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Abstract

For k > 2, let H be a k-uniform hypergraph on n vertices and m edges. Let S
be a set of vertices in a hypergraph H. The set S is a transversal if S intersects
every edge of H, while the set S is strongly independent if no two vertices in S
belong to a common edge. The transversal number, τ(H), of H is the minimum
cardinality of a transversal in H, and the strong independence number of H, α(H),
is the maximum cardinality of a strongly independent set in H. The hypergraph H
is linear if every two distinct edges of H intersect in at most one vertex. Let Hk be
the class of all connected, linear, k-uniform hypergraphs with maximum degree 2.
It is known [European J. Combin. 36 (2014), 231–236] that if H ∈ Hk, then
(k + 1)τ(H) 6 n+m, and there are only two hypergraphs that achieve equality in
the bound. In this paper, we prove a much more powerful result, and establish tight
upper bounds on τ(H) and tight lower bounds on α(H) that are achieved for infinite
families of hypergraphs. More precisely, if k > 3 is odd and H ∈ Hk has n vertices
and m edges, then we prove that k(k2−3)τ(H) 6 (k−2)(k+1)n+(k−1)2m+k−1
and k(k2−3)α(H) > (k2 +k−4)n− (k−1)2m− (k−1). Similar bounds are proven
in the case when k > 2 is even.
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1 Introduction

In this paper, we study transversals and independence in hypergraphs. Hypergraphs
are systems of sets which are conceived as natural extensions of graphs. A hypergraph
H = (V,E) is a finite set V = V (H) of elements, called vertices, together with a finite
multiset E = E(H) of subsets of V , called hyperedges or simply edges. The order of H is
n(H) = |V | and the size of H is m(H) = |E|. The hypergraph H is said to be k-uniform
if every edge of H is of size k. Every (simple) graph is a 2-uniform hypergraph. Thus
graphs are special hypergraphs. The degree of a vertex v in H, denoted by dH(v), is the
number of edges of H which contain v. A vertex of degree r in H is called a degree-r
vertex. The rank of H is the maximum size of an edge in H. The hypergraph H is
r-regular if dH(v) = r for all v ∈ V (H). The minimum and maximum degrees among the
vertices of H is denoted by δ(H) and ∆(H), respectively. We use the standard notation
[k] = {1, 2, . . . , k}.

Two vertices x and y of H are adjacent if there is an edge e of H such that {x, y} ⊆
V (e). Two vertices x and y of H are connected if there is a sequence x = v0, v1, v2 . . . , vk =
y of vertices of H in which vi−1 is adjacent to vi for i ∈ [k]. A connected hypergraph is
a hypergraph in which every pair of vertices is connected. A maximal connected subhy-
pergraph of H is a component of H. Thus, no edge in H contains vertices from different
components.

For a subset X ⊆ V (H) of vertices in H, let H[X] denote the hypergraph induced
by the vertices in X, in the sense that V (H[X]) = X and E(H[X]) = {e ∩ X | e ∈
E(H) and |e ∩ X| > 1}; that is, E(H[X]) is obtained from E(H) by shrinking edges
e ∈ E(H) that intersect X to the edges e ∩X. For a subset X ⊂ V (H) of vertices in H,
we define H − X to be the hypergraph obtained from H by deleting the vertices in X
and all edges incident with X, and deleting all isolated vertices, if any, from the resulting
hypergraph.

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or
hitting set in many papers) if T intersects every edge of H. Equivalently, a set of vertices
S is transversal in H if and only if V (H) \ S is a weakly independent set in H. That
is, no edge lies completely within V (H) \ S. The transversal number τ(H) of H is the
minimum size of a transversal in H. Transversals in hypergraphs are well studied in the
literature (see, for example, [5, 6, 14, 18, 26, 30]).

A set S of vertices in a hypergraph H is strongly independent if no two vertices in S
belong to a common edge. The strong independence number of H, which we denote by
α(H), is the maximum cardinality of a strongly independent set in H. The independence
number is one of the most fundamental and well-studied graph and hypergraph parameters
(see, for example, [1, 2, 4, 9, 11, 10, 12, 13, 15, 16, 17, 21, 22, 23, 25, 27]).

A hypergraph H is called an intersecting hypergraph if every two distinct edges of H
have a non-empty intersection, while H is called a linear hypergraph if every two distinct
edges of H intersect in at most one vertex. Intersecting and linear hypergraphs are well
studied in the literature (see, for example, [8, 20]).

Two edges in a graph G are independent if they are not adjacent in G. A set of

the electronic journal of combinatorics 24(2) (2017), #P2.50 2



pairwise independent edges of G is called a matching in G, while a matching of maximum
cardinality is a maximum matching. The number of edges in a maximum matching of G is
the matching number of G which we denote by α′(G). Matchings in graphs are extensively
studied in the literature (see, for example, the classical book on matchings by Lovász and
Plummer [24], and the excellent survey articles by Plummer [28] and Pulleyblank [29]).

Given a graph G, we define a hypergraph HG as follows. Let the edges of G become
vertices in HG and the vertices of G become hyperedges in HG, containing all edges that
are incident with that vertex in the graph. Thus, V (HG) = E(G) and E(HG) contains
a hyperedge for every vertex v ∈ V (G) which consists of all elements of V (HG) that
correspond with edges incident with v in G. Therefore, n(HG) = m(G) and m(HG) =
n(G). We call HG the dual hypergraph of G.

2 Known Matching Results

We shall need the following results by the authors [19] which establish a tight lower bound
on the matching number of a graph in terms of its maximum degree, order, and size.

Theorem 1. ([19]) If k > 2 is an even integer and G is a connected graph of order n,
size m and maximum degree ∆(G) 6 k, then

α′(G) >
n

k(k + 1)
+

m

k + 1
− 1

k(k + 1)
,

unless the following holds.
(a) G is k-regular and n = k + 1, in which case α′(G) = n−1

2
= n

k(k+1)
+ m

k+1
− 1

k
.

(b) G is k-regular and n = k + 3, in which case α′(G) = n−1
2

= n
k(k+1)

+ m
k+1
− 3

k(k+1)
.

Let k > 4 be even and let r > 1 be arbitrary and let ` = r(k−1)+1. Let X1, X2, . . . , X`

be a number of vertex disjoint graphs such that each Xi where i ∈ [`] is either a single
vertex or it is a Kk+1 where an arbitrary edge has been deleted. Let Y = {y1, y2, . . . , yr}
and build the graph Gk,r as follows. Let Gk,r be obtained from the disjoint union of
the graphs X1, X2, . . . , X` by adding to it the vertices in Y and furthermore, for every
i ∈ [r], adding an edge from yi to a vertex in each graph X(i−1)(k−1)+1, X(i−1)(k−1)+2,
X(i−1)(k−1)+3, . . . , X(i−1)(k−1)+k in such a way that no vertex degree becomes more than k.
Let Gk,r be the family of all such graph Gk,r. When k = 4 and r = 2, an example of a
graph G in the family Gk,r is illustrated in Figure 1, where G has order n = 21, size m = 35
and matching number α′(G) = 8.

Proposition 2. ([19]) For k > 4 an even integer and r > 1 arbitrary, if G ∈ Gk,r has
order n and size m, then

α′(G) =
n

k(k + 1)
+

m

k + 1
− 1

k(k + 1)
.
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Figure 1: A graph G in the family G4,2

Theorem 3. ([19]) If k > 3 is an odd integer and G is a connected graph of order n, size
m, and with maximum degree ∆(G) 6 k, then

α′(G) >

(
k − 1

k(k2 − 3)

)
n +

(
k2 − k − 2

k(k2 − 3)

)
m − k − 1

k(k2 − 3)
.

For k > 3 odd, let Hk+2 be the graph of (odd) order k+ 2 whose complement Hk+2 is
isomorphic to P3 ∪ (k−1

2
)P2. We note that every vertex in Hk+2 has degree k, except for

exactly one vertex, which has degree k − 1. We call the vertex of degree k − 1 in Hk+2

the link vertex of Hk+2.
For k > 3 odd and r > 1 arbitrary, let Tk,r be a tree with maximum degree at most k

and with partite sets V1 and V2, where |V2| = r. Let Hk,r be obtained from Tk,r as follows:
For every vertex x in V2 with dTk,r

(x) < k, add k − dTk,r
(x) copies of the subgraph Hk+2

to Tk,r and in each added copy of Hk+2, join the link vertex of Hk+2 to x. We note that
every vertex in the resulting graph Hk,r has degree k, except possibly for vertices in the
set V1 whose degrees belong to the set {1, 2, . . . , k}. Let Fk,r be the family of all such
graphs Hk,r.

When k = 3 and r = 4, an example of a graph G in the family Fk,r is illustrated in
Figure 2, where G has order n = 29, size m = 40 and matching number α′(G) = 12.

V1

V2

Figure 2: A graph G in the family F3,4

Proposition 4. ([19]) For k > 3 an odd integer and r > 1 arbitrary, if G ∈ Fk,r has
order n and size m, then

α′(G) =

(
k − 1

k(k2 − 3)

)
n +

(
k2 − k − 2

k(k2 − 3)

)
m − k − 1

k(k2 − 3)
.
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3 Three Families of Hypergraphs

In this section, we define three families of hypergraphs, Hk, H′k and H′′k. For a hypergraph
H with maximum degree at most 2 we let V1(H) and V2(H) denote the set of vertices in
H of degree 1 and 2, respectively. Further, we let ni(H) = |Vi(H)| for i ∈ [2].

3.1 The Family Hk

Definition 5. Let Hk be the class of all connected, linear, k-uniform hypergraphs with
maximum degree 2.

For a hypergraph H ∈ Hk we define a graph GH as follows. Let the vertices of GH be
the edges of H and let the edges of GH correspond to the n2(H) vertices of degree 2 in
H: if a vertex of H is contained in the edges e and f of H, then the corresponding edge
of the multigraph GH joins vertices e and f of GH . Thus, V (GH) = E(H) and for every
v ∈ V2(H), contained in the two edges e and f , add an edge between e and f in GH . By
the linearity of H, the multigraph GH is indeed a graph, called the dual graph of H. Since
H is k-uniform and ∆(H) = 2, the maximum degree, ∆(GH), in GH is at most k. Since
H is connected, so too is GH . By construction, n(GH) = m(H) and m(GH) = n2(H).
We note that if H ∈ Hk is 2-regular, then the dual graph, GH , of H is k-regular.

3.2 The Family H′
k

In order to define the family H′k, we first define a hypergraph, which we call Lk.

The Hypergraph Lk. For k > 2, let Lk be the 2-regular, k-uniform hypergraph of
size k+1 and order k(k+1)/2 defined inductively as follows. We define L2 = K3 and we de-
fine L3 to be the hypergraph with V (L3) = {v1, v2, . . . , v6} and let E(L3) = {e1, e2, e3, e4},
where e1 = {v1, v2, v3}, e2 = {v1, v4, v5}, e3 = {v2, v4, v6} and e4 = {v3, v5, v6}. For k > 2,
suppose the hypergraph Lk has been constructed and that E(Lk) = {e1, e2, . . . , ek+1}.
Let Lk+2 be the hypergraph of order n(Lk) + 2k + 3 with V (Lk+2) = V (Lk) ∪ {v} ∪
{u1, u2, . . . , uk+1} ∪ {w1, w2, . . . , wk+1} and with edge set E(Lk+2) = {f1, f2, . . . , fk+3},
where fi = ei ∪ {ui, wi} for i ∈ [k + 1] and where fk+2 = {v, u1, . . . , uk+1} and fk+3 =
{v, w1, . . . , wk+1}. The hypergraphs L2, L4 and L6 are illustrated in Figure 3(a), 3(b),
and 3(c), respectively.

We shall need the following result from [7].

Theorem 6. ([7]) For k > 2, the hypergraph Lk is the unique k-uniform, 2-regular, linear,
intersecting hypergraph.

Definition 7. Let H′k = Hk \ {Lk}.

3.3 The Family H′′
k

For a hypergraph H ∈ Hk, let α2(H) be the maximum cardinality of a strongly indepen-
dent set in H consisting only of degree-2 vertices in H. Every strongly independent set
in H corresponds to a matching in the dual graph GH of H. Conversely, every matching
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(a) L2 (b) L4 (c) L6

Figure 3: The hypergraphs L2, L4 and L6.

M in the dual graph GH of H corresponds to a strongly independent set VM ⊆ V2(H) in
H. This immediately implies the following observation.

Observation 8. If H ∈ Hk and GH is the dual graph of H, then α′(GH) = α2(H).

The following result is well-known (see, for example, [7]). However, since it is central
to our discussions, we give a short proof for completeness.

Proposition 9. If H ∈ Hk and GH is the dual graph of H, then α′(GH) = |E(H)|−τ(H).

Proof. Let H ∈ Hk and let GH be the dual graph of H. If M is a maximum matching,
then the corresponding set VM ⊆ V2(H) is a maximum strong independent set in V2(H)
by Observation 8. Therefore, VM covers 2|VM | distinct edges in H. Using an additional
|E(H)| − 2|VM | vertices in H, one from each of the edges not covered by VH , we can
extend the set VM to a transversal in H. Therefore, τ(H) 6 |VM | + (|E(H)| − 2|VM |) =
|E(H)| − α′(GH), or, equivalently, α′(GH) 6 |E(H)| − τ(H).

Conversely, let T be a minimum transversal in H, and so, τ(H) = |T |. If a vertex
x ∈ T covers only one hyperedge in H that is not covered by T \ {x}, then delete this
vertex from T and the edge it covers from H. We continue this process removing r
vertices from T , resulting in a set T ′, and r associated edges from H, resulting in a
hypergraph H ′, until every vertex in T ′ covers two distinct edges in H ′ that are not
covered by any other vertex of T ′. Therefore, T ′ corresponds to a matching in GH , and
|E(H)| = |E(H ′)| + r = 2|T ′| + r = 2|T ′| + (|T | − |T ′|) = |T ′| + |T |. Thus, α′(GH) >
|T ′| = |E(H)| − |T | = |E(H)| − τ(H). As observed earlier, α′(GH) 6 |E(H)| − τ(H).
Consequently, α′(GH) = |E(H)| − τ(H).

The Family Mk. Let Mk be the class of all connected, linear, k-uniform, 2-regular
hypergraphs H with k + 3 edges. We note that Mk is a subclass of Hk. The dual
graph, GH , of a hypergraph H ∈ Mk is a k-regular graph of order k + 3. We note
that the complement GH of GH is a 2-regular graph on k + 3 vertices. Thus, GH can
be constructed from Kk+3 by removing the edges of a cycle factor of Kk+3. Using this
approach, we observe that the number of non-isomporphic hypergraphs in Mk is equal
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to the number of non-isomorphic cycle factors in Kk+3. For example, |M4| = 2 (the cycle
factors in K7 are either a Hamilton cycle or the union of a 3-cycle and a 4-cycle) and
|M6| = 4 (consider cycle factors with cycle lengths (9), (6, 3), (5, 4) and (3, 3, 3)). We
state this formally as follows.

Observation 10. The following holds.
(a) If H ∈Mk, then the dual graph of H is a k-regular graph of order k + 3.

(b) If G is a k-regular graph of order k + 3, then the dual hypergraph of G belongs to
Mk and has order k(k + 3)/2.

Definition 11. Let H′′k = H′k \Mk = Hk \ (Mk ∪ {Lk}).

4 Main Results

In what follows, we adopt the following notation. If H ∈ Hk, we let H have order n and
size m, and so n = n(H) and m = m(H). Further, we let ni = ni(H) for i ∈ [2], and so
n1 and n2 denote the number of vertices of degree 1 and 2, respectively, in H. We note
that km = n1 + 2n2. We denote the number of components of a hypergraph H by c(H).

4.1 Transversal Number

Our first result establishes an upper bound on the transversal number of a connected,
linear, k-uniform hypergraph with maximum degree 2 for k > 2 even.

Theorem 12. For all even k > 2 the following holds.

(a) If H ∈ Hk, then τ(H) 6 kn+(k−1)m+k+1
k(k+1)

.

(b) If H ∈ H′k, then τ(H) 6 kn+(k−1)m+3
k(k+1)

.

(c) If H ∈ H′′k, then τ(H) 6 kn+(k−1)m+1
k(k+1)

.

Proof. Let k > 2 be even and let H ∈ Hk. Let GH be the dual graph of H. If H = Lk,
then, by Theorem 6, we note that m = k + 1 and GH is a k-regular graph of order k + 1.
If H ∈ Mk, then m = k + 3 and, by Observation 10, the graph GH is a k-regular graph
of order k + 3. If H ∈ H′′k, then GH has maximum degree ∆(G) 6 k. Further, if GH is
k-regular (and still H ∈ H′′k), then n(GH) /∈ {k + 1, k + 3}. In all cases, we note that GH

is a connected graph of order n(GH) = m and size m(GH) = n2. Let

θ =


1 if H ∈ H′′k
3 if H ∈Mk

k + 1 if H = Lk.

By Theorem 1 and our definition of θ, the following holds.

α′(GH) >
m

k(k + 1)
+

n2
k + 1

− θ

k(k + 1)
.
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By Proposition 9, we note that the following therefore holds.

τ(H) = m− α′(GH)

6 m−
(

m

k(k + 1)
+

n2
k + 1

− θ

k(k + 1)

)
=

(
1− 1

k(k + 1)

)(
n1 + 2n2

k

)
− n2
k + 1

+
θ

k(k + 1)

=

(
k(k + 1)− 1

k2(k + 1)

)
n1 +

(
2(k(k + 1)− 1)− k2

k2(k + 1)

)
n2 +

θ

k(k + 1)
.

Simplifying and multiplying through with k2(k + 1) we obtain the following.

k2(k + 1)τ(H) 6 (k2 + k − 1)n1 + (k2 + 2k − 2)n2 + kθ

= k2(n1 + n2) + (k − 1)(n1 + 2n2) + kθ

= k2n+ (k − 1)(km) + kθ.

This implies the desired result.

We discuss next the hypergraphs H ∈ Hk for k > 4 even that achieve the upper
bound for the transversal number in the statement of Theorem 12. If H = Lk, then
m(H) = k + 1 and n(H) = k(k + 1)/2, and the dual graph of H is the graph Kk+1.
Therefore, by Proposition 9,

τ(H) = m(H)− α′(Kk+1) = (k + 1)− k

2
=
k + 2

2
=
kn+ (k − 1)m+ k + 1

k(k + 1)
,

and equality holds in the statement of Theorem 12(a). If H ∈ Mk, then m(H) = k + 3
and n(H) = k(k + 3)/2. By Observation 10, the dual graph, GH , of H is a k-regular
graph of order k + 3. Therefore, by Proposition 9,

τ(H) = m(H)− α′(GH) = (k + 3)− k + 2

2
=
k + 4

2
=
kn+ (k − 1)m+ 3

k(k + 1)
,

and equality holds in the statement of Theorem 12(b). We show next that there is an
infinite family of hypergraphs H ∈ H′′k that satisfy

τ(H) =
kn+ (k − 1)m+ 1

k(k + 1)
.

For k > 4 an even integer and r > 1, let G be an arbitrary graph in the family Gk,r.
We show that associated with the graph G, there exists a hypergraph H ∈ H′′k for which
equality holds in the statement of Theorem 12(c), constructed as follows. Let HG be the
dual hypergraph of G, and so the edges of G become vertices in HG and the vertices of G
become hyperedges in HG, containing all edges that are incident with that vertex in the
graph. We note that n(HG) = m(G) and m(HG) = n(G).
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Since ∆(G) = k, we note that the rank of HG is k. We note further that the edges
of size 1 in HG, if any, correspond to the pendant edges in G (that are incident with a
vertex of degree 1). The edges of size 2 in HG, if any, correspond to vertices of degree 2
in G (that have both neighbors in Y ). All other edges in HG have size k − 1 or k.

We now expand all edges of HG of size less than k to edges of size k by adding
new vertices of degree 1 to each such edge. For example, if ev is an edge of size 1 in HG

containing the vertex v, then we add k−1 new vertices and expand the edge ev to an edge
of size k that contains these new vertices and the vertex v. Let Hk

G denote the resulting
hypergraph, and let Heven

k,r be the family of all such hypergraphs Hk
G. For example, given

the graph G ∈ G4,2 shown in Figure 1 we obtain the associated hypergraph H ∈ Heven
4,2

shown in Figure 4.

Figure 4: The hypergraph H ∈ Heven
4,2 associated with the graph G ∈ G4,2 shown in

Figure 1.

Proposition 13. For k > 4 an even integer and r > 1 arbitrary, if H ∈ Heven
k,r has order n

and size m, then

τ(H) =
kn+ (k − 1)m+ 1

k(k + 1)
.

Proof. We consider the graph G ∈ Gk,r used to construct the hypergraph H ∈ Heven
k,r , and

so H = Hk
G. Assume that when building the graph G, we have `1 single vertices and `2

copies of Kk+1’s minus an edge in X1, X2, . . . , X`. We note that `1 + `2 = ` = r(k− 1) + 1
and n(G) = r + `1 + `2(k + 1). Further,

α′(G) = r +

(
k

2

)
`2 =

`1 + `2 − 1

k − 1
+

(
k

2

)
`2 =

2`1 + (k2 − k + 2)`2 − 2

2(k − 1)
.

The order of Hk
G is

n(Hk
G) = k`1 +

(
k2 + k + 2

2

)
`2.

Further, m(Hk
G) = m(HG) = n(G) = r + `1 + `2(k + 1), implying that the size of Hk

G

is

m(Hk
G) =

(
k

k − 1

)
`1 +

(
k2

k − 1

)
`2 −

1

k − 1
.
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We remark that the graph G ∈ Gk,r used to construct the hypergraph Hk
G ∈ Heven

k,r is

in fact the dual graph (see Section 3.1) of Hk
G. Therefore, letting H = Hk

G, n = n(Hk
G)

and m = m(Hk
G), and applying Proposition 9 to H and its dual graph G, we have

τ(H) = m− α′(G)

=

((
k

k − 1

)
`1 +

(
k2

k − 1

)
`2 −

1

k − 1

)
−
((

1

k − 1

)
`1 +

(
k2 − k + 2

2(k − 1)

)
`2 −

1

k − 1

)
= `1 +

(
k2 + k − 2

2(k − 1)

)
`2

= `1 +

(
k + 2

2

)
`2

and

kn+ (k − 1)m+ 1

k(k + 1)
=

(
k

k(k + 1)

)(
k`1 +

(
k2 + k + 2

2

)
`2

)
+

(
k − 1

k(k + 1)

)((
k

k − 1

)
`1 +

(
k2

k − 1

)
`2 −

1

k − 1

)
+

1

k(k + 1)

= `1 +

(
k + 2

2

)
`2.

Equality therefore holds in the statement of Theorem 12(c).

Next we consider the case when k > 3 is odd.

Theorem 14. For k > 3 an odd integer, if H ∈ Hk, then

τ(H) 6
(k − 2)(k + 1)n+ (k − 1)2m+ k − 1

k(k2 − 3)
.

Proof. Let k > 3 be odd and let H ∈ Hk. Let GH be the dual graph of H and note that
GH has maximum degree ∆(G) 6 k. Further, we note that GH is a connected graph of
order n(GH) = m and size m(GH) = n2. By Theorem 3, the following holds.

α′(GH) >

(
k − 1

k(k2 − 3)

)
m +

(
k2 − k − 2

k(k2 − 3)

)
n2 −

k − 1

k(k2 − 3)
.

By Proposition 9, we note that the following therefore holds.
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τ(H) = m− α′(GH)

6 m−
((

k − 1

k(k2 − 3)

)
m +

(
k2 − k − 2

k(k2 − 3)

)
n2 −

k − 1

k(k2 − 3)

)
=

(
1− k − 1

k(k2 − 3)

)(
n1 + 2n2

k

)
−
(
k2 − k − 2

k(k2 − 3)

)
n2 +

k − 1

k(k2 − 3)

=

(
k3 − 4k + 1

k2(k2 − 3)

)
n1 +

(
2(k3 − 4k + 1)− k(k2 − k − 2)

k2(k2 − 3)

)
n2 +

k − 1

k(k2 − 3)
.

Simplifying and multiplying through with k2(k2 − 3) we obtain the following.

k2(k2 − 3)τ(H) 6 (k3 − 4k + 1)n1 + (k3 + k2 − 6k + 2)n2 + k(k − 1)

= (k3 − 2k)(n1 + n2)− (2k − 1)(n1 + 2n2) + k2 · n2 + k(k − 1)

= (k3 − 2k)n− (2k − 1)(km) + k2 · n2 + k(k − 1)

= (k3 − 2k)n− (2k − 1)(km) + k2(km− n) + k(k − 1)

= k(k − 2)(k + 1)n+ k(k − 1)2m+ k(k − 1).

This implies the desired result.

We discuss next the hypergraphs H ∈ Hk for k > 3 odd that achieve the upper
bound for the transversal number in the statement of Theorem 14. For k > 3 an even
integer and r > 1, let G be an arbitrary graph in the family Fk,r. Analogously as with
the case when k is even, we let HG be the dual hypergraph of G, and we let Hk

G be the
hypergraph obtained from HG by expanding all edges of HG of size less than k to edges of
size k by adding new vertices of degree 1 to each such edge. Let Hk

G denote the resulting
hypergraph, and let Hodd

k,r be the family of all such hypergraphs Hk
G. For example, given

the graph G ∈ F3,2 shown in Figure 5(a) we obtain the associated hypergraph H ∈ Hodd
3,2

shown in Figure 5(b).

Proposition 15. For k > 3 an odd integer and r > 1 arbitrary, if H ∈ Hodd
k,r has order n

and size m, then

τ(H) =
(k − 2)(k + 1)n+ (k − 1)2m+ k − 1

k(k2 − 3)
.

Proof. We consider the graph G ∈ Fk,r used to construct the hypergraph H ∈ Hodd
k,r , and

so H = Hk
G. Assume that ` copies of the graph Hk+2 were added when constructing the

graph G. Thus, as observed in [19],

` = (k − 1)|V2| − |V1|+ 1.
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V1

V2

(a) G ∈ F3,2 (b) H ∈ Hodd
3,2

Figure 5: The hypergraph H ∈ Hodd
3,2 associated with the graph G ∈ F3,2.

Further, the order, size and matching number of G are as follows.

n(G) = (k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2)

2m(G) = (k3 + k2 − k + 1)|V2| − (k2 + 2k − 1)|V1|+ (k2 + 2k − 1)

2α′(G) = (k2 + 1)|V2| − (k + 1)|V1|+ (k + 1).

For i ∈ [k], let n1,i be the number of vertices in V1 that have degree i in G. Thus, if
[V1, V2] denotes the set of edges between V1 and V2 in G, then

k∑
i=1

n1,i = |V1| and

k∑
i=1

i · n1,i = |[V1, V2]| = k|V2| − ` = |V1|+ |V2| − 1.

Recall that H = Hk
G, n = n(Hk

G) and m = m(Hk
G). The order of H is

n = m(G) +

k∑
i=1

(k − i) · n1,i

= m(G) + k

(
k∑

i=1

n1,i

)
−

(
k∑

i=1

i · n1,i

)
= m(G) + (k − 1)|V1| − |V2|+ 1

=

(
k3 + k2 − k − 1

2

)
|V2| −

(
k2 + 1

2

)
|V1| +

(
k2 + 2k + 1

2

)
.

Further, H has size m = m(Hk
G) = m(HG) = n(G), and so

m = (k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2).

the electronic journal of combinatorics 24(2) (2017), #P2.50 12



We remark that the graph G ∈ Fk,r used to construct the hypergraph Hk
G ∈ Hodd

k,r is

in fact the dual graph (see Section 3.1) of Hk
G. Therefore, applying Proposition 9 to H

and its dual graph G, we have

τ(H) = m− α′(G)

=
(
(k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2)

)
−1

2

(
(k2 + 1)|V2| − (k + 1)|V1|+ (k + 1)

)
=

(
k2 + 2k − 3

2

)
|V2| −

(
k + 1

2

)
|V1| +

k + 3

2

and

(k − 2)(k + 1)n+ (k − 1)2m+ k − 1

k(k2 − 3)

=

(
(k − 2)(k + 1)

k(k2 − 3)

)((
k3 + k2 − k − 1

2

)
|V2| −

(
k2 + 1

2

)
|V1| +

(
k2 + 2k + 1

2

))
+

(
(k − 1)2

k(k2 − 3)

)(
(k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2)

)
+

k − 1

k(k2 − 3)

=

(
k2 + 2k − 3

2

)
|V2| −

(
k + 1

2

)
|V1| +

k + 3

2
.

Equality therefore holds in the statement of Theorem 14.

4.2 Strong Independence Number

In this section we establish a lower bound on the strong independence number of a con-
nected, linear, k-uniform hypergraph H with maximum degree 2 for k > 2. For this
purpose, we first establish a lower bound on a maximum strong independent set consist-
ing only of degree-2 vertices in H.

Theorem 16. For all even k > 2 the following holds.

(a) If H ∈ Hk, then α2(H) > n1+(k2+2)n2−k(k+1)
k2(k+1)

.

(b) If H ∈ H′k, then α2(H) > n1+(k2+2)n2−3k
k2(k+1)

.

(c) If H ∈ H′′k, then α2(H) > n1+(k2+2)n2−k
k2(k+1)

.

Proof. Let k > 2 be even and let H ∈ Hk, and let GH be the dual graph of H. We adopt
the notation in the proof of Theorem 12. Analogously as in the proof of Theorem 12,

α′(GH) >
m

k(k + 1)
+

n2
k + 1

− θ

k(k + 1)
.
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By Observation 8, we note that the following therefore holds.

α2(H) = α′(GH)

>
m

k(k + 1)
+

n2
k + 1

− θ

k(k + 1)

=

(
1

k(k + 1)

)(
n1 + 2n2

k

)
+

n2
k + 1

− θ

k(k + 1)
.

Multiplying through with k2(k + 1) we obtain the following.

k2(k + 1)α2(H) > n1 + (k2 + 2)n2 − kθ.

This implies the desired result.

We proceed further with the following simple lemma.1

Lemma 17. ([3]) If H is a k-uniform hypergraph of order n and size m with δ(H) > 1
and with c components, then (k − 1)m+ c > n.

Proof. Replace each hyperedge e ∈ E(H) by a star of k − 1 edges on the vertex set of e
to produce a graph G. If H has c components, then so too does G. Since G has (k− 1)m
edges, n vertices and c components, we have that (k − 1)m+ c > n.

As a special case of Lemma 17, we note that if H is a connected k-uniform hypergraph
of order n and size m, then (k − 1)m+ 1 > n.

Theorem 18. For all even k > 2 the following holds.

(a) If H ∈ Hk, then α(H) > (k+2)n−(k−1)m−(k+1)
k(k+1)

.

(b) If H ∈ H′k, then α(H) > (k+2)n−(k−1)m−3
k(k+1)

.

(c) If H ∈ H′′k, then α(H) > (k+2)n−(k−1)m−1
k(k+1)

.

Proof. Let k > 2 be even and let H ∈ H′′k be arbitrary. Let V1(H) denote the set of all
vertices of degree 1 in H, and let S be the set of all edges of H that contain at least
one vertex in V1(H). Let R be the vertices in H which belong to two edges of S, and let
r = |R|. Let X = V (H) \ (V1(H)∪R) and consider the hypergraph H[X] induced by the
vertices in X. Let S ′ be the set of edges in H[X] of size less than k. We note that each edge
in S ′ was obtained by shrinking an edge in S by removing from it vertices in V1(H) ∪R.
We note that H[X] contains at most r + 1 components; that is, c(H[X]) 6 r + 1.

1We have not been able to find the original source of this lemma, but as remarked in [3], “it definitely
seems to have been known already at least in the early 1960’s.” For completeness, we provide the short
proof given in [3].
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Let H ′ be obtained from H[X] by removing all edges in H[X] of size less than k.
Equivalently, H ′ is obtained from H be removing all edges in S and all resulting isolated
vertices. We note that H ′ has order

n(H ′) = n(H)− n1(H)− r

and may possibly be the empty hypergraph. For every i = {0} ∪ [k − 1], let Ti denote
the subset of edges of S which contain vertices from exactly i different components in H ′

and let ti = |Ti|. We note that for i ∈ [k − 1] \ {1}, the removal of all edges in Ti from
H[X] gives rise to at most (i− 1)ti additional components. Thus,

c(H ′) 6 c(H[X]) +

k−1∑
i=2

(i− 1)ti.

As observed earlier, c(H[X]) 6 r + 1, implying that

k−1∑
i=2

(i− 1)ti > c(H ′)− r − 1.

Every edge in Ti contains at most k− i vertices of degree 1 in H, and at least i vertices
from different components of H ′, in addition to possibly some vertices of R. Thus,

n1(H) 6 k|S| −

(
k−1∑
i=1

i · ti

)
− 2r

= k|S| −

(
k−1∑
i=0

ti

)
−

(
k−1∑
i=2

(i− 1)ti

)
− 2r + t0

6 k|S| − |S| − (c(H ′)− r − 1)− 2r + t0

= (k − 1)|S| − c(H ′)− r + t0 + 1.

We now obtain a strong independent set in H by taking a maximum strong indepen-
dent set of degree-2 vertices in H ′ and adding to this set a vertex of degree one from each
edge in S. Therefore the following holds by Theorem 16, as no component belongs to
{Lk} ∪Mk (recall that H ∈ H′′k).

α(H) > |S|+ α2(H
′) > |S|+ n1(H

′) + (k2 + 2)n2(H
′)− k · c(H ′)

k2(k + 1)
.

As n1(H
′) + n2(H

′) = n(H ′) = n(H)− n1(H)− r, we note that

n2(H
′) = n2(H)− n1(H ′)− r.

Furthermore,
n1(H

′) = k|S| − n1(H)− 2r,

as the |S| edges in S each have k vertices and every vertex with degree 1 in H ′ belongs
to an edge in S and does not have degree 1 in H and does not belong to R, and every
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vertex in R counts two in k|S| − n1(S) but does not belong to H ′. The following now
holds by the above observations.

k2(k + 1)α(H)

> k2(k + 1)|S|+ n1(H
′) + (k2 + 2)n2(H

′)− k · c(H ′)

= k2(k + 1)|S|+ n1(H
′) + (k2 + 2)(n2(H)− r − n1(H ′))− k · c(H ′)

= k2(k + 1)|S|+ n1(H
′)(1− (k2 + 2)) + (k2 + 2)n2(H)− (k2 + 2)r − k · c(H ′)

= k2(k + 1)|S|+ (k|S| − n1(H)− 2r)(−k2 − 1) + (k2 + 2)n2(H)− (k2 + 2)r − k · c(H ′)

= (k3 + k2 − k3 − k)|S|+ n1(H)(k2 + 1) + (k2 + 2)n2(H) + k2r − k · c(H ′)

= (k(k − 1)|S| − k · c(H ′)− kr + kt0 + k)

−kt0 + n1(H)(k2 + 1) + (k2 + 2)n2(H) + (k2 + k)r − k

> (k · n1(H))− kt0 + n1(H)(k2 + 1) + (k2 + 2)n2(H) + (k2 + k)r − k

= (k2 + k + 1)n1(H) + (k2 + 2)n2(H) + (k2 + k)r − kt0 − k

= (k2 + 2k)(n1(H) + n2(H))− (k − 1)(n1(H) + 2n2(H)) + (k2 + k)r − kt0 − k

= (k2 + 2k)n(H)− (k − 1)(k ·m(H)) + (k2 + k)r − kt0 − k.

Note that every edge in T0 must contain a vertex from R. In particular, if r = 0, then
t0 = 0. In this case, dividing though by k the above simplifies to the following.

k(k + 1)α(H) > (k + 2)n(H)− (k − 1)m(H)− 1.

Suppose that r > 1. We note that every edge in T0 contains at most k − 1 vertices from
R, and so t0 6 (k − 1)r. Dividing though by k above we get the following.

k(k + 1)α(H) > (k + 2)n(H)− (k − 1)m(H) + (k + 1)r − t0 − 1

> (k + 2)n(H)− (k − 1)m(H) + (k + 1)r − (k − 1)r − 1

= (k + 2)n(H)− (k − 1)m(H) + 2r − 1

> (k + 2)n(H)− (k − 1)m(H)− 1.

This implies the theorem in the case when H ∈ H′′k.
Suppose next that H ∈ H′k. If H /∈Mk, then as shown above we have k(k+1)α(H) >

(k + 2)n(H) − (k − 1)m(H) − 1. Suppose, therefore, that H ∈ Mk. We note that, by
Theorem 16,

α2(H) >
n1(H) + (k2 + 2)n2(H)− 3k

k2(k + 1)
.

As H is 2-regular, we have α(H) = α2(H) and n1(H) = 0, and therefore n(H) =
n2(H) = k(k + 3)/2 and k ·m(H) = 2n2(H) = k(k + 3). Therefore,

α(H) >
(k2 + 2)n2(H)− 3k

k2(k + 1)
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=
k(k + 2)n2(H)− 2(k − 1)n2(H)− 3k

k2(k + 1)

=
k(k + 2)n(H)− (k − 1)(k ·m(H))− 3k

k2(k + 1)

=
(k + 2)n(H)| − (k − 1)m(H)− 3

k(k + 1)
.

This implies the theorem in the case when H ∈ H′k.
Suppose finally that H ∈ Hk. From the above, it remains for us to consider the case

when H = Lk. In this case Theorem 16 implies that

α2(H) >
n1(H) + (k2 + 2)n2(H)− k(k + 1)

k2(k + 1)
.

As H is 2-regular, we have α(H) = α2(H) and n1(H) = 0, and therefore n(H) =
n2(H) = k(k + 1)/2 and k ·m(H) = 2n2(H) = k(k + 1). Analogous to the discussion in
the previous argument,

α(H) >
(k + 2)n(H)− (k − 1)m(H)− (k + 1)

k(k + 1)
,

This implies the theorem in the case when H ∈ Hk.

We discuss next the hypergraphs H ∈ Hk for k > 2 even that achieve the lower bound
for the strong independence number in the statement of Theorem 18. If H = Lk, then,
by Observation 8 and Theorem 1(a), equality holds in the statement of Theorem 18(a).
If H ∈ Mk, then, by Observation 10 and Theorem 1(b), equality holds in the statement
of Theorem 18(b).

We show next that there is an infinite family of hypergraphs H ∈ H′′k for which equality
holds in the statement of Theorem 18(c). For k > 4 an even integer and r > 1, let G
be an arbitrary graph in the family Gk,r, and let Hk

G be the associated hypergraph in the
family Heven

k,r . For each vertex v of degree 1 in Hk
G, we add k− 1 new vertices and an edge

(of size k) containing v and these new vertices. Let Rk
G denote the resulting hypergraph,

and let Rk,r be the family of all such hypergraphs Rk
G.

Proposition 19. For k > 4 an even integer and r > 1 arbitrary, if H ∈ Reven
k,r has order n

and size m, then

α(H) =
(k + 2)n− (k − 1)m− 1

k(k + 1)
.

Proof. Let G ∈ Gk,r be the graph and Hk
G ∈ Heven

k,r the associated hypergraph used to

construct the hypergraph H ∈ Reven
k,r , and so H = Rk

G.

We show firstly that α(Rk
G) = n1(H

k
G) + α′(G). Let S be a maximum independent

set in H = Rk
G that contains the maximum number of vertices of degree 1 in H. For

each vertex v of degree 1 in Hk
G, let ev be the associated edge containing v that was
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added to Hk
G when constructing H. We note that every vertex in ev different from v

has degree 1 in H. Let v′ be an arbitrary vertex in ev different from v. If v ∈ S or if
S contains no vertex from ev, then the set (S \ {v}) ∪ {v′} is a maximum independent
set containing more vertices of degree 1 than does S, a contradiction. Hence, the set S
contains n1(H

k
G) vertices of degree 1, one from each edge added to Hk

G when constructing
H. The remaining vertices of S belong to V (HG) and have degree 2 in Hk

G, and so
α(H) 6 n1(H

k
G) + α2(H

k
G). Conversely, every maximum independent set of degree-2

vertices in Hk
G can be extended to an independent set in H by adding to it n1(H

k
G) vertices

of degree 1, one vertex from each edge added to Hk
G when constructing H, implying that

α(H) > n1(H
k
G) + α2(H

k
G). Consequently, α(H) = n1(H

k
G) + α2(H

k
G). We note that G is

the dual graph of the hypergraph Hk
G ∈ Hk, and so, by Observation 8, α2(H

k
G) = α′(G).

Therefore, α(Rk
G) = n1(H

k
G) + α′(G).

Let G be constructed from `1 single vertices and `2 copies of Kk+1−e. Further, let `1,1
and `1,2 be the number of single vertices of degree 1 and degree 2 in G, and let `2,1 and `2,2
be the number of copies of Kk+1 − e joined to one or two vertices in Y , respectively. We
note that (`1,1+`1,2)+(`2,1+`2,2) = `1+`2 = ` = r(k−1)+1 and n(G) = r+`1+`2(k+1).
Recall that n = n(H) and m = m(H). We note that

n = n(Hk
G) + (k − 1)n1(H

k
G)

m = m(Hk
G) + n1(H

k
G)

n1(H
k
G) = (k − 1)`1,1 + (k − 2)`1,2 + `2,1

r = `1,2 + `2,2 + 1

Recall (see the proof of Proposition 13) that

n(Hk
G) = k`1 + 1

2(k2 + k + 2)`2

m(Hk
G) = 1

k−1
(
k`1 + k2`2 − 1

)
α′(G) = r + 1

2k`2.

We note that
1
k (`1,1 + 2`1,2 + `2,1 + `2,2)

= 1
k (`+ `1,2 + 2`2,2)

= 1
k (`+ r − 1)

= 1
k ((r(k − 1) + 1) + r − 1)

= r.

Thus,

(k + 2)n− (k − 1)m− 1

k(k + 1)
=

(
k + 2

k(k + 1)

)(
n(Hk

G) + (k − 1)n1(H
k
G)
)

−
(

k − 1

k(k + 1)

)(
m(Hk

G) + n1(H
k
G)
)
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− 1

k(k + 1)

=

(
k + 2

k(k + 1)

)(
k`1 +

(
k2 + k + 2

2

)
`2 + (k − 1)n1(H

k
G)

)
−
(

k − 1

k(k + 1)

)((
k

k − 1

)
`1 +

(
k2

k − 1

)
`2 −

1

k − 1
+ n1(H

k
G)

)
− 1

k(k + 1)

=

(
k(k + 2)− k
k(k + 1)

)
`1

+

(
k3 + k2 + 4k + 4

2k(k + 1)

)
`2

+

(
k2 − 1

k(k + 1)

)
n1(H

k
G)

=`1 +

(
k2 + 4

2k

)
`2 +

(
k − 1

k

)
n1(H

k
G)

=(`1,1 + `1,2) +

(
k2 + 4

2k

)
(`2,1 + `2,2)

+

(
k − 1

k

)
((k − 1)`1,1 + (k − 2)`1,2 + `2,1)

=

(
k2 − k + 1

k

)
`1,1 +

(
k2 − 2k + 2

2

)
`1,2

+

(
k2 + 2k + 2

2k

)
`2,1 +

(
k2 + 4

2k

)
`2,1

=(k − 1)`1,1 + (k − 2)`1,2 + `2,1

+
1

k
(`1,1 + 2`1,2 + `2,1 + 2`2,2) +

1

2
k(`2,1 + `2,2)

=n1(H
k
G) + r +

1

2
k`

=n1(H
k
G) + α′(G)

=α(H).

Next we consider the case when k > 3 is odd.

Theorem 20. For k > 3 odd, if H ∈ Hk, then

α2(H) >
(k − 1)n1 + (k3 − k2 − 2)n2 − k(k − 1)

k2(k2 − 3)
.

Proof. Let k > 3 be odd and let H ∈ Hk. Let GH be the dual graph of H and note that
GH has maximum degree ∆(G) 6 k. Further, we note that GH is a connected graph of
order n(GH) = m and size m(GH) = n2. By Theorem 3, the following holds.

α′(GH) >

(
k − 1

k(k2 − 3)

)
m +

(
k2 − k − 2

k(k2 − 3)

)
n2 −

k − 1

k(k2 − 3)
.
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By Observation 8, and noting that km = n1 + 2n2, the following therefore holds.

α2(H) = α′(GH) >

(
k − 1

k(k2 − 3)

)(
n1 + 2n2

k

)
+

(
k2 − k − 2

k(k2 − 3)

)
n2 −

k − 1

k(k2 − 3)
.

Multiplying through with k2(k2 − 3), and simplifying, we obtain the following.

k2(k2 − 3)α2(H) > (k − 1)n1 + (k3 − k2 − 2)n2 − k(k − 1).

This implies the desired result.

Theorem 21. For k > 3 odd, if H ∈ Hk, then

α(H) >
(k2 + k − 4)n(H)− (k − 1)2m(H)− (k − 1)

k(k2 − 3)
.

Proof. Let k > 3 be odd and let H ∈ Hk. We follow the same notation as introduced in
the proof of Theorem 18. Proceeding exactly as in the proof of Theorem 18, we have

n1(H) 6 (k − 1)|S| − c(H ′)− r + t0 + 1
n1(H

′) = k|S| − n1(H)− 2r
n2(H

′) = n2(H)− n1(H ′)− r

The following holds by Theorem 20.

α(H) > |S|+ α2(H
′) > |S|+ (k − 1)n1(H

′) + (k3 − k2 − 2)n2(H
′)− k(k − 1)c(H ′)

k2(k2 − 3)
.

Therefore,

k2(k2 − 3)α(H) >k2(k2 − 3)|S|+ (k − 1)n1(H
′) + (k3 − k2 − 2)n2(H

′)− k(k − 1)c(H ′)

=k2(k2 − 3)|S|+ (k − 1)n1(H
′) + (k3 − k2 − 2)(n2(H)− n1(H ′)− r)

− k(k − 1)c(H ′)

=k2(k2 − 3)|S|+ (−k3 + k2 + k + 1)n1(H
′)

+ (k3 − k2 − 2)n2(H)− (k3 − k2 − 2)r − k(k − 1)c(H ′)

=k2(k2 − 3)|S|+ (−k3 + k2 + k + 1)(k|S| − n1(H)− 2r)

+ (k3 − k2 − 2)n2(H)− (k3 − k2 − 2)r − k(k − 1)c(H ′)

=(k4 − 3k2 − k4 + k3 + k2 + k)|S|+ (k3 − k2 − k − 1)n1(H)

+ (k3 − k2 − 2)n2(H) + (k3 − k2 − 2k)r − k(k − 1)c(H ′)

=k(k − 1)2|S|+ (k3 − k2 − k − 1)n1(H)

+ (k3 − k2 − 2)n2(H) + (k3 − k2 − 2k)r − k(k − 1)c(H ′)

=k(k − 1)((k − 1)|S| − c(H ′)− r + t0 + 1)

− k(k − 1)t0 − k(k − 1) + (k3 − k2 − k − 1)n1(H)

the electronic journal of combinatorics 24(2) (2017), #P2.50 20



+ (k3 − k2 − 2)n2(H) + (k3 − 3k)r

>k(k − 1)n1(H)− k(k − 1)t0 − k(k − 1) + (k3 − k2 − k − 1)n1(H)

+ (k3 − k2 − 2)n2(H) + k(k2 − 3)r

=(k3 − 2k − 1)n1(H) + (k3 − k2 − 2)n2(H)

+ k(k2 − 3)r − k(k − 1)t0 − k(k − 1)

=k(k2 + k − 4)(n1(H) + n2(H))− (k − 1)2(n1(H) + 2n2(H))

+ k(k2 − 3)r − k(k − 1)t0 − k(k − 1)

=k(k2 + k − 4)n(H)− k(k − 1)2m(H) + k(k2 − 3)r − k(k − 1)t0 − k(k − 1).

Dividing through by k, the above simplifies to

k(k2 − 3)α(H) > (k2 + k − 4)n(H)− (k − 1)2m(H) + (k2 − 3)r − (k − 1)t0 − (k − 1).

As observed in the proof of Theorem 18, if r = 0, then t0 = 0, while if r > 1, then
t0 6 (k − 1)r. If r = 0, then the above simplifies to the following.

k(k2 − 3)α(H) > (k2 + k − 4)n(H)− (k − 1)2m(H)− (k − 1).

If r > 1, then the above simplifies to the following.

k(k2 − 3)α(H) >(k2 + k − 4)n(H)− (k − 1)2m(H)

+ (k2 − 3)r − (k − 1)2r − (k − 1)

=(k2 + k − 4)n(H)− (k − 1)2m(H) + 2(k − 2)r − (k − 1)

>k(k2 + k − 4)n(H)− (k − 1)2m(H) + k − 3

>k(k2 + k − 4)n(H)− (k − 1)2m(H)

>k(k2 + k − 4)n(H)− (k − 1)2m(H)− (k − 1).

This completes the proof of Theorem 21.

We show next that there is an infinite family of hypergraphs H ∈ Hk for which equality
holds in the statement of Theorem 21. For k > 3 an odd integer and r > 1, let G be
an arbitrary graph in the family Fk,r, and let Hk

G be the associated hypergraph in the
family Hodd

k,r . For each vertex v of degree 1 in Hk
G, we add k− 1 new vertices and an edge

(of size k) containing v and these new vertices. Let Rk
G denote the resulting hypergraph,

and let Rodd
k,r be the family of all such hypergraphs Rk

G.

Proposition 22. For k > 3 an odd integer and r > 1 arbitrary, if H ∈ Rodd
k,r has order n

and size m, then

α(H) =
(k2 + k − 4)n(H)− (k − 1)2m(H)− (k − 1)

k(k2 − 3)
.

Proof. Let G ∈ Fk,r be the graph and Hk
G ∈ Hodd

k,r the associated hypergraph used to

construct the hypergraph H ∈ Rodd
k,r , and so H = Rk

G. Analogous to the proof of Propo-
sition 19, we have that

α(H) = n1(H
k
G) + α′(G).
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For i ∈ [k], let n1,i be the number of vertices in V1 that have degree i in G. As shown in

the proof of Proposition 13,

k∑
i=1

n1,i = |V1| and
k∑

i=1

i · n1,i = |V1|+ |V2| − 1,

implying that

n1(H
k
G) =

k∑
i=1

(k − i)n1,i = k
k∑

i=1

n1,i −
k∑

i=1

i · n1,i = (k − 1)|V1| − |V2|+ 1.

Recall that n = n(H) and m = m(H). We note that

n = n(Hk
G) + (k − 1)n1(H

k
G)

m = m(Hk
G) + n1(H

k
G)

Recall (see the proof of Proposition 13) that

n(Hk
G) =

(
k3 + k2 − k − 1

2

)
|V2| −

(
k2 + 1

2

)
|V1| +

(
k2 + 2k + 1

2

)
m(Hk

G) = (k2 + k − 1)|V2| − (k + 1)|V1|+ (k + 2)

α′(G) = 1
2

(
(k2 + 1)|V2| − (k + 1)|V1|+ (k + 1)

)
Therefore,

(k2 + k − 4)n− (k − 1)2m− (k − 1)

k(k2 − 3)

=

(
k2 + k − 4

k(k2 − 3)

)(
n(Hk

G) + (k − 1)n1(H
k
G)
)

−
(

(k − 1)2

k(k2 − 3)

)(
m(Hk

G) + n1(H
k
G)
)

− k − 1

k(k2 − 3)

=

(
k2 + k − 4

k(k2 − 3)

)((
k3 + k2 − k − 1

2

)
|V2| −

(
k2 + 1

2

)
|V1|+

(
k2 + 2k + 1

2

)
+(k − 1)n1(H

k
G)
)
−
(

(k − 1)2

k(k2 − 3)

)(
(k2 + k − 1)|V2| − (k + 1)|V1|

+(k + 2) + n1(H
k
G)
)
− k − 1

k(k2 − 3)

=

(
k5 − 2k3 − 2k2 − 3k + 6

2k(k2 − 3)

)
|V2| −

(
k4 − k3 − k2 + 3k − 6

2k(k2 − 3)

)
|V1|

+

(
k3 − k2 − 3k + 3

k(k2 − 3)

)
n1(H

k
G) +

k4 + k3 − k2 − 3k − 6

2k(k2 − 3)
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=

(
k3 + k − 2

2k

)
|V2| −

(
k2 − k + 2

2k

)
|V1|+

(
k − 1

k

)
n1(H

k
G) +

k2 + k + 2

2k

=

(
k3 + k − 2

2k

)
|V2| −

(
k2 − k + 2

2k

)
|V1|+ n1(H

k
G)− 1

k
((k − 1)|V1| − |V2|+ 1)

+
k2 + k + 2

2k

=n1(H
k
G) +

(
k2 + 1

2

)
|V2| −

(
k + 1

2

)
|V1|+

k + 1

2

=n1(H
k
G) + α′(G)

=α(H).

This completes the proof of Proposition 22.

5 Summary

For small values of k > 3, the results in this paper are summarized in Table 1 and Table 2
below.

k even H has order n and size m.
H ∈ Hk H ∈ H′k H ∈ H′′k

k = 4 20τ(H) 6 4n+ 3m+ 5 20τ(H) 6 4n+ 3m+ 3 20τ(H) 6 4n+ 3m+ 1
20α(H) > 6n− 3m− 5 20α(H) > 6n− 3m− 3 20α(H) > 6n− 3m− 1

k = 6 42τ(H) 6 6n+ 5m+ 7 42τ(H) 6 6n+ 5m+ 3 42τ(H) 6 6n+ 5m+ 1
42α(H) > 8n− 5m− 7 42α(H) > 8n− 5m− 3 42α(H) > 8n− 5m− 1

k = 8 72τ(H) 6 8n+ 7m+ 9 72τ(H) 6 8n+ 7m+ 3 72τ(H) 6 8n+ 7m+ 1
72α(H) > 10n− 7m− 9 72α(H) > 10n− 7m− 3 72α(H) > 10n− 7m− 1

Table 1. Results for small values of even k > 4

k odd H ∈ Hk has order n and size m.

k = 3 9τ(H) 6 2n+ 2m+ 1
9α(H) > 4n− 2m− 1

k = 5 55τ(H) 6 9n+ 8m+ 2
55α(H) > 13n− 8m− 2

k = 7 161τ(H) 6 20n+ 18m+ 3
161α(H) > 26n− 18m− 3

Table 2. Results for small values of odd k > 3

We have further shown that in each of the inequality statements involving the transver-
sal number or the independence number, there is an infinite family of hypergraphs H ∈ Hk

for which equality holds, implying that all the bounds are tight.
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Random Struct. Alg. 44:224–239, 2014.

[26] F. C. Lai and G. J. Chang. An upper bound for the transversal numbers of 4-uniform
hypergraphs. J. Combin. Theory Ser. B 50:129–133, 1990.
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