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Abstract

We introduce thagomizer matroids and compute the Kazhdan-Lusztig polyno-
mial of a rank n+1 thagomizer matroid by showing that the coefficient of tk is equal
to the number of Dyck paths of semilength n with k long ascents. We also give a
conjecture for the Sn-equivariant Kazhdan-Lusztig polynomial of a thagomizer ma-
troid.
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1 Introduction

The main objects of study in this paper are the Kazhdan-Lusztig polynomials of a par-
ticular family of matroids. The Kazhdan-Lusztig polynomial of a matroid was introduced
by Elias, Proudfoot and Wakefield [EPW16]. In the appendix of that paper, the authors
(along with Young) explicitly computed the coefficients of these polynomials for some uni-
form and braid matroids of small rank. Proudfoot, Wakefield and Young studied uniform
matroids of rank n− 1 on n elements [PWY16] and gave a combinatorial description for
the coefficients of the associated Kazhdan-Lusztig polynomial.

Let Mn be the matroid associated with the graph obtained from the bipartite graph
K2,n by adding an edge between the two distinguished vertices. We call Mn a thagomizer
matroid1. The ground set of Mn has size 2n+ 1 and the rank of Mn is n+ 1. We give a
description of the flats of Mn in Section 3.

1The underlying graph is also called the complete tripartite graph K1,1,n or the fan graph Fn,2.
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Figure 1: The underlying graph of M4.

Let Pn(t) be the Kazhdan-Lusztig polynomial of Mn and set

Φ(t, u) :=
∞∑
n=0

Pn(t)un+1.

Let cn,k be the k-th coefficient of Pn(t) and note that the degree of Pn(t) is bn
2
c. The

following theorem is our main result.

Theorem 1. The following (equivalent) statements hold.

1. For all n and k, cn,k is the number of Dyck paths of semilength n with k long ascents.

2. The generating function Φ(t, u) is equal to
1−

√
1− 4u(1− u+ tu)

2(1− u+ tu)
.

Remark 2. It is known that the number of Dyck paths of semilength n with k long
ascents is equal to the quantity 1

n+1

(
n+1
k

)∑n
j=2k

(
j−k−1
k−1

)(
n+1−k
n−j

)
(see [STT06] and sequence

A091156 in [Slo16]).

Remark 3. The total number of Dyck paths of semilength n is equal to the n-th Catalan
number Cn = 1

n+1

(
2n
n

)
. Thus Theorem 1 implies that Pn(1) = Cn and Remark 2 implies

that the leading coefficient of P2n(t) is Cn. Interestingly, Cn also appears as the leading
coefficient of the Kazhdan-Lusztig polynomial of the uniform matroid of rank 2n − 1 on
2n elements (see [EPW16] Appendix A and [PWY16]).

Remark 4. Prior to this paper, uniform matroids were the only infinite family of matroids
for which the Kazhdan-Lusztig polynomial has been computed. For example, it is still
an open problem to compute the Kazhdan-Lusztig polynomial of the braid matroid; see
[EPW16] and [GPY17] for partial results.

We conclude this section with a description of the structure of the paper. In Section
2, we recall the definition of the Kazhdan-Lusztig polynomial of a matroid and review
Dyck paths. Section 3 is dedicated to proving Theorem 1.
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In Section 4, we recall the definition of the equivariant Kazhdan-Lusztig polynomial
of a matroid and explore the Sn action on Mn which allows us to make a conjecture for
the Sn-equivariant Kazhdan-Lusztig polynomial of Mn. This categorification of Kazhdan-
Lusztig coefficients was first considered for a uniform matroid of rank n−1 on n elements
by Proudfoot, Wakefield and Young [PWY16] where they were given by an irreducible
representation of Sn. The equivariant Kazhdan-Lusztig polynomial for a general matroid
was subsequently defined by the author, Proudfoot and Young [GPY17] where we further
studied uniform matroids in this context and computed the Sn-equivariant Kazhdan-
Lusztig polynomials of braid matroids of small rank.

2 Preliminaries

2.1 Kazhdan-Lusztig polynomials of a matroid

In this section we follow [EPW16] to define the non-equivariant Kazhdan-Lusztig polyno-
mial of a matroid (which we simply refer to as the Kazhdan-Lusztig polynomial).

Let M be a matroid on the finite ground set E. Denote by L(M) the lattice of
flats of M and χM(t) the characteristic polynomial of M . The matroid MF is called
the contraction of M at F ; it is the matroid on the ground set E \ F whose lattice
of flats is LF := {G \ F | G ∈ L(M) and G > F}. The matroid MF is called the
localization of M at F and is the matroid with ground set F whose lattice of flats is
LF := {G ∈ L(M) | G 6 F}.

The Kazhdan-Lusztig polynomial PM(t) ∈ Z[t] is characterized by the following
three properties [EPW16, Theorem 2.2].

• If rkM = 0, then PM(t) = 1.

• If rkM > 0, then degPM(t) < 1
2

rkM .

• For every M , trkMPM(t−1) =
∑
F

χMF
(t)PMF (t).

2.2 Dyck paths

A Dyck path of semilength n is a lattice path in N2 beginning at (0, 0) and ending at
(2n, 0) with up-steps of the form u = (1, 1) and down-steps of the form d = (1,−1). Such
a Dyck path may be expressed as a word α ∈ {u, d}2n.

A long ascent of a Dyck path is an ascent of length at least 2. Equivalently, a long
ascent of a Dyck path α is a maximal subword consisting of at least two consecutive u’s.
The Dyck path given in Figure 2 has two long ascents.

Let Dn be the set of all Dyck paths of semilength n. We denote by an,k the number of
elements in Dn with exactly k long ascents. As noted in [STT06], an,k is also the number
of words α ∈ Dn with k occurrences of the subword uud. Additional interpretations of
an,k are known; see sequence A091156 in [Slo16].
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Figure 2: The Dyck path uuduuudduddd.

3 Main results

We begin this section with a description of the flats F ∈ L(Mn) given by the underlying
graph. Let AB be the distinguished edge. For any j ∈ {1, . . . , n}, we call the subgraph
with edges Aj and Bj a spike.

If rkF = i, then either

1. F contains exactly one edge from i distinct spikes, or

2. F is the union of i− 1 spikes and AB.

For example, when n = 4, a rank 2 flat of the first type is given by {A1, B3} and a rank
2 flat of the second type is given by {AB,A4, B4} (see Figure 1).

In the first case, the localization (Mn)F yields a Boolean matroid of rank i, and the
contraction MF

n gives a matroid whose lattice of flats is isomorphic to that of Mn−i. In
the second case, the localization (Mn)F gives a matroid whose lattice of flats is isomorphic
to that of Mi−1, and the contraction MF

n is a Boolean matroid of rank n− i+ 1.
The characteristic polynomial of a rank i Boolean matroid is equal to (t − 1)i. For

thagomizer matroids, it is clear that

χMi
(t) = (t− 1)(t− 2)i

by a simple deletion/contraction argument.
Recall that we’ve set

Pn(t) := PMn(t) and Φ(t, u) :=
∞∑
n=0

Pn(t)un+1.

We first turn our attention towards proving the following lemma.

Lemma 5. We have the following (equivalent) equations.

1. For all n, tn+1Pn(t−1) = (t− 1)n+1 +
n∑
i=0

(
n

i

)
2n−i(t− 1)n−iPi(t).

2. Φ(t−1, tu) =
ut− u

1 + u− tu
+ Φ

(
t,

u

1 + 2u− 2tu

)
.

the electronic journal of combinatorics 24(3) (2017), #P3.12 4



Proof. There are
(
n
i

)
· 2n−i flats of the first type of rank n− i and

(
n
i

)
flats of the second

type of rank i+ 1. Note that for any Boolean matroid M, PM(t) = 1 [EPW16, Corollary
2.10]. Then we have

tn+1Pn(t−1) =
n∑
i=0

(
n

i

)(
2n−i(t− 1)n−iPi(t) + (t− 1)(t− 2)i

)
(1)

= (t− 1)n+1 +
n∑
i=0

(
n

i

)
2n−i(t− 1)n−iPi(t)

which is the formula given in Lemma 5(1). Now our defining recursion tells us that

Φ(t−1, tu) =
∞∑
n=0

Pn(t−1)tn+1un+1

=
∞∑
n=0

(t− 1)n+1un+1 +
∞∑
n=0

n∑
i=0

(
n

i

)
2n−i(t− 1)n−iPi(t)u

n+1.

We let m = n− i which allows us to write the second summand as

∞∑
i=0

Pi(t)u
i+1

∞∑
m=0

2m
(
m+ i

i

)
(t− 1)mum.

Recall the identity
∞∑
`=0

(
r + `

r

)
x` =

1

(1− x)r+1

and set ` = m and x = 2u(t− 1). This gives

Φ(t−1, tu) = u(t− 1)
∞∑
n=0

(t− 1)nun +
∞∑
i=0

Pi(t)u
i+1

(1− 2u(t− 1))i+1

=
u(t− 1)

1− u(t− 1)
+
∞∑
i=0

Pi(t)

(
u

1− 2u(t− 1)

)i+1

=
ut− u

1 + u− tu
+ Φ

(
t,

u

1 + 2u− 2tu

)
.

This completes the proof of Lemma 5.

Finally we are ready to prove Theorem 1. Let an,k be as in Section 2.2, and set

F (t, u) :=
∑
n,k>0

an,kt
kun.

It was shown in [STT06, Section 1] that F (t, u) satisfies

u(1− u+ tu) · (F (t, u))2 − F (t, u) + 1 = 0
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which gives

F (t, u) =
1−

√
1− 4u(1− u+ tu)

2u(1− u+ tu)
.

A priori, this formula should have a ± sign. However, a plus sign would not give F (t, u)
as a formal power series. Hence we use a negative sign instead.

Let f(t, u) := u · F (t, u). Since we’d like to show that Φ(t, u) = u · F (t, u), we first
check that f(t, u) satisfies the functional equation in Lemma 5(2).

We have

f(t, u) =
1−

√
1− 4u(1− u+ tu)

2(1− u+ tu)

and hence

f(t−1, tu) =
1−

√
1− 4tu(1− tu+ u)

2(1− tu+ u)

=
ut− u

1− tu+ u
+

1− 2ut+ 2u−
√

1− 4tu(1− tu+ u)

2(1− tu+ u)

=
ut− u

1− tu+ u
+

1− 1
1+2u−2tu

√
1− 4tu(1− tu+ u)

2(1+u−tu)
1+2u−2tu

=
ut− u

1− tu+ u
+

1−
√

1− 4u(1+2u−2tu−u+tu)
(1+2u−2tu)2

2(1+u−tu)
1+2u−2tu

=
ut− u

1− tu+ u
+ f

(
t,

u

1 + 2u− 2tu

)
.

Lastly, we note that both cn,k and an,k are zero if n > 2k and that f(t, 0) = Φ(t, 0) = 1.
Then f(t, u) = Φ(t, u) which equivalently tells us that cn,k = an,k. This completes the
proof of Theorem 1.

4 The Sn action

Recall the notation set in Section 2.1. That is, let M be a matroid on a finite ground set
E. Given a flat F ∈ L(M), let MF denote the contraction of M at F and let MF denote
the localization of M at F .

LetW be a finite group acting on E and preservingM . We refer to the data {M,E,W}
as an equivariant matroid W y M . For any F,G ∈ L(M), let WF ⊆ W be the
stabilizer of F and let WFG := WF ∩WG. Note that the action of W on M induces an
action of WF on both MF and MF . Let VRep(W ) be the ring of isomorphism classes of
virtual representations of W and set

grVRep(W ) := VRep(W )⊗Z Z[t].
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Let OSWM,i ∈ Rep(W ) be the degree i part of the Orlik-Solomon algebra of M . The
equivariant characteristic polynomial of M , HW

M (t), is given by

HW
M (t) :=

rkM∑
p=0

(−1)ptrkM−pOSWM,p ∈ grVRep(W ).

Note that the equivariant characteristic polynomial HW
M (t) is a categorified version of the

usual characteristic polynomial χM(t). That is, we can recover χM(t) from HW
M (t) by

taking the graded dimension.
The equivariant Kazhdan-Lusztig polynomial of W y M , denoted PWM (t), is

a categorified version of the Kazhdan-Lusztig polynomial and is characterized by the
following three properties [GPY17, Theorem 2.8].

• If rkM = 0, PWM (t) is equal to the trivial representation in degree 0.

• If rkM > 0, degPWM (t) < 1
2

rkM .

• For every M , trkMPWM (t−1) =
∑

[F ]∈L/W

IndWWF

(
HWF
MF

(t)⊗ PWF

MF (t)
)
.

The polynomial PWM (t) is an element of grVRep(W ) and we can recover PM(t) from PWM (t)
by taking the graded dimension.

Now we turn our attention back to the thagomizer matroid Mn. Though the full
automorphism group of Mn is Sn × S2 (unless n = 1 in which case it is S3), here we only
consider the action of the symmetric group Sn. Let

Pn(t) := PSn
Mn

(t) and φ(t, u) :=
∞∑
u=0

Pn(t)un+1.

Let Υn be all partitions of n of the form [a, n − a − 2i − η, 2i, η] where η ∈ {0, 1}, i > 0
and 1 < a < n. For any partition λ of n, we let Vλ be the irreducible representation of
Sn indexed by λ.

For any partition λ, we set

κ(λ) =

{
λ1 − λ2 + 1 λ 6= [n− 1, 1]
λ1 − 1 otherwise

and

ω(λ) =

{
1 λ`(λ) 6= 1
0 otherwise.

Conjecture 6. For all n > 0, we have

Pn(t) =
∑
λ∈Υn

κ(λ)Vλt
`(λ)−1(t+ 1)ω(λ) + V[n]((n− 1)t+ 1).
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Remark 7. We have checked this conjecture for thagomizer matroids of rank at most
20 using SageMath [Dev16]. For our calculations, we worked in the symmetric function
setting (see Proposition 10).

Remark 8. We know the coefficients of Pn(t) will be honest representations by [GPY17,
Corollary 2.12] since Mn is Sn-equivariantly realizable.

Remark 9. Unlike the analogous statements for uniform matroids, Conjecture 6 is less
enlightening than Theorem 1(1) (see [GPY17], Theorem 3.1 and Remark 3.4). That is,
the coefficients of the Kazhdan-Lusztig polynomial of a uniform matroid are more cleanly
expressed when given as the dimension of a certain representation of the symmetric group.
This is not the case for thagomizer matroids.

The remainder of this section is devoted to understanding the results that allow us to
derive the recursive formula and functional equation for the Frobenius characteristic of
Pn(t). Let

W (t) := (t− 1)C and V (t) := (t− 2)C

as virtual vector spaces. Then W (t)⊗r is the equivariant characteristic polynomial of a
rank r Boolean matroid and W (t)⊗V (t)⊗r is the equivariant characteristic polynomial of
Mr. Both W (t)⊗r and W (t)⊗ V (t)⊗r are virtual representations of Sr, where Sr acts by
permuting the factors of the graded tensor product. Note that the equivariant Kazhdan-
Lusztig polynomial of a Boolean matroid is the trivial representation in degree zero.

We’d like to categorify the recursive formula given in Lemma 5(1). Recall Equation 1

tn+1Pn(t−1) =
n∑
i=0

(
n

i

)
2n−i(t− 1)n−iPi(t) +

n∑
i=0

(
n

i

)
(t− 1)(t− 2)i.

The first sum is over flats of rank n− i of the first type mentioned in Section 3. For flats
of this type, summing over [F ] ∈ L(Mn)/Sn gives∑

m+j+i=n

IndSn
Sm×Sj×Si

(
W (t)⊗m ⊗W (t)⊗j ⊗ Pi(t)

)
∈ grVRep(Sn) (5)

where Sm permutes the vertices that are connected to A by an edge in F , Sj permutes
the vertices that are connected to B by an edge in F , and Si permutes the vertices that
are not adjacent to any edge in F . Similarly, summing over flats of the second type gives

n∑
i=0

IndSn
Si×Sn−i

(
W (t)⊗ V (t)⊗i

)
∈ grVRep(Sn) (6)

where Sn−i is acting trivially.
As in [GPY17, Section 3.1], we now translate to symmetric functions. We consider

the Frobenius characteristic

ch : grVRep(Sn)
∼−→ Λn[t]
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where Λn is the space of symmetric functions of degree n in infinitely many formal variables
{xi | i ∈ N}.

Let s[λ] := chVλ be the Schur function corresponding to λ and set

pn(t) := chPn(t), wn(t) := chW (t)⊗n and vn(t) := chV (t)⊗n.

Applying Frobenius characteristic to Equations 5 and 6, we obtain

tn+1pn(t−1) = (t− 1)
n∑
`=0

v`(t)s[n− `] +
∑

i+j+m=n

pi(t)wj(t)wm(t).

Finally, we pass to generating functions, working in the ring Λ[[t, u]] of formal power
series in the variables {t, u, x1, x2, . . .} that are symmetric in the x variables.We let

s(u) :=
∑
n

s[n]un, w(t, u) :=
∑
n

wn(t)un

and
v(t, u) :=

∑
n

vn(t)un.

Note that

w(t, u) =
s(tu)

s(u)

by [GPY17, Proposition 3.9]. The results of this section can be summarized in the fol-
lowing proposition.

Proposition 10. We have the following (equivalent) equations.

1. For n > 0, tn+1pn(t−1) = (t− 1)
n∑
`=0

v`(t)s[n− `] +
∑

i+j+m=n

pi(t)wj(t)wm(t).

2. φ(t−1, tu) = (t− 1)us(u)v(t, u) + w(t, u)2φ(t, u).

Remark 8. In [GPY17], we were able to compute the equivariant Kazhdan-Lusztig poly-
nomial for uniform matroids by showing that our “guess” satisfied a recursion analogous
to the one found in Proposition 10(2). That case was much simpler; we only had to
consider singular applications of the Pieri rule. In this case, w(t, u)2 requires multiple
applications of the Pieri rule while vn(t) = s[n]

[
v1(t)

]
involves a plethysm. This makes

proving Conjecture 6 much more difficult.
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