Expanders with superquadratic growth

Antal Balog*
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, Hungary balog.antal@renyi.mta.hu

Oliver Roche-Newton ${ }^{\dagger}$
Johannes Kepler Universität
Linz, Austria
o.rochenewton@gmail.com

Dmitry Zhelezov ${ }^{\ddagger}$
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, Hungary

dzhelezov@gmail.com
Submitted: May 26, 2016; Accepted: Jul 7, 2017; Published: Jul 28, 2017
Mathematics Subject Classifications: 52C10, 11B30

Abstract

We prove several expanders with exponent strictly greater than 2. For any finite set $A \subset \mathbb{R}$, we prove the following six-variable expander results:

$$
\begin{aligned}
|(A-A)(A-A)(A-A)| & \gg \frac{|A|^{2+\frac{1}{8}}}{\log ^{\frac{17}{16}}|A|} \\
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| & \gg \frac{|A|^{2+\frac{2}{17}}}{\log ^{\frac{16}{17}}|A|} \\
\left|\frac{A A+A A}{A+A}\right| & \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|} \\
\left|\frac{A A+A}{A A+A}\right| & \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|}
\end{aligned}
$$

1 Introduction

Let A be a finite ${ }^{1}$ set of real numbers. The sum set of A is the set $A+A=\{a+b: a, b \in$ $A\}$ and the product set $A A$ is defined analogously. The Erdős-Szemerédi sum-product

[^0]conjecture ${ }^{2}$ states that, for any such A and all $\epsilon>0$ there exists an absolute constant $c_{\epsilon}>0$ such that
$$
\max \{|A+A|,|A A|\} \geqslant c_{\epsilon}|A|^{2-\epsilon} .
$$

In other words, it is believed that at least one of the sum set and product set will always be close to the maximum possible size $|A|^{2}$, suggesting that sets with additive structure do not have multiplicative structure, and vice versa.

A familiar variation of the sum-product problem is that of showing that sets defined by a combination of additive and multiplicative operations are large. A classical and beautiful result of this type, due to Ungar [21], is the result that for any finite set $A \subset \mathbb{R}$

$$
\begin{equation*}
\left|\frac{A-A}{A-A}\right| \geqslant|A|^{2}-2 \tag{1}
\end{equation*}
$$

where

$$
\frac{A-A}{A-A}=\left\{\frac{a-b}{c-d}: a, b, c, d \in A, c \neq d\right\} .
$$

This notation will be used with flexibility to describe sets formed by a combination of additive and multiplicative operations on different sets. For example, if A, B and C are sets of real numbers, then $A B+C:=\{a b+c: a \in A, b \in B, c \in C\}$. We use the shorthand $k A$ for the k-fold sum set; that is $k A:=\left\{a_{1}+a_{2}+\cdots+a_{k}: a_{1}, \ldots, a_{k} \in A\right\}$. Similarly, the k-fold product set is denoted $A^{(k)}$; that is $A^{(k)}:=\left\{a_{1} a_{2} \cdots a_{k}: a_{1}, \ldots, a_{k} \in A\right\}$.

We refer to sets such as $\frac{A-A}{A-A}$, which are known to be large, as expanders. To be more precise, we may specify the number of variables defining the set; for example, we refer to $\frac{A-A}{A-A}$ as a four variable expander.

Recent years have seen new lower bounds for expanders. For example, Roche-Newton and Rudnev [16] proved ${ }^{3}$ that for any $A \subset \mathbb{R}$

$$
\begin{equation*}
|(A-A)(A-A)| \gg \frac{|A|^{2}}{\log |A|} \tag{2}
\end{equation*}
$$

and Balog and Roche-Newton [2] proved that for any set A of strictly positive real numbers

$$
\begin{equation*}
\left|\frac{A+A}{A+A}\right| \geqslant 2|A|^{2}-1 . \tag{3}
\end{equation*}
$$

Note that equations (1), (2) and (3) are optimal up to constant (and in the case of (2), logarithmic) factors, as can be seen by taking $A=\{1,2, \ldots, N\}$. More generally, any set A with $|A+A| \ll|A|$ is extremal for equations (1), (2) and (3).

With these results, along with others in [5], [6], [11] and [12], we have a growing collection of near-optimal expander results with a lower bound $\Omega\left(|A|^{2}\right)$ or $\Omega\left(|A|^{2} / \log |A|\right)$.

[^1]All of the near-optimal expanders that are known have at least 3 variables. The aim of this paper is to move beyond this quadratic threshold and give expander results with relatively few variables and with lower bounds of the form $\Omega\left(|A|^{2+c}\right)$ for some absolute constant $c>0$.

1.1 Statement of results

It was conjectured in [2] that for any $A \subset \mathbb{R}$ and any $\epsilon>0,|(A-A)(A-A)(A-A)| \gg$ $|A|^{3-\epsilon}$. In this paper, a small step towards this conjecture is made in the form of the following result.

Theorem 1.1. Let $A \subset \mathbb{R}$. Then

$$
|(A-A)(A-A)(A-A)| \gg \frac{|A|^{2+\frac{1}{8}}}{\log ^{17 / 16}|A|}
$$

This result is the first improvement on the bound $|(A-A)(A-A)(A-A)| \gg$ $|A|^{2} / \log |A|$ which follows trivially from (2). The proof uses some beautiful ideas of Shkredov [18].

The following theorem gives partial support for the aforementioned conjecture from a slightly different perspective.

Theorem 1.2. Let $A \subset \mathbb{R}$. Then for any $\epsilon>0$ there is an integer $k>0$ such that

$$
\left|(A-A)^{(k)}\right| \gg_{\epsilon}|A|^{3-\epsilon} .
$$

We also prove the following six variable expanders have superquadratic growth.
Theorem 1.3. Let $A \subset \mathbb{R}$. Then

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg \frac{|A|^{2+2 / 17}}{\log ^{16 / 17}|A|}
$$

Theorem 1.4. Let $A \subset \mathbb{R}$. Then

$$
\left|\frac{A A+A A}{A+A}\right| \gg \frac{|A|^{11 / 8}|A A|^{3 / 4}}{\log |A|}
$$

In particular, since $|A A| \geqslant|A|$,

$$
\left|\frac{A A+A A}{A+A}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|}
$$

Theorem 1.5. Let $A \subset \mathbb{R}$. Then

$$
\left|\frac{A A+A}{A A+A}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|}
$$

The proofs of these three results make use of the results and ideas of Lund [10].
In fact, a closer inspection of the proof of Theorem 1.5 reveals that we obtain the inequality

$$
\left|\left\{\frac{a b+c}{a d+e}: a, b, c, d, e \in A\right\}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|} .
$$

Therefore, Theorem 1.5 actually gives a superquadratic five variable expander.

2 Preliminary Results

For the proof of Theorem 1.1 we will require the Ruzsa Triangle Inequality. See Lemma 2.6 in Tao- Vu [20].

Lemma 2.1. Let A, B and C be subsets of an abelian group $(G,+)$. Then

$$
|A-B||C| \leqslant|A-C||B-C| .
$$

A closely related result is the Plünnecke-Ruzsa inequality. A simple proof of the following formulation of the Plünnecke-Ruzsa inequality can be found in [14].

Lemma 2.2. Let A be a subset of an abelian group $(G,+)$. Then

$$
|k A-l A| \leqslant \frac{|A+A|^{k+l}}{|A|^{k+l-1}}
$$

We will also use the following variant, which is Corollary 1.5 in Katz-Shen [8]. The result was originally stated for subsets of the additive group \mathbb{F}_{p}, but the proof is valid for any abelian group.

Lemma 2.3. Let X, B_{1}, \ldots, B_{k} be subsets of an abelian group $(G,+)$. Then there exists $X^{\prime} \subset X$ such that $\left|X^{\prime}\right| \geqslant|X| / 2$ and

$$
\left|X^{\prime}+B_{1}+\cdots+B_{k}\right| \ll \frac{\left|X+B_{1}\right|\left|X+B_{2}\right| \cdots\left|X+B_{k}\right|}{|X|^{k-1}} .
$$

We will need various existing results for expanders. The first is due to Garaev and Shen [4].

Lemma 2.4. Let $X, Y, Z \subset \mathbb{R}$ and $\alpha \in \mathbb{R} \backslash\{0\}$. Then

$$
|X Y||(X+\alpha) Z| \gg|X|^{3 / 2}|Y|^{1 / 2}|Z|^{1 / 2}
$$

In particular,

$$
\begin{equation*}
|X(X+\alpha)| \gg|X|^{5 / 4} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \{|X Y|,|(X+\alpha) Y|\} \gg|X|^{3 / 4}|Y|^{1 / 2} . \tag{5}
\end{equation*}
$$

Note that Lemma 2.4 was originally stated only for $\alpha=1$, but the proof extends without alteration to hold for an arbitrary non-zero real number α. A similar and earlier result of Elekes, Nathanson and Ruzsa [3] will also be used.

Lemma 2.5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly convex or concave function and let $X, Y, Z \subset \mathbb{R}$. Then

$$
|f(X)+Y||X+Z| \gg|X|^{3 / 2}|Y|^{1 / 2}|Z|^{1 / 2}
$$

Define

$$
R[A]:=\left\{\frac{a-b}{a-c}: a, b, c \in A\right\}
$$

The following result is due to Jones [6]. An alternative proof can be found in [15].
Lemma 2.6. Let $A \subset \mathbb{R}$. Then

$$
|R[A]| \gg \frac{|A|^{2}}{\log |A|}
$$

Each of the three latter results come from simple applications of the Szemerédi-Trotter Theorem.

Note that the proof of Lemma 2.6 also implies that there exists $a, b \in A$ such that

$$
\begin{equation*}
|(A-a)(A-b)| \gg \frac{|A|^{2}}{\log |A|} \tag{6}
\end{equation*}
$$

See [15] for details. In particular, this gives a shorter proof of inequality (2), requiring only a simple application of the Szemerédi-Trotter Theorem. The inequality (2) will also be used in the proof of Theorem 1.1.

An important tool in this paper is the following result of Lund [10], which gives an improvement on (3) unless the ratio set A / A is very large.

Lemma 2.7. Let $A \subset \mathbb{R}$. Then

$$
\left|\frac{A+A}{A+A}\right| \gg \frac{|A|^{2}}{\log |A|}\left(\frac{|A|^{2}}{|A / A|}\right)^{1 / 8}
$$

In fact, a closer examination of the proof of Lemma 2.7 reveals that it can be generalised without making any meaningful changes to give the following statement.
Lemma 2.8. Let $A, B \subset \mathbb{R}$. Then

$$
\left|\frac{A+A}{B+B}\right| \gg \frac{|A||B|}{\log |A|+\log |B|}\left(\frac{|A||B|}{|A / B|}\right)^{1 / 8}
$$

The proofs of Theorems 1.3 and 1.4 use Lemma 2.8 as a black box. However, for the proof of Theorem 1.5 we need to dissect the methods from [10] in more detail and reconstruct a variant of the argument for our problem. To do this, we will also need the following tools which were used in [10]. The first is a generalisation of the SzemerédiTrotter Theorem to certain well-behaved families of curves. A more general version of this result can be found in Pach-Sharir [13].

Lemma 2.9. Let \mathcal{P} be an arbitrary point set in \mathbb{R}^{2}. Let \mathcal{L} be a family of curves in \mathbb{R}^{2} such that

- any two distinct curves from \mathcal{L} intersect in at most two points and
- for any two distinct points $p, q \in \mathcal{P}$, there exist at most two curves from \mathcal{L} which pass through both p and q.
Let $K \geqslant 2$ be some parameter and define $\mathcal{L}_{K}:=\{l \in \mathcal{L}:|l \cap \mathcal{P}| \geqslant K\}$. Then

$$
\left|\mathcal{L}_{K}\right| \ll \frac{|\mathcal{P}|^{2}}{K^{3}}+\frac{|\mathcal{P}|}{K}
$$

We will need the following version of the Lovász Local Lemma. This precise statement is Corollary 5.1.2 in [1].

Lemma 2.10. Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in an arbitrary probability space. Suppose that each event A_{i} is mutually independent from all but at most d of the events A_{j} with $j \neq i$. Suppose also that the probability of the event A_{i} occuring is at most p for all $1 \leqslant i \leqslant n$. Finally, suppose that

$$
e p(d+1) \leqslant 1
$$

Then, with positive probability, none of the events A_{1}, \ldots, A_{n} occur.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Write $D=A-A$ and apply Lemma 2.3 in the multiplicative setting with $k=2, X=D D$ and $B_{1}=B_{2}=D$. We obtain a subset $X^{\prime} \subseteq D D$ such that $\left|X^{\prime}\right| \gg|D D|$ and

$$
\begin{equation*}
\left|X^{\prime} D D\right| \ll \frac{|D D D|^{2}}{|D D|} \tag{7}
\end{equation*}
$$

Then apply Lemma 2.1, again in the multiplicative setting, with $A=B=D D$ and $C=\left(X^{\prime}\right)^{-1}$. This bounds the left hand side of (7) from below, giving

$$
\begin{equation*}
|D D / D D|^{1 / 2}\left|X^{\prime}\right|^{1 / 2} \leqslant\left|X^{\prime} D D\right| \ll \frac{|D D D|^{2}}{|D D|} \tag{8}
\end{equation*}
$$

Recall the observation of Shkredov [18] that $R[A]-1=-R[A]$. Indeed, for any $a, b, c \in A$

$$
\frac{a-b}{a-c}-1=\frac{a-b-(a-c)}{a-c}=-\frac{c-b}{c-a}
$$

Therefore, by Lemmas 2.4 and 2.6,

$$
|D D / D D| \geqslant|R[A] \cdot R[A]|=|R[A] \cdot(R[A]-1)| \gg|R[A]|^{5 / 4} \gg \frac{|A|^{5 / 2}}{\log ^{5 / 4}|A|}
$$

Putting this bound into (8) yields

$$
\begin{equation*}
\frac{|A|^{5 / 4}}{\log ^{5 / 8}|A|}\left|X^{\prime}\right|^{1 / 2} \ll \frac{|D D D|^{2}}{|D D|} . \tag{9}
\end{equation*}
$$

Finally, since $\left|X^{\prime}\right| \gg|D D| \gg \frac{|A|^{2}}{\log |A|}$ by (2), it follows that

$$
\begin{equation*}
|D D D|^{2} \gg \frac{|A|^{5 / 4}}{\log ^{5 / 8}|A|}|D D|^{3 / 2} \gg \frac{|A|^{5 / 4}}{\log ^{5 / 8}|A|}\left(\frac{|A|^{2}}{\log |A|}\right)^{3 / 2}=\frac{|A|^{17 / 4}}{\log ^{17 / 8}|A|} \tag{10}
\end{equation*}
$$

and thus

$$
|D D D| \gg \frac{|A|^{2+\frac{1}{8}}}{\log ^{17 / 16}|A|}
$$

as claimed.
We now turn to the proof of Theorem 1.2, which exploits similar ideas to the proof of Theorem 1.1.

Proof of Theorem 1.2. Let $R:=R[A]$ and $D=A-A$. We will first prove by induction on k that

$$
\begin{equation*}
\left|R^{k}(D / D)\right| \gg_{k} \frac{|A|^{3-\frac{1}{2^{k}}}}{\log ^{\frac{3}{2}}|A|} \tag{11}
\end{equation*}
$$

holds for all integers $k \geqslant 0$. Indeed, the base case $k=0$ follows from (1). Now, let $k \geqslant 1$ and suppose that (11) holds for this k. Then applying Lemma 2.4 (recalling the fact that $-R=R-1$), Lemma 2.6 and the inductive hypothesis yields

$$
\begin{aligned}
\left|R^{(k+1)}(D / D)\right|^{2} & =\left|R \cdot R^{(k)}(D / D) \|(R-1) \cdot R^{(k)}(D / D)\right| \\
& \gg|R|^{3 / 2}\left|R^{k}(D / D)\right| \gg_{k}\left(\frac{|A|^{2}}{\log |A|}\right)^{3 / 2}\left(\frac{|A|^{3-\frac{1}{2^{k}}}}{\log ^{\frac{3}{2}}|A|}\right)=\frac{|A|^{6-\frac{1}{2^{k}}}}{\log ^{3}|A|}
\end{aligned}
$$

This implies that

$$
\left|R^{(k+1)}(D / D)\right| \gg_{k} \frac{|A|^{3-\frac{1}{2^{k+1}}}}{\log ^{3 / 2}|A|},
$$

as required, and thus we have proved that (11) holds for all positive integers k. In particular, it follows immediately from (11) that

$$
\begin{equation*}
\left|\frac{D^{(k+1)}}{D^{(k+1)}}\right| \gg_{k} \frac{|A|^{3-\frac{1}{2^{k}}}}{\log ^{\frac{3}{2}}|A|} . \tag{12}
\end{equation*}
$$

Next, we will use (12) to prove that

$$
\begin{equation*}
\left|D^{\left(2^{k}\right)}\right| \gg k^{k} \frac{|A|^{3-f(k)}}{\log ^{3 / 2}|A|} \tag{13}
\end{equation*}
$$

holds for all integers $k \geqslant 1$, where

$$
f(k+1)=\frac{1}{2^{k}}+\sum_{m=1}^{k} \frac{1}{2^{2^{m}-m+k}}, \quad f(1)=1 .
$$

This will complete the proof of the theorem, since $2^{m}-m \geqslant m$ and for any $\epsilon>0$ there exists an integer $k=k(\epsilon)$ such that

$$
f(k+1) \leqslant \frac{1}{2^{k}}+\frac{1}{2^{k}} \sum_{m=1}^{k} \frac{1}{2^{m}} \leqslant \frac{1}{2^{k-1}} \leqslant \epsilon .
$$

It remains to prove (13). The base case $k=1$ follows from (2). Note that the function f is defined to satisfy $f(k+1)=\frac{f(k)}{2}+2^{-2^{k}}$. Now let $k \geqslant 1$ and suppose that (13) holds for this k. Applying Lemma 2.1 multiplicatively with $A=B=D^{\left(2^{k}\right)}$ and $C=1 / D^{\left(2^{k}\right)}$ we obtain that

$$
\left|D^{\left(2^{k+1}\right)}\right|^{2} \gg\left|D^{\left(2^{k}\right)}\right|\left|\frac{D^{\left(2^{k}\right)}}{D^{\left(2^{k}\right)}}\right|
$$

Then (12) and the inductive hypothesis imply that

$$
\left|D^{\left(2^{k+1}\right)}\right| \ggg k \frac{|A|^{\frac{3}{2}-\frac{f(k)}{2}}}{\log ^{3 / 4}|A|} \frac{|A|^{\frac{3}{2}-\frac{1}{2^{2}}}}{\log ^{3 / 4}|A|}=\frac{|A|^{3-\left(\frac{f(k)}{2}+\frac{1}{2^{2^{k}}}\right)}}{\log ^{3 / 2}|A|}=\frac{|A|^{3-f(k+1)}}{\log ^{3 / 2}|A|}
$$

This completes the induction.

3.1 Remarks, improvements and conjectures

An improvement to Lemma 2.4 was given in [7], in the form of the bound

$$
|A(A+\alpha)| \gg \frac{|A|^{24 / 19}}{\log ^{2 / 19}|A|}
$$

Inserting this into the previous argument, we obtain the following small improvement:

$$
|D D D| \gg \frac{|A|^{2+\frac{5}{38}}}{\log ^{\frac{83}{76}}|A|}
$$

Furthermore, a small modification of the previous arguments can also give the bound

$$
|D D / D| \gg \frac{|A|^{2+\frac{5}{38}}}{\log ^{\frac{83}{76}}|A|}
$$

In the spirit of Theorem 1.2, it is reasonable to conjecture the following.

Conjecture 3.1. For any $l>0$ there exists $k>0$ such that

$$
\left|(A-A)^{(k)}\right|>_{k, l}|A|^{l}
$$

uniformly for all sets $A \subset \mathbb{R}$.
Even the case $l=3$ is of interest as it is seemingly beyond the limit of the methods of the present paper. An alternative form of Conjecture 3.1 is as follows.

Conjecture 3.2. For any $\epsilon>0$ there exists $\delta>0$ such that for any real set X with

$$
|X X| \leqslant|X|^{1+\delta}
$$

the following holds: if $A \subset \mathbb{R}$ is such that

$$
A-A \subset X
$$

then

$$
|A|<_{\delta}|X|^{\epsilon} .
$$

For comparison with Conjecture 3.1, we note that a similar sum-product estimate with many variables was proven in [2], in the form of the inequality

$$
\left|4^{k-1} A^{(k)}\right| \gg|A|^{k}
$$

We also note that Corollary 4 in [19] verifies Conjecture 3.2 for any $\epsilon>1 / 2-c$, where $c>0$ is some unspecified (but effectively computable) absolute constant.

It is not hard to see that Conjecture 3.2 is indeed equivalent to Conjecture 3.1. Assume that Conjecture 3.1 is true and fix $\epsilon>0$. Next, take $l=\lfloor 1 / \epsilon\rfloor+3$. Assuming that Conjecture 3.1 holds, there is $k(\epsilon)$ such that

$$
\begin{equation*}
\left|(A-A)^{(k)}\right|>_{k, l}|A|^{l} \tag{14}
\end{equation*}
$$

holds for real sets A.
Now, in order to deduce Conjecture 3.2, take $\delta=\epsilon / 10 k$ and assume that there are sets X, A such that $|X X| \leqslant|X|^{1+\delta}$ and $A-A \subset X$. If we now also assume for contradiction that $|A| \geqslant|X|^{\epsilon}$, then by the Plünnecke-Ruzsa inequality (2.2)

$$
\left|(A-A)^{(k)}\right| \leqslant\left|X^{(k)}\right| \leqslant|X|^{1+\delta k} \leqslant|A|^{\frac{1+\delta k}{\epsilon}} \leqslant|A|^{l-1}
$$

which contradicts (14) if $|A|$ is large enough (depending on ϵ), which we can safely assume.
Now let us assume that Conjecture 3.2 holds true. Let $l>0$ be fixed and $\epsilon=\frac{1}{l+1}$. Let A be an arbitrary real set. Consider the set $X_{0}=(A-A)$ and define recursively

$$
X_{i+1}=X_{i} X_{i}
$$

Note that by construction

$$
X_{i}=(A-A)^{\left(2^{i}\right)}
$$

Let c be an arbitrary non-zero element in $A-A$. Observe that

$$
c^{2^{i}-1} \cdot A-c^{2^{i}-1} \cdot A=c^{2^{i}-1} \cdot(A-A) \subset(A-A)^{\left(2^{i}\right)}=X_{i},
$$

and so $A_{i}-A_{i} \subset X_{i}$ where $A_{i}:=c^{2^{i}-1} \cdot A$. Thus, we are in position to apply the assumption that Conjecture 3.2 holds true. In particular, there is $\delta(\epsilon)>0$ such that $|A|<_{\delta}|X|^{\epsilon}$ whenever $A-A \subset X$ and $|X X| \leqslant|X|^{1+\delta}$.

Now consider X_{i} for $i=1, \ldots,\lfloor l / \delta\rfloor+1:=j$. For each i, if $\left|X_{i+1}\right| \leqslant\left|X_{i}\right|^{1+\delta}$ it follows from Conjecture 3.2 that $|A|=\left|A_{i}\right| \ll \delta_{\delta}\left|X_{i}\right|^{\epsilon}$, so

$$
\left|(A-A)^{\left(2^{i}\right)}\right|=\left|X_{i}\right|>_{\delta}|A|^{1 / \epsilon} \geqslant|A|^{l}
$$

and we are done. Otherwise, if for each $1 \leqslant i \leqslant j$ holds $\left|X_{i+1}\right| \geqslant\left|X_{i}\right|^{1+\delta}$, one has

$$
\left|(A-A)^{\left(2^{j}\right)}\right|=\left|X_{j}\right| \geqslant\left|X_{0}\right|^{1+j \delta} \geqslant|A|^{l} .
$$

Thus, Conjecture 3.1 holds uniformly in A with

$$
k(l):=2^{j}=2^{\lfloor l / \delta(l)]+1} .
$$

For a further support, let us remark that Conjecture 3.2 holds true if one replaces the condition $|X X| \leqslant|X|^{1+\delta}$ with the more restrictive one $|X X| \leqslant K|X|$ where $K>0$ is an arbitrary but fixed absolute constant. In this setting Conjecture 3.2 can be proved by combining the Freiman Theorem and the Subspace Theorem and then applying almost verbatim the arguments of [17]. We leave the details to the interested reader.

4 Proofs of Theorems 1.3 and 1.4

4.1 Proof of Theorem 1.3

We will first prove the following lemma.
Lemma 4.1. Let $A \subset \mathbb{R}$. Then

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg \frac{|A|^{54 / 32}|A / A|^{13 / 32}}{\log ^{3 / 4}|A|}
$$

Proof. Apply Lemma 2.5 with $f(x)=1 / x, X=(A+A) /(A+A)$ and $Y=Z=A / A$. Note that $f(X)=X$ and so

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg\left|\frac{A+A}{A+A}\right|^{3 / 4}|A / A|^{1 / 2} .
$$

Then applying Lemma 2.7, it follows that

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg \frac{|A|^{3 / 2}}{\log ^{3 / 4}|A|}\left(\frac{|A|^{2}}{|A / A|}\right)^{\frac{3}{32}}|A / A|^{1 / 2}=\frac{|A|^{54 / 32}|A / A|^{13 / 32}}{\log ^{3 / 4}|A|} .
$$

This immediately implies that

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg|A|^{2+\frac{3}{32}-\epsilon} .
$$

However, by optimising between Lemma 4.1 and Lemma 2.7 we can get a slight improvement in the form of Theorem 1.3.

Proof of Theorem 1.3. Let $|A / A|=K|A|$. If $K \geqslant \frac{|A| \frac{1}{17}}{\log \frac{8}{17}|A|}$ then Lemma 4.1 implies that

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \gg \frac{|A|^{67 / 32} K^{13 / 32}}{\log ^{3 / 4}|A|} \gg \frac{|A|^{2+2 / 17}}{\log ^{16 / 17}|A|} .
$$

On the other hand, if $K \leqslant \frac{|A| \frac{1}{17}}{\log \frac{8}{17}|A|}$ then Lemma 2.7 implies that

$$
\left|\frac{A+A}{A+A}+\frac{A}{A}\right| \geqslant\left|\frac{A+A}{A+A}\right| \gg \frac{|A|^{2}}{\log |A|}\left(\frac{|A|}{K}\right)^{1 / 8} \gg \frac{|A|^{2+2 / 17}}{\log ^{16 / 17}|A|}
$$

4.2 Proof of Theorem 1.4

Apply Lemma 2.8 with $B=A A$. This yields

$$
\left|\frac{A A+A A}{A+A}\right| \gg \frac{|A||A A|}{\log |A|}\left(\frac{|A||A A|}{|A / A A|}\right)^{1 / 8}
$$

By applying Lemma 2.2 in the multiplicative setting, we have

$$
|A A / A| \leqslant \frac{|A A|^{3}}{|A|^{2}}
$$

and so

$$
\left|\frac{A A+A A}{A+A}\right| \gg \frac{|A||A A|}{\log |A|}\left(\frac{|A||A A|}{|A / A A|}\right)^{1 / 8} \geqslant \frac{|A||A A|}{\log |A|}\left(\frac{|A|^{3}}{|A A|^{2}}\right)^{1 / 8}=\frac{|A|^{11 / 8}|A A|^{3 / 4}}{\log |A|}
$$

as required.

5 Proof of Theorem 1.5

Consider the point set $A \times A$ in the plane. Without loss of generality, we may assume that A consists of strictly positive reals, and so this point set lies exclusively in the positive quadrant. We also assume that $|A| \geqslant C$ for some sufficiently large absolute constant C. For smaller sets, the theorem holds by adjusting the implied multiplicative constant accordingly.

For $\lambda \in A / A$, let \mathcal{A}_{λ} denote the set of points from $A \times A$ on the line through the origin with slope λ and let A_{λ} denote the projection of this set onto the horizontal axis. That is,

$$
\mathcal{A}_{\lambda}:=\{(x, y) \in A \times A: y=\lambda x\}, \quad A_{\lambda}:=\left\{x:(x, y) \in \mathcal{A}_{\lambda}\right\} .
$$

Note that $\left|\mathcal{A}_{\lambda}\right|=\left|A_{\lambda}\right|$ and

$$
\sum_{\lambda}\left|A_{\lambda}\right|=|A|^{2} .
$$

We begin by dyadically decomposing this sum and applying the pigeonhole principle in order to find a large subset of $A \times A$ consisting of points which lie on lines of similar richness. Note that

$$
\sum_{\lambda:\left|A_{\lambda}\right| \leqslant \frac{\mid A A^{2}}{2|A| A \mid}}\left|A_{\lambda}\right| \leqslant \frac{|A|^{2}}{2}
$$

and so

$$
\sum_{\lambda:\left|A_{\lambda}\right| \geqslant \frac{|A|^{2}}{2|A| A \mid}}\left|A_{\lambda}\right| \geqslant \frac{|A|^{2}}{2} .
$$

Dyadically decompose the sum to get

$$
\sum_{j \geqslant 1}^{\lceil\log |A|\rceil} \sum_{\lambda: 2^{j-1} \frac{|A|^{2}}{2|A| A \mid} \leqslant\left|A_{\lambda}\right|<2^{j} \frac{|A|^{2}}{2|A / A|}}\left|A_{\lambda}\right| \geqslant \frac{|A|^{2}}{2} .
$$

Therefore, there exists some $\tau \geqslant \frac{|A|^{2}}{2|A / A|}$ such that

$$
\begin{equation*}
\tau\left|S_{\tau}\right| \gg \sum_{\lambda \in S_{\tau}}\left|A_{\lambda}\right| \gg \frac{|A|^{2}}{\log |A|}, \tag{15}
\end{equation*}
$$

where $S_{\tau}:=\left\{\lambda: \tau \leqslant\left|A_{\lambda}\right|<2 \tau\right\}$. Using the trivial bound $\tau \leqslant|A|$, it also follows that

$$
\begin{equation*}
\left|S_{\tau}\right| \gg \frac{|A|}{\log |A|} \tag{16}
\end{equation*}
$$

For a point $p=(x, y)$ in the plane with $x \neq 0$, let $r(p):=y / x$ denote the slope of the line through the origin and p. For a point set $P \subseteq \mathbb{R}^{2}$ let $r(P):=\{r(p): p \in P\}$. The aim is to prove that

$$
\begin{equation*}
|r((A A+A) \times(A A+A))|=|r((A \times A)+(A A \times A A))| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|} \tag{17}
\end{equation*}
$$

Since $r((A A+A) \times(A A+A))=\frac{A A+A}{A A+A}$, inequality (17) implies the theorem.

Write $S_{\tau}=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\left|S_{\tau}\right|}\right\}$ with $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{\left|S_{\tau}\right|}$ and similarly write $A=$ $\left\{x_{1}, \ldots, x_{|A|}\right\}$ with $x_{1}<x_{2}<\cdots<x_{|A|}$. For each slope λ_{i}, arbitrarily fix an element $\alpha_{i} \in A_{\lambda_{i}}$. Note that, for any $1 \leqslant i \leqslant\left|S_{\tau}\right|-1$,

$$
\begin{aligned}
\lambda_{i}<r\left(\left(\alpha_{i}, \lambda_{i} \alpha_{i}\right)+\left(\alpha_{i+1} x_{1}, \lambda_{i+1} \alpha_{i+1} x_{1}\right)\right) & <r\left(\left(\alpha_{i}, \lambda_{i} \alpha_{i}\right)+\left(\alpha_{i+1} x_{2}, \lambda_{i+1} \alpha_{i+1} x_{2}\right)\right) \\
& <\ldots \\
& <r\left(\left(\alpha_{i}, \lambda_{i} \alpha_{i}\right)+\left(\alpha_{i+1} x_{|A|}, \lambda_{i+1} \alpha_{i+1} x_{|A|}\right)\right) \\
& <\lambda_{i+1} .
\end{aligned}
$$

Since $\lambda_{i} \alpha_{i}$ and $\lambda_{i+1} \alpha_{i+1}$ are elements of A, this gives $|A|$ distinct elements of $R((A A+$ $A) \times(A A+A))$ in the interval $\left(\lambda_{i}, \lambda_{i+1}\right)$. Summing over all i, it follows that

$$
\begin{equation*}
|r((A A+A) \times(A A+A))| \geqslant \sum_{i=1}^{\left|S_{\tau}\right|-1}|A|=|A|\left(\left|S_{\tau}\right|-1\right) \gg|A|\left|S_{\tau}\right| . \tag{18}
\end{equation*}
$$

If $\left|S_{\tau}\right| \geqslant \frac{c|A|^{9 / 8}}{\log |A|}$ for any absolute constant $c>0$ then we are done. Therefore, we may assume for the remainder of the proof that this is not the case. In particular, by (15), we may assume that

$$
\begin{equation*}
\tau \geqslant C|A|^{7 / 8} \tag{19}
\end{equation*}
$$

holds for any absolute constant $C .{ }^{4}$
Next, the basic lower bound (18) will be enhanced by looking at larger clusters of lines, a technique introduced by Konyagin and Shkredov [9] and utilised again by Lund [10]. We will largely adopt the notation from [10].

Let $2 \leqslant M \leqslant \frac{\left|S_{\tau}\right|}{2}$ be an integer parameter, to be determined later. We partition S_{τ} into clusters of size $2 M$, with each cluster split into two subclusters of size M, as follows. For each $1 \leqslant t \leqslant\left\lfloor\frac{\left|S_{\tau}\right|}{2 M}\right\rfloor$, let

$$
\begin{aligned}
f_{t} & =2 M(t-1) \\
T_{t} & =\left\{\lambda_{f_{t}+1}, \lambda_{f_{t}+2}, \ldots, \lambda_{f_{t}+M}\right\} \\
U_{t} & =\left\{\lambda_{f_{t}+M+1}, \lambda_{f_{t} M++2}, \ldots, \lambda_{f_{t}+2 M}\right\} .
\end{aligned}
$$

For the remainder of the proof we consider the first cluster with $t=1$, but the same arguments work for any $1 \leqslant t \leqslant\left\lfloor\frac{\left|S_{\tau}\right|}{2 M}\right\rfloor$. We simplify the notation by writing $T_{1}=T$ and $U_{1}=U$.

Let $1 \leqslant i, k \leqslant M$ and $M+1 \leqslant j, l \leqslant 2 M$ with at least one of $i \neq k$ or $j \neq l$ holding. For $a_{i} \in A_{\lambda_{i}}$ and $a_{k} \in A_{\lambda_{k}}$. Define

$$
\begin{aligned}
\mathcal{E}\left(a_{i}, j, a_{k}, l\right) & =\mid\left\{(x, y) \in A \times A: r\left(\left(a_{i}, \lambda_{i} a_{i}\right)+\left(\alpha_{j} x, \lambda_{j} \alpha_{j} x\right)\right)\right. \\
& =r\left(\left(a_{k}, \lambda_{k} a_{k}\right)+\left(\alpha_{l} y, \lambda_{l} \alpha_{l} y\right)\right) \mid .
\end{aligned}
$$

[^2]Lemma 5.1. Let i, j, k, l satisfy the above conditions and let $K \geqslant 2$. Then there are $O\left(|A|^{4} / K^{3}+|A|^{2} / K\right)$ pairs $\left(a_{i}, a_{k}\right) \in A_{\lambda_{i}} \times A_{\lambda_{k}}$ such that

$$
\mathcal{E}\left(a_{i}, j, a_{k}, l\right) \geqslant K .
$$

Proof. We essentially copy the proof of Lemma 2 in [10], and so some details are omitted. Let $l_{a, b}$ be the curve with equation

$$
\left(\lambda_{i} a+\lambda_{j} \alpha_{j} x\right)\left(b+\alpha_{l} y\right)=\left(\lambda_{k} b+\lambda_{l} \alpha_{l} y\right)\left(a+\alpha_{j} x\right)
$$

Let \mathcal{L} be the set of curves

$$
\mathcal{L}=\left\{l_{a, b}: a \in A_{\lambda_{i}}, b \in A_{\lambda_{k}}\right\}
$$

and let $\mathcal{P}=A \times A$. Note that $(x, y) \in l_{a_{i}, a_{k}}$ if and only if

$$
r\left(\left(a_{i}, \lambda_{i} a_{i}\right)+\left(\alpha_{j} x, \lambda_{j} \alpha_{j} x\right)\right)=r\left(\left(a_{k}, \lambda_{k} a_{k}\right)+\left(\alpha_{l} y, \lambda_{l} \alpha_{l} y\right)\right) .
$$

Hence $\mathcal{E}\left(a_{i}, j, a_{k}, l\right) \geqslant K$ if and only if $\left|l_{a_{i}, a_{k}} \cap \mathcal{P}\right| \geqslant K$.
We can verify that the set of curves \mathcal{L} satisfies the conditions of Lemma 2.9. One can copy this verbatim from the corresponding part of of the proof of Lemma 2 in [10]. Therefore, there are most

$$
O\left(\frac{|\mathcal{P}|^{2}}{K^{3}}+\frac{|\mathcal{P}|}{K}\right)=O\left(\frac{|A|^{4}}{K^{3}}+\frac{|A|^{2}}{K}\right)
$$

curves $l \in \mathcal{L}$ such that $|l \cap \mathcal{P}| \geqslant K$. The lemma follows.
Now, for each (i, j) such that $1 \leqslant i \leqslant M$ and $M+1 \leqslant j \leqslant 2 M$ choose an element $a_{i j} \in A_{\lambda_{i}}$ uniformly at random. Then, for any $1 \leqslant i, k \leqslant M$ and $M+1 \leqslant j, l \leqslant 2 M$, define $X(i, j, k, l)$ to be the event that

$$
\mathcal{E}\left(a_{i j}, j, a_{k l}, l\right) \geqslant B,
$$

where B is a parameter to be specified later. By Lemma 5.1 , the probability that the event $X(i, j, k, l)$ occurs is at most

$$
\frac{C}{\tau^{2}}\left(\frac{|A|^{4}}{B^{3}}+\frac{|A|^{2}}{B}\right),
$$

where $C>0$ is an absolute constant.
Furthermore, note that the event $X(i, j, k, l)$ is independent of the event $X\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)$ unless $(i, j)=\left(i^{\prime}, j^{\prime}\right)$ or $(k, l)=\left(k^{\prime}, l^{\prime}\right)$. Therefore, the event $X(i, j, k, l)$ is independent of all but at most $2 M^{2}$ of the other events $X\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)$. With this information, we can apply Lemma 2.10 with

$$
n=M^{4}-M^{2}, \quad d=2 M^{2}, \quad p=\frac{C}{\tau^{2}}\left(\frac{|A|^{4}}{B^{3}}+\frac{|A|^{2}}{B}\right) .
$$

It follows that there is a positive probability that none of the the events $X(i, j, k, l)$ occur, provided that

$$
\begin{equation*}
\frac{e C}{\tau^{2}}\left(\frac{|A|^{4}}{B^{3}}+\frac{|A|^{2}}{B}\right)\left(2 M^{2}+1\right) \leqslant 1 . \tag{20}
\end{equation*}
$$

That is, assuming (20) holds, then there is a positive probability that none of the events $X(i, j, k, l)$ occur, and thus there exists a choice of the fixed points $a_{i j}$ and $a_{k l}$ such that $\mathcal{E}\left(a_{i j} j, a_{k l}, l\right) \leqslant B$.

The validity of (20) is dependent on our subsequent choice of the value of B. For now we proceed under the assumption that this condition is satisfied.

Let

$$
Q=\bigcup_{1 \leqslant i \leqslant M, M+1 \leqslant j \leqslant 2 M}\left\{\left(a_{i j}, \lambda_{i} a_{i j}\right)+\left(\alpha_{j} a, \lambda_{j} \alpha_{j} a\right): a \in A\right\} .
$$

Crucially,

$$
\begin{equation*}
r(Q) \geqslant M^{2}|A|-\sum_{1 \leqslant i, k \leqslant M, M+1 \leqslant j, l \leqslant 2 M:\{i, j\} \neq\{k, l\}} \mathcal{E}\left(a_{i j}, j, a_{k l}, k\right) . \tag{21}
\end{equation*}
$$

In (21), the first term is obtained by counting the $|A|$ slopes in Q coming from all pairs of lines in $U \times T$. The second error term covers the overcounting of slopes that are counted more than once in the first term.

Since $\mathcal{E}\left(a_{i j}, j, a_{k l}, k\right) \leqslant B$ for all quadruples (i, j, k, l) satisfying the aforementioned conditions, it follows that

$$
\begin{equation*}
r(Q) \geqslant M^{2}|A|-M^{4} B \tag{22}
\end{equation*}
$$

Choosing $B=\frac{|A|}{2 M^{2}}$, it follows that

$$
\begin{equation*}
r(Q) \geqslant \frac{M^{2}|A|}{2} . \tag{23}
\end{equation*}
$$

This choice of B is valid as long as

$$
\begin{equation*}
\frac{e C}{\tau^{2}}\left(8 M^{6}|A|+2 M^{2}|A|\right)\left(2 M^{2}+1\right) \leqslant 1 \tag{24}
\end{equation*}
$$

This will certainly hold if

$$
\frac{30 e C}{\tau^{2}} M^{8}|A| \leqslant 1
$$

and so we choose

$$
M=\left\lfloor\left(\frac{\tau^{2}}{30 e C|A|}\right)^{1 / 8}\right\rfloor .
$$

In particular, by (19) we have $M \geqslant 2$ and so

$$
\begin{equation*}
M \gg \frac{\tau^{1 / 4}}{|A|^{1 / 8}} . \tag{25}
\end{equation*}
$$

It is also true that $M \leqslant \frac{\left|S_{\tau}\right|}{2}$. This is true for all sufficiently large A since

$$
\left|S_{\tau}\right| \geqslant \frac{c|A|}{\log |A|} \geqslant|A|^{1 / 8} \geqslant 2 M .
$$

Therefore

$$
\begin{equation*}
\left\lfloor\frac{\left|S_{\tau}\right|}{2 M}\right\rfloor \gg \frac{\left|S_{\tau}\right|}{M} . \tag{26}
\end{equation*}
$$

Next, note that $r(Q)$ is a subset of the interval $\left(\lambda_{1}, \lambda_{2 M}\right)$. We can repeat this argument for the next cluster to find at least $M^{2}|A| / 2$ elements of $r((A A+A) \times(A A+A))$ in the interval $\left(\lambda_{2 M+1}, \lambda_{4 M}\right)$ and then so on for each of the $\left\lfloor\frac{\left|S_{\tau}\right|}{2 M}\right\rfloor$ clusters of size $2 M$. It then follows from (26) and (25) that

$$
\begin{aligned}
\left|\frac{A A+A}{A A+A}\right| & =|r((A A+A) \times(A A+A))| \\
& \geqslant \sum_{j=1}^{\left\lfloor\frac{\left|S_{\tau}\right|}{2 M}\right\rfloor} \frac{M^{2}|A|}{2} \\
& \gg\left|S_{\tau}\right| M|A| \\
& \gg\left(\left|S_{\tau}\right| \tau\right)^{1 / 4}|A|^{7 / 8}\left|S_{\tau}\right|^{3 / 4} .
\end{aligned}
$$

Applying (15) and (16), we conclude that

$$
\left|\frac{A A+A}{A A+A}\right| \gg \frac{|A|^{2+\frac{1}{8}}}{\log |A|}
$$

as required.

Acknowledgement

We are grateful to an anonymous referee for helpful comments, and particularly for highlighting an inaccuracy in an earlier version of the proof of Theorem 1.2.

References

[1] N. Alon and J. Spencer, 'The probabilistic method' John Wiley and Sons (2008).
[2] A. Balog and O. Roche-Newton, 'New sum-product estimates for real and complex numbers', Comput. Geom. 53 (2015), no. 4, 825-846.
[3] G. Elekes, M. Nathanson and I. Ruzsa, 'Convexity and sumsets', J. Number Theory. 83 (1999), 194-201.
[4] M. Z. Garaev and C.-Y. Shen, 'On the size of the set $A(A+1)^{\prime}$, Math. Z. 265 (2010), no. 1, 125-132.
[5] L. Guth and N. H. Katz, 'On the Erdős distinct distance problem in the plane', Ann. of Math. (2) 181 (2015), no. 1, 155-190.
[6] T. G. F. Jones, 'New quantitative estimates on the incidence geometry and growth of finite sets', PhD thesis, available at arXiv:1301.4853 (2013).
[7] T. G. F. Jones and O. Roche-Newton, 'Improved bounds on the set $A(A+1)$ ', J. Combin. Theory Ser. A 120 (2013), no. 3, 515-526.
[8] N. H. Katz and C.-Y. Shen, 'A slight improvement to Garaev's sum product estimate', Proc. Amer. Math. Soc. 136 (2008), no. 7, 2499-2504.
[9] S. Konyagin and I. Shkredov, 'On sum sets of sets, having small product set', Proc. Steklov Inst. Math. 290 (2015), 288-299.
[10] B. Lund, 'An improved bound on $(A+A) /(A+A)$ ', Electron. J. Combin. 23(3) (2016), \#P3.46.
[11] B. Murphy, O. Roche-Newton and I. Shkredov, 'Variations on the sum-product problem', SIAM J. Discrete Math. 29 (2015), no. 1, 514-540.
[12] B. Murphy, O. Roche-Newton and I. Shkredov 'Variations on the sum-product problem II', To appear in SIAM J. Discrete Math. (2017).
[13] J. Pach and M. Sharir, 'On the number of incidences between points and curves', Combinat. Probat. Comput. 7 (1998), 121-127.
[14] G. Petridis, 'New proofs of Plünnecke-type estimates for product sets in groups', Combinatorica 32 (2012), no. 6, 721-733.
[15] O. Roche-Newton, 'A short proof of a near-optimal cardinality estimate for the product of a sum set' 31st International Symposium on Computational Geometry, 74-80 (2015), 10.4230/LIPIcs.SOCG.2015.74.
[16] O. Roche-Newton and M. Rudnev, 'On the Minkowski distances and products of sum sets', Israel J. Math. 209 (2015), no. 2, 507-526.
[17] O. Roche-Newton and D. Zhelezov, 'A bound on the multiplicative energy of a sum set and extremal sum-product problems', Mosc. J. Comb. Number Theory 5 (2015), no. 1-2, 52-69.
[18] I. Shkredov, 'Difference sets are not multiplicatively closed', Discrete Analysis 17 (2016).
[19] I. Shkredov and D. Zhelezov, 'On additive bases of sets with small product set', Int. Math. Res. Notices, rnw291 (2016), 10.1093/imrn/rnw291.
[20] T. Tao, V. Vu, 'Additive combinatorics' Cambridge University Press (2006).
[21] P. Ungar, ' $2 N$ noncollinear points determine at least $2 N$ directions', J. Combin. Theory Ser. A 33 (1982), 343-347.

[^0]: *Supported by the Hungarian National Science Foundation Grants NK104183 and K109789.
 ${ }^{\dagger}$ Supported by the Austrian Science Fund FWF Projects F5511-N26 and P 30405-N32.
 ${ }^{\ddagger}$ Supported by the Knuth and Alice Wallenberg postdoctoral fellowship.
 ${ }^{1}$ From now on, A, B, C etc. will always be finite sets.

[^1]: ${ }^{2}$ In fact, the conjecture was originally stated for all $A \subset \mathbb{Z}$, but it is also widely believed to be true for all $A \subset \mathbb{R}$.
 ${ }^{3}$ Throughout the paper, this standard notation \ll, \gg and respectively $O(\cdot), \Omega(\cdot)$ is applied to positive quantities in the usual way. Saying $X \gg Y$ or $X=\Omega(Y)$ means that $X \geqslant c Y$, for some absolute constant $c>0$. All logarithms in this paper are base 2 .

[^2]: ${ }^{4}$ In fact, even having $\tau \geqslant C|A|^{1 / 2}$ would be sufficient for what follows, and having exponent $7 / 8$ has no quantitative impact.

