in Gc(n), such that there is a clique on S, of the maximum
size. Let Q be a subset of S, such that ∩v∈QS ′v 6= ∅ of the largest cardinality. (31) is
trivially true when |Q| 6 1, so we can assume |S| > |Q| > 2. If |Q| = 2, Gc(n) contains
a rainbow clique on S, so that ω(Gc(n)) = ωR(Gc(n)). Suppose ω(Gc(n)) > ω′(Gc(n)).
Then |Q| < |S|, and let x be an arbitrary vertex in S \Q. The maximality of Q implies
that Gc(n) contains a copy of either H1 or H2 on a subset of Q (with 1 mapped to x).
But we have shown that this does not occur whp. So whp |Q| ∈ {2, |S|}. This finishes
the proof of (31).

A rainbow Kh in Gc(n) yields (h)4 copies of K4. Therefore by (30) and Markov’s
inequality for h > 4

P(ωR(Gc(n)) > h) 6 P (Q(K4, Gc(n)) > (h)4) 6
c4(EY 2)4(1 + o(1))

(h)4
,
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so ωR(Gc(n)) = OP (1). Using (31) and our bound for |Rc|, we get

ω′(G(n)) 6 ω(G(n)) 6 ω′(Gc(n)) + ωR(Gc(n)) + |Rc| = ω′(G(n)) +OP (1).

Finally, suppose (4) holds. Our proof above holds for any fixed c > 0. By (30) for
arbitrarily small ε > 0 we can pick c > 0 such that P(Gc(n) contains a copy of K4) <
ε+ o(1), P(|Rc| > 0) 6 E |Rc| → 0 and (31) holds. This implies that whp

ω(G(n)) = max(ω′(G(n)), ωR(G(n))) and ωR(G(n)) 6 3.

If the condition m→ +∞ is dropped in the second part of Theorem 1.2, then we have
whp ω(G(n)) 6 ω′(G(n)) + c for c > 0 [18]. It is easy to see that we can take c = 0 when
ω′(G(n)) > 4 whp. Otherwise, it seems that c = 2 is best possible.

4 Algorithms

Random intersection graphs provide theoretical models for real networks, such as the af-
filation (actor, scientific collaboration) networks. Although the model assumptions about
the distribution of the family of random sets defining the intersection graph are rather
stringent (independence and a particular form of the distribution), these models yield
random graphs with clustering properties similar to those found in real networks, [7].
While observing a real network we may or may not have information about the sets of
attributes prescribed to vertices. Therefore it is important to have algorithms suited to
random intersection graphs that do not use any data related to attribute sets prescribed
to vertices. In this section we consider two such algorithms that find cliques of order
(1 + o(1))ω(G) in a sparse random intersection graph G.

The Greedy-Clique algorithm of [14] finds a clique of the optimal order (1 −
oP (1))ω(G) in a random intersection graph, in the case where (asymptotic) degree distri-
bution is a power-law with exponent α ∈ (1, 2).

Greedy-Clique(G):

Let v(1), . . . , v(n) be the vertices of G in order of decreasing
degree

M ← ∅
for i = 1 to n

if v(i) is adjacent to each vertex in M then
M ←M ∪ {v(i)}

return M

Here we assume that graphs are represented by the adjacency list data structure. The
implicit computational model behind our running time estimates in this section is random-
access machine (RAM).
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Proposition 4.1. Assume that the conditions of Theorem 1.1 hold. Suppose that EY =
Θ(1) and that (7) holds for some ε > 0. Then on input G = G(n) Greedy-Clique
outputs a clique of size ω(G(n))(1− oP (1)) in time O(n2).

By Lemma 1.5, the above result remains true if the conditions (1) and EY (n) = Θ(1)
are replaced by the conditions (6) and ED1 = Θ(1). Proposition 4.1 is proved in a similar
way as Lemma 2.2, but it does not follow from Lemma 2.2, since Greedy-Clique is not
allowed to know the attribute subset sizes. The proof of Proposition 4.1 is given in [18],
p. 87.

For random intersection graphs with bounded degree variance we suggest the following
simple algorithm, which, as we shall see, can be implemented to run in expected timeO(n).

Mono-Clique(G):

for uv ∈ E(G)
D(uv)← |Γ(u) ∩ Γ(v)|

for uv ∈ E(G) in order of decreasing D(uv)
S ← Γ(u) ∩ Γ(v)
if S is a clique then

return S ∪ {u, v}
return {1} ∩ V (G) (if all fails, return a trivial clique)

Here Γ(v) denotes the set of neighbours of v. Note that D(uv) = |Γ(u) ∩ Γ(v)| is the
number of triangles that contain the edge uv. Below we also discuss the clique perco-
lation method [22] which achieves a similar performance on sparse random intersection
graphs. For alternative algorithms, proved to work under different/stronger conditions
(for example, P ∼ Bin(m, p)), or aiming to reconstruct all of the monochromatic cliques
|Tw|, see [4, 21].

Theorem 4.2. Assume that {G(n)} is a sequence of random intersection graphs such
that n = O(m) and EY 2(n) = O(1). Let C = C(n) be the clique constructed by Mono-
Clique on input G(n). Then E (ω(G(n))− |C|)2 = O(1). Furthermore, if there is a
sequence {ωn}, such that ωn →∞ and whp ω(G(n)) > ωn, then |C| = ω(G(n)) whp.

Proof. Given distinct vertices v1, v2, v3, v4 ∈ [n], let C(v1, v2, v3, v4) be the event that G(n)
contains a cycle with edges {v1v2, v2v3, v3v4, v1v4} and Sv2 ∩ Sv4 = ∅. Let Z denote the
number of tuples (v1, v2, v3, v4) of distinct vertices in [n] such that C(v1, v2, v3, v4) hold.
Assume for now that

EZ = O(1), (32)

which will be proved later.
Let K ⊆ [n] be the (lexicographically first) largest clique of G(n). Denote s = |K|. If

s 6 2 or there is a pair {x, y} ⊆ K, x 6= y such that G(n)[Γ(x) ∩ Γ(y)] is a clique, then
the algorithm returns a clique of size s (since we consider edges in the decreasing order of
D(uv)). Otherwise, for each such pair {x, y} there are x′, y′ ∈ Γ(x) ∩ Γ(y), x′ 6= y′ with
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x′y′ 6∈ E(G(n)). That is, C(x, x′, y, y′) holds and
(
s
2

)
6 Z. Thus, if

(
s
2

)
> Z, the algorithm

returns a clique C of size s. Otherwise, the algorithm may fail and return a clique C of
size 1. In any case we have that

s− |C| 6
√

2Z + 1

and using (32)

E (ω(G(n))− |C|)2 6 E (
√

2Z + 1)2 = O(1).

Also if ω(G(n)) > ωn whp, then by (32) and Markov’s inequality

P(|C| 6= ω(G(n))) 6 P(ω(G(n)) < ωn) + P
(
Z >

(
ωn
2

))
→ 0.

It remains to show (32). Let H1, H2, H3 be the hypergraphs on vertex set {1, 2, 3, 4} with
edge sets {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, {{1, 2, 3}, {3, 4}, {4, 1}} and {{1, 2, 3}, {3, 4, 1}}
respectively. It is easy to see that

Z 6 Q(H1, G(n)) +Q(H2, G(n)) +Q(H3, G(n)).

Write X = X(n). By Lemma 2.1 since m = Ω(n) and EY (n)2 = O(1)

EZ 6 n4m4

(
EX2

m2

)4

+ n4m3EX
m

(
EX2

m2

)3

+ n4m2

(
EX
m

)2(EX2

m2

)2

= O(1).

Proposition 4.3. Consider a sequence of sparse random intersection graphs {G(n)} as
in Lemma 1.3. Mono-Clique can be implemented so that its expected running time on
G(n) is O(n).

Proof. Consider the running time of the first loop (i.e., precomputing D(uv) for all edges
uv). We can assume that each list in the adjacency list structure is sorted in increasing
order (recall that vertices are elements of V = [n]). Otherwise, given G(n), they can be
sorted using any standard sorting algorithm in timeO(n+

∑
v∈[n]D

2
v), whereDv = dG(n)(v)

is the degree of v in G(n). The intersection of two lists of lengths k1 and k2 can be found
in O(k1 + k2) time, so that expected total time for finding common neighbours is

O

n+ E
∑

uv∈E(G(n))

(Du +Dv)

 = O

n+ E
∑
v∈[n]

D2
v

 = O(n).

To see the last bound, notice that the sum of degree squares in a graph counts the
number of 2-paths plus the number of edges in the graph. The number of 2-paths in
G(n) is bounded by the number of copies of hypergraphs H̃1 and H̃2 on {1, 2, 3}, where
H̃1 has edges {{1, 2}, {2, 3}} and H̃2 has a single edge {1, 2, 3}. Using our notation,∑

v∈V D
2
v 6 Q(H̃1, G(n)) + Q(H̃2, G(n)) + Q(K2, G(n)). Applying Lemma 2.1 and the

bound m = Ω(n), see also [16, 19],

E
∑
v∈V

D2
v 6

n3EX2(EX)2

m2
+
n3(EX)3

m2
+
n2(EX)2

m
= O(n).
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The second loop can be implemented so that the edge uv with the next largest value of
D(uv) is found at each iteration (we avoid sorting the list of edges in advance to keep
the running time linear). In this way picking the next edge requires at most ce(G(n))
steps for a constant c. We recall that the number of edges uv ∈ E(G) with Γ(u, v) :=
Γ(u) ∩ Γ(v) 6= ∅ that fail to induce a clique is at most the number Z of cycles considered
in the proof of Theorem 4.2 above. Therefore, the total number of steps used in picking
D(uv) in decreasing order is at most cZe(G(n)) and

Z e(G(n)) =
∑

(i,j,k,l)

IC(i,j,k,l)e(G(n)).

Now
e(G(n)) =

∑
s<t: {s,t}∩{i,j,k,l}=∅

I{s∼t} +
∑

s<t: {s,t}∩{i,j,k,l}6=∅

I{s∼t}.

Note, that the second sum on the right is at most 4n. Also, if {s, t} ∩ {i, j, k, l} = ∅, the
events s ∼ t and C(i, j, k, l) are independent, therefore

E

IC(i,j,k,l)
∑

s<t: {s,t}∩{i,j,k,l}=∅

I{s∼t}

 = P(C(i, j, k, l))
∑

s<t: {s,t}∩{i,j,k,l}=∅

P(s ∼ t)

6 P(C(i, j, k, l))E e(G(n)).

Finally, invoking the simple bound E e(G(n)) =
(
n
2

)
P(u ∼ v) = O(n), and (32) we get

EZ e(G(n)) 6 (E e(G(n)) + 4n)
∑

(i,j,k,l)

P(C(i, j, k, l)) = (E e(G(n)) + 4n)EZ = O(n).

Now let us estimate the time of the rest of the iteration of the second loop. The total
expected time to find common neighbours is againO(n), so we only consider the time spent
for checking if Γ(u, v) is a clique. We can test if a set S is a clique in time proportional to
e(G(n)) by scanning the edges incident to vertices in S once and verifying that the number
of neighbours in S for each vertex v ∈ S is |S| − 1. When S = Γ(u, v) is not a clique, i.e.
x, y ∈ S and xy 6∈ E(G(n)), the event C(u, x, v, y) holds. Thus by the previous bound,
the total expected time spent in the second loop is again O(EZ e(G(n))) = O(n).

Combining the next lemma with Lemma 1.3 we can show that Mono-Clique whp
finds a clique of size at least ω′(G(n)).

Lemma 4.4. Let {G(n)} be as in Lemma 1.3 and let M = M(G(n)) be the monochromatic
clique of size ω′(G(n)) generated by the attribute with the smallest index. Then whp G(n)
has an edge uv such that {u, v} ∪ (Γ(u) ∩ Γ(v)) = M .

The proof can be found in [18] p. 93.
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Finally, as an alternative, we show that a popular, robust and simple clique percolation
method [22] can be used to find all largest cliques in the bounded degree variance case.
Following [22], define a k-clique-community in a graph G as a union of all k-cliques
(complete subgraphs of size k) that can be reached from each other through a series of
adjacent k-cliques, where adjacency means sharing k − 1 vertices.

Call a 3-clique community H of an intersection graph G = G(V,W ) monochromatic if
it is a subgraph of a monochromatic clique in G.

Lemma 4.5. Let {G(n)} be as in Lemma 1.3. The largest 3-clique community which is
not monochromatic has size OP (1).

Thus if ω′(G(n)) > ωn whp for some ωn → ∞, the largest 3-clique communities are
the largest cliques of G(n) (which are monochromatic). The Mono-Clique algorithm
can be used to find them efficiently.

Proof of Lemma 4.5. Let C be a 3-clique community which is not monochromatic. We
can assume |V (C)| > 4. Note that each monochromatic clique Tw either shares all of its
edges or none of its edges with C. By the definition of a 3-clique community and the
fact that C is not monochromatic, whenever Tw ⊂ V (C), C must contain a triangle on
vertices {x, y, z} with x, y ∈ Tw and z 6∈ Tw.

Let H1, H2, H3 be as in the proof of Theorem 4.2. Consider a vertex v in C. First
suppose there is w such that Tw ⊂ V (C), v ∈ Tw and |Tw| > 3. Let x, y, z be a triangle
in C such that x, y ∈ Tw and z ∈ V (C) \ Tw. If v 6∈ {x, y} then G(n) contains a copy
of H2 or a copy of H3 on vertices {v, x, y, z}. If v ∈ {x, y}, we can take another vertex
v′ ∈ Tw \ {x, y} and get a copy of H2 or H3 on {v′, x, y, z}.

Now suppose all Tw such that Tw ⊂ C and v ∈ Tw have size 2. Since |C| > 4, it is
easy to see that for some x, y, z ∈ V (G(n)) there is a copy of H1 or H2 on {v, x, y, z}.

For each v ∈ V (C) we can assign a copy of H1, H2 or H3 containing v. Since each copy
can be obtained at most 4 times, by Markov’s inequality and the bounds EQ(Hi, G(n)) =
O(1), i ∈ {1, 2, 3} shown in the proof of Theorem 4.2

|V (C)| 6 4 (Q(H1, G(n)) +Q(H2, G(n)) +Q(H3, G(n)) = OP (1).

5 Proof of Lemma 1.7

Proof of Lemma 1.7. Write X = X(n), Y = Y (n), D1 = D1(n) and assume X = |S1|.
For arbitrary n,m→ +∞ suppose ED1 = Ω(1) and D1 is uniformly integrable. We claim

P(X > 0) = Ω(1). (33)

If this did not hold, then there would be a subsequence of n, such that for any C > 0
we would have ED1ID16C 6 CP(D1 > 0) 6 CP(X > 0) → 0. This contradicts the
assumption about D1.

Proof of (i). For the “if” part, suppose EY k = O(1) and Y k is uniformly integrable.
We claim that Dk

1 must be uniformly integrable. If not, from a subsequence of n such that
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EDk
1ID1>ωn has a limit in (0,+∞] with ωn → +∞, pick a subsubsequence A, such that

EY k
n → y > 0 and Y k

n converges weakly to a random variable with mean y as n→ +∞,
n ∈ A. For k = 1, 2 and m = Ω(n), using Theorem 2.1 of [7], Lemma 1.5 and Lemma 1.6
we get that Dk

1 is uniformly integrable on A, a contradiction. For all k > 1 and m = Θ(n)
Lemma 4.7 and Theorem 3.1 of [19] similarly shows that Dk

1 is uniformy integrable. The
proof that EDk

1 = Θ(1) follows similarly.
We will prove the “only if” part by contradiction. Suppose EDk

1 = Θ(1) and Dk
1 is

uniformly integrable, but Y k is not. Then, since m = Θ(n), for some ωn → +∞ and a
subsequence A we have

lim
n→+∞,n∈A

EXkIX>ωn > 0. (34)

Below we will take limits over n → +∞, n ∈ A. We can assume ωn = o(
√
m). Write

p0 = lim inf P(X ∈ [1, ωn)), and let B ⊆ A be a subsequence that realises the infimum.
First assume p0 = 0. For n ∈ B by (33) we have P(X > ωn) = Ω(1). The probability
p(m, s, t) that two independent random subsets of sizes s and t of [m] intersect satisfies

st

m

(
1− st

m

)
6 p(m, s, t) 6

st

m
. (35)

It follows by monotonicity of p(m, s, t) and the linearity of expectation that

ED1 > (n− 1)P(X > ωn)2p(m,ωn, ωn) = Ω

(
nω2

n

m

)
,

so ED1 → +∞ as n→ +∞, n ∈ B. This is a contradiction, so it must be p0 > 0.
Now consider arbitrary n ∈ A. Let T = T (n) be the number of sets in S2, . . . , Sn of

G(n) that are non-empty. Define Z = 0.2nm−1p0X. Let x be any integer with x > ωn
and P(X = x) > 0. Given X = x, let D̃ have distribution Bin(d0.5p0ne, Xm). We have

Z < 0.5E (D̃|X = x) and E (D̃|X = x) > 0.5p0nm
−1ωn > cωn for a constant c > 0 which

does not depend on n or x. Applying a Chernoff bound we get

P(D̃ < Z|X = x) 6 e−
1
8
E (D̃|X=x) 6 e−

1
8
cωn .

Since the probability that a uniformly random subset of [m] of size X intersects a fixed
non-empty set is at least X

m
, we get

P(D1 > Z|X = x) > P(D1 > Z|X = x, T > 0.5p0n)P(T > 0.5p0n|X = x)

> P(D̃ > Z|X = x)P(T > 0.5p0n) > (1− e−
1
8
cωn)P(T > 0.5p0n).

Therefore

E (Dk
1ID1>0.2nm−1p0ωn) > EE (Dk

1ID1>ZIX>ωn|X)

> EZkIX>ωn(1− e−
1
8
cωn)P(T > 0.5p0n) = Θ(EXkIX>ωn) = Ω(1).
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This is a contradiction to the fact that Dk
1 is uniformly integrable. Thus (34) does not hold

and Y k is uniformly integrable. Now the fact that EY k = Θ(1) follows by contradiction
as we apply Lemma 4.7 and Theorem 3.1 of Kurauskas [19] (or Lemma 1.5 and Lemma 1.6
for k = 1, 2) with Ỹ = Y IY <C and a large constant C. This finishes the proof of (i).

It is easy to check that the “only if” part fails for n = o(m) and k > 1. To get a
counterexample, consider X with P(X = m) = (mn)−1/2 and P(X = bm1/2n−1/2c) =
1− (mn)−1/2.

Proof of (ii). Suppose the contrary, i.e., D1 is uniformly integrable. By (33), P(X >
0) > a − o(1) for some a > 0, and by the law of large numbers, there are at least 0.5an
non-empty sets of G(n) whp. On the latter event, we see that G(n) contains m disjoint
cliques that together cover at least 0.5an vertices (group the non-empty sets of G(n)
according to the smallest attribute they contain). Using a standard convexity argument,
the number of edges in G(n) is at least

m

(
b0.5an

m
c

2

)
= nΩ

( n
m

)
,

with probability 1 − o(1). Thus ED1 = 2E e(G(n))/n → +∞, which contradicts that
ED1 = Θ(1).
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