
T -joins in infinite graphs

Attila Joó
MTA-ELTE Egerváry Research Group

Budapest, Hungary

joapaat@cs.elte.hu

Submitted: Jul 14, 2016; Accepted: Jun 25, 2017; Published: Jul 14, 2017

Mathematics Subject Classifications: 05C38; 05C38; 05C70

Abstract

We characterize the class of infinite connected graphs G for which there exists
a T -join for any choice of an infinite T ⊆ V (G). We also show that the following
well-known fact remains true in the infinite case. If G is connected and does not
contain a T -join, then it will if we either remove an arbitrary vertex from T or add
any new vertex to T .

Keywords: T -join; infinite graph

1 Introduction

The graphs in this paper may have multiple edges although all of our results follow easily
from their restrictions to simple graphs. Loops are irrelevant, hence we throw them away
automatically if some arise during a construction. The 2-edge-connected components of a
graph are its maximal 2-edge-connected subgraphs (a graph consisting of a single vertex
is considered 2-edge-connected). A T -join in a graph G, where T ⊆ V (G), is a system P
of edge-disjoint paths in G such that the endvertices of the paths in P create a partition
of T into two-element sets. In other words, we match by edge-disjoint paths the vertices
in T . In the finite case the existence of an F ⊆ E(G) for which dF (v) is odd if and only
if v ∈ T is equivalent with the existence of a T -join. Indeed, the united edge sets of the
paths in P forms such an F , and such an F can be decomposed into a T -join and some
cycles by the greedy method. Sometimes F itself is called a T -join. The two possible
definitions are no more closely related in the infinite case. Take for example a one-way
infinite path where T contains only its endvertex. Then there is no T -join according to
the path-system based definition (which we will use during this paper) but the whole edge
set forms a T -join with respect to the second definition.

T -join is a common tool in combinatorial optimization problems such as the well-known
Chinese postman problem. For a detailed survey one can see [1]. For finite connected

the electronic journal of combinatorics 24(3) (2017), #P3.2 1

graphs the necessary and sufficient condition for the existence of a T -join is quite simple,
|T | must be even. Indeed, the necessity of the condition is trivial. For the sufficiency let
|T | = 2k and we apply induction on k. The case k = 0 is clear. If |T | = 2k + 2, then
remove two vertices, u and v say, of T to obtain T ′. By induction we have a T ′-join. Take
the symmetric difference of the edge set of a T ′-join and the edges of an arbitrary path
between u and v. By the greedy method we can partition the resulting edge set into a
T -join and some cycles. If |T | is even but G is infinite, then the same proof works. In this
paper we investigate questions related to the existence of T -joins where T is infinite. For
infinite T one can not guarantee in general the existence of a T -join in a connected graph.
Consider for example an infinite star and subdivide all of its edges by a new vertex (see
Figure 1) and let T be consist of the whole vertex set.

Figure 1: A subdivided infinite star. It has no T -join if T is the whole vertex set.

One of our main results is that essentially Figure 1 is the only counterexample, more
precisely:

Theorem 1. A connected infinite graph G contains a T -join for every infinite T ⊆ V (G)
if and only if there is no U ⊆ V (G) for which G − U has infinitely many connected
components such that all of them are nontrivial (i.e. not consist of a single vertex) and
are connected to U in G by a single edge.

The “if” direction is straightforward since if such an U exists, then one can choose
one vertex from U and two from each connected component of G − U to obtain a T for
which there is no T -join in G.

Our other result describes the effect of finite modifications of T on the existence of a
T -join. For finite T if G does not contain a T -join, then it contains a T ′-join whenever
|(T \ T ′) ∪ (T ′ \ T)| =: |T4T ′| is odd. (It is obvious, since in this case the existence of
a T -join depends just on the parity of |T |.) Surprisingly this property remains true for
infinite T as well. We have the following result about this.

Theorem 2. The class {(G, T) : G is a connnected graph and T ⊆ V (G)} can be parti-
tioned into three nonempty subclasses defined by the following three properties.

(A) G contains a T ′-join whenever |T ′4T | <∞.

the electronic journal of combinatorics 24(3) (2017), #P3.2 2

(B) G contains T ′-join if |T ′4T | is finite and even, but G has no T ′-join if |T ′4T | is
odd.

(C) G contains T ′-join if |T ′4T | is finite and odd, but G has no T ′-join if |T ′4T | is
even.

For a countable T our proofs based on purely combinatorial arguments. To handle
uncountable T we apply the so called elementary submodel technique. We do not assume
previous knowledge about this method. We build it up shortly and recommend [3] for a
more detailed introduction.

To make the descriptions of the T -join-constructing processes more reader-friendly we
introduce the following single player game terminology. There is an abstract set of tokens
and every token is on some vertex of a graph G. (At the beginning typically we have
exactly one token on each element of a prescribed vertex set T and none on the other
vertices.) If two tokens are on the same vertex, then we may remove them (we say that
we match them to each other). If we have a token t on the vertex u and uv is an edge of
G, then we may move t from u to v, but then we have to delete uv from G. A gameplay
is a transfinite sequence of the steps above in which we move every token just finitely
many times. Limit steps are defined by the earlier steps in a natural way. Indeed, we
just delete all the edges that have been deleted earlier, remove the tokens that have been
removed before, and put all the remaining tokens to their stabilized positions. We call
a gameplay winning if we remove all the tokens eventually. To make talking about the
relevant part of the graph easier we also allow as a feasible step deleting vertices without
tokens on them and deleting edges. Clearly there is a T -join in G if and only if there is a
winning gameplay for the game on G where the initial token distribution is defined by T .

2 The 2-edge-connected case

A subgraph of G is called t-infinite if it contains infinitely many tokens. We define the
notions t-finite, t-empty, t-odd and t-even similarly.

Lemma 3. If G is 2-edge-connected and t-infinite, then there is a winning gameplay.

Claim 4. Assume that G is 2-edge-connected and contains even number of tokens, but
at least four including s 6= t. Then there is a winning gameplay in which s and t are not
matched with each other and t is not moved.

Proof. We may assume that G is finite otherwise we may take a finite 2-edge-connected
subgraph that contains all the tokens. Take two edge-disjoint paths between the vertices
that contain s and t and let H be the Eulerian subgraph of G consisting of these paths.
We can build up G from H by adding ears (as in the ear decomposition). We apply
induction on the number of ears. If there is no ear i.e. G = H, then we take an Eulerian
cycle O in G. Fix an Eulerian orientation of O. Either this orientation or the reverse of
it induces a desired gameplay.

the electronic journal of combinatorics 24(3) (2017), #P3.2 3

Otherwise let Q be the last ear. If the number of tokens on the new vertices given
by Q is odd (even), then match inside Q all but one (two) of these tokens and move the
exception(s) to the part of the G before the addition of Q. Delete the remaining part of
Q. We are done by applying the induction hypothesis.

By contracting the 2-edge-connected components of a connected graph, we obtain a
tree. If R is a 2-edge-connected component of a connected graph G, then we denote by
tree(G;R) the tree of the 2-edge-connected components of G rooted at R. We usually
pick such a root R arbitrarily without mentioning it explicitly. For a component C
other than the root R, we call the parent component of C the component which is the
predecessor of C with respect to the tree-order. We write tree(G) if it is not rooted. We
do not distinguish strictly the subtrees of tree(G;R) and the corresponding subgraphs of
G.

Claim 5. Let G be a connected graph with infinitely many tokens on it. Assume that G
has only finitely many 2-edge-connected components. Then there is a finite gameplay after
which all the components of the resulting G′ are 2-edge-connected and contain infinitely
many tokens.

Proof. By the pigeon hole principle there is a t-infinite 2-edge-connected component R of
G. We use induction on the number k of the 2-edge-connected components. For k = 1 we
do nothing. If k > 1 we take a leaf C of tree(G;R). If C is t-infinite we remove the unique
outgoing edge of V (C) in G and we use induction to the arising component other than C.
If C is t-even, then we match the tokens on C with each other inside C and we delete the
remaining part of C and its unique outgoing edge and use induction. In the t-odd case
we match all but one tokens of C inside C and move one to the parent component. We
claim that it is doable. Indeed, put a new token t to the vertex of C incident with the
cut edge to the parent component. Apply Claim 4 with this t and an arbitrary s. Finally
put back the token t′ which has matched with the fake token t and move t′ to the parent
component. We delete the remaining part of C again and use induction.

Now we turn to the proof of Lemma 3. If t is a token and H is a subgraph of G,
then we use the abbreviation t ∈ H to express the fact that t is on some vertex of H.
Assume first that T is countable. For technical reasons we assume just the following
weaker condition instead of 2-edge-connectedness.

All the connected components are 2-edge-connected and t-infinite. (1)

Let t0 be an arbitrary token. It is enough to show, that there is a finite gameplay such
that we remove t0 and the resulting system still satisfies condition (1). Pick two edge-
disjoint paths P1, P2 between t0 and any other token t∗ that lies in the same connected
component K as t0. For i ∈ {1, 2} let Ki be the connected component of K −E(Pi) that
contains t∗ and t0. We claim that either K1 or K2 is t-infinite. Suppose that K1 is not.
Then there is a t-infinite component Kinf of K −E(P1) which does not contain t∗ and t0.
Note that P2 necessarily lies in K1. Hence Kinf is a subgraph of K−E(P2) and P1 ensures

the electronic journal of combinatorics 24(3) (2017), #P3.2 4

that Kinf and K1 belongs to the same connected component of K − E(P2). Thus Kinf

guarantees that this component is t-infinite. We will need the following basic observation.

Observation 6. If each component of a graph G has finitely many 2-edge-connected
components, then so does G− f for every f ∈ E(G).

By symmetry we may assume that K1 is t-infinite. Move t0 along the edges of P1 one
by one. If the following edge e is a bridge, and moving t0 along e would create a t-odd
component Kodd, then t∗ /∈ Kodd because the component which contains t∗ is t-infinite. In
this case we delete e without moving t0 and obtain a t-infinite component and a t-even
component Keven that contains t0. We match the tokens on Keven and erase the remaining
part of it and the first phase of the process is done. If this case does not occur, then we
move t0 to t∗ along P1 and remove both.

We need to fix the condition (1). Each component of the resulting graph is either t-even
or t-infinite. We match the tokens on t-even components and erase the remaining part of
these t-even components. Each t-infinite component has finitely many 2-edge-connected
components by Observation 6 thus we are done by applying Claim 5.

Consider now the general case where T can be arbitrary large. Examples show that
our approach for countable T may fail for uncountable T at limit steps. Add a new vertex
z and draw all the edges zv (v ∈ T) to obtain H. Finding a T -join in G is obviously
equivalent with covering in H all the edges incident with z by edge-disjoint cycles. To
reduce the problem to the countable case it is enough to prove the following claim.

Claim 7. There is a partition of E(H) into countable sets Ei (i ∈ I) in such a way,
that for all i ∈ I the graphs Hi := (V (H), Ei) have the following property. The connected
components of Hi − z are 2-edge-connected and connect to z in Hi by either zero or
infinitely many edges.

Our proof of Claim 7 is a basic application of the elementary submodel technique.
One can find a detailed survey about this method with many combinatorial applications
in [3]. We give here just the fundamental definitions and cite the results that we need. Let
Σ = {ϕ1, . . . , ϕn} be a finite set of formulas in the language of set theory where the free
variables of ϕi are xi,1, . . . , xi,ni

. A set M is a Σ-elementary submodel if the formulas
in Σ are absolute between (M,∈) and the universe i.e.

[(M,∈) |= ϕi(a1, . . . , ani
)]⇐⇒ ϕi(a1, . . . , ani

)

holds whenever 1 6 i 6 n and a1, . . . , ani
∈M . By using Lévy’s Reflection Principle and

the Downward Lowenheim Skolem Theorem (see in [2] or any other set theory or logic
textbook) one can derive the following fact.

Claim 8. For any finite set Σ of formulas, set x and infinite cardinal κ there exists a
Σ-elementary submodel M 3 x with κ = |M | ⊆M .

Now we use some methods developed by L. Soukup in [3]. Call a class C of graphs
well-reflecting if for all large enough finite set Σ of formulas, infinite cardinal κ, set x

the electronic journal of combinatorics 24(3) (2017), #P3.2 5

and G ∈ C there is a Σ-elementary submodel M with x,G ∈ M for which κ = |M | ⊆ M
and (V (G), E(G) ∩M), (V (G), E(G) \M) ∈ C. (“For all large enough finite Σ” means
here that there is some finite Σ0 such that for all finite Σ ⊇ Σ0.)

Theorem 9 (L. Soukup, Theorem 5.4 of [3]). Assume that the graph-class C is well-
reflecting and G ∈ C. Then there is a partition of E(G) into countable sets Ei (i ∈ I) in
such a way, that for all i ∈ I we have (V (G), Ei) ∈ C.

Remark 10. L. Soukup used originally a stricter notion of well-reflectingness but his proof
still works with our weaker notion as well.

We apply the Theorem above to prove Claim 7. Let C be the class of graphs G for
which z ∈ V (G), the connected components of G − z are 2-edge-connected and connect
to z in G either by infinitely many edges or send no edge to z at all. We need to show
that C is well-reflecting. Assume that Σ is a finite set of formulas that contains all the
formulas of length at most 1010 with variables at most x1, . . . x1010 . (From the proof one
can get an exact list of formulas need to be in Σ. The usual terminology says just to fix
a large enough Σ. We decided that a more explicit definition is beneficial for readers who
first met with this method.)

Let κ, x and G ∈ C be given. By Claim 8 we can find a Σ-elementary submodel
M 3 x,G, z with κ = |M | ⊆M . We know that (G− z) ∈M by using the absoluteness of
the formula “x1 graph obtained by the deletion of vertex x2 of graph x3”∈ Σ (see Claim
2.7 and 2.8 of [3] for basic facts about absoluteness). The proof of (V (G), E(G)∩M) ∈ C
is easy. We just need the absoluteness of formulas such that “the local edge-connectivity
between the vertices x1 and x2 in the graph x3 is x4” ∈ Σ. The hard part is to show
(V (G), E(G) \M) ∈ C. We use the following proposition.

Proposition 11 (Lemma 5.3 of [3]). If M is a Σ-elementary submodel (for some large
enough finite Σ) for which G ∈M , |M | ⊆M and x 6= y ∈ V (G) are in the same connected
component of (V (G), E(G) \M) and F ⊆ E(G) \M separates them where |F | 6 |M |;
then F separates x and y in G as well.

If the local edge-connectivity between vertices x 6= y would be one in the graph
(V (G − z), E(G − z) \M), then we can separate them by the deletion of a single edge
e. But then by applying Proposition 11 with F = {e} we may conclude that the same
separation is possible in G− z, which contradicts the assumption G ∈ C.

Suppose, to the contrary, that z sends finitely many, but at least one, edges, say
e1, . . . , ek, to a connected component of (V (G− z), E(G− z) \M) in (V (G), E(G) \M).
Let p be the endvertex of e1 other than z. Then F := {ei}ki=1 separates p and z in
(V (G), E(G) \M) and |F | < ∞ holds. Hence F separates them in G as well which is a
contradiction. Now the proof of Lemma 3 is complete.

3 The simplification process

Lemma 3 makes it possible to decide the existence of a T -join by just investigating the
structure of the 2-edge-connected components and the quantity of tokens on them. Let G

the electronic journal of combinatorics 24(3) (2017), #P3.2 6

be a connected graph, T ⊆ V (G) and let R be a 2-edge-connected component of it. We
define a graph H = H(G,R, T) with a token-distribution on it. To obtain H we apply the
following gameplay that we call simplification process. We denote by subt(C;G,R)
the subtree of the descendants of the 2-edge-connected component C rooted at C in
tree(G;R). Delete all those 2-edge-connected componets C for which subt(C;G,R) does
not contain any token. Then consider the t-finite leafs of the reminder of tree(G;R). (We
do not consider the root as a leaf.) Match the tokens on any t-even leaf C inside C and for
t-odd leafs C move one token to the parent and match the others inside C. In both cases
delete the remaining part of C. Iterate the steps above as long as possible and denote
by H the resulting graph. Clearly either H = R with some tokens on it or if tree(H) is
nontrivial, then subt(C;H,R) must be t-infinite for all 2-edge-connected components C
of H.

Claim 12. There is a winning gameplay for the original system if and only if H is t-even
or t-infinite.

Proof. We show the “if” part here and the “only if part” later in Claim 13. In the t-even
case it is obvious since H is connected. Assume that H is t-infinite. We may suppose
that H is not 2-edge-connected because otherwise we are done by applying Lemma 3.
Recall subt(C;H,R) is t-infinite for all 2-edge-connected components C of H. For each 2
-edge-connected component of H we fix a path PC in the tree subt(C;H,R) that starts
at C and terminates at some component of H other than C which is not t-empty.

After these preparations we do the following. If the root R is t-even or t-infinite, then
we match all the tokens of it inside R (use Lemma 3 in the t-infinite case) and delete the
remaining part of R. If it is t-odd we move one of its tokens, say it will turn to be t∗, to
some child of R determined by the path PR and we define Pt∗ := PR. We match the other
tokens inside R and then delete the remaining part of R. At the next step we deal with
the subt(C;H,R) trees where C is a child of R. In the cases where C is t-infinite or t-even
we do the same as earlier. Assume that C is t-odd. If there is no token on C that comes
from R, then we do the same as earlier. Suppose that there is i.e. t∗ came to here. If there
is a token on C other than t∗, then we match here t∗ and send forward some other token t1
in the direction defined by PC (apply Claim 4 and a phantom-token). In this case we also
need to fix a path for token t1, let Pt1 := PC . If t∗ is the only token of C0, then we move
t∗ in the direction Pt∗ . We iterate the process recursively. The only not entirely trivial
thing that we need to justify is that we do not move a token infinitely many times. If we
moved some token t at the previous step, then we match it at the current step unless it
is the only token at the corresponding 2-edge-connected component. On the other hand,
when we move t for the first time we define the path Pt. The later movements of t are
leaded by Pt which ensure that eventually t will meet some other token.

4 Proof of the theorems

Proof of Theorem 1. Let G be an infinite connected graph such that there is no U ⊆ V (G)
for which G−U has infinitely many connected components, all of them are nontrivial and

the electronic journal of combinatorics 24(3) (2017), #P3.2 7

are connected to U in G by a single edge. Let T ⊆ V (G) be infinite. Consider the vertices
v of degree one that are in T i.e. there is a token on them. Move these tokens to the
only possible direction and then delete all the vertices of degree one or zero. We denote
the resulting graph by G′ and we fix a 2-edge-connected component R of it. If G′ has
a t-infinite 2-edge-connected component, then it cannot vanish during the simplification
process, thus the resulting H will be t-infinite and we are done by Claim 12.

Assume there is no such component. The degree of C0 := R in tree(G′) must be finite
otherwise U := V (C0) would violate the assumption about G. Since C0 is t-finite by the
pigeonhole principle there is a child C1 of C0 such that subt(C1;G

′, R) contains infinitely
many tokens. By recursion we obtain a one-way infinite path of tree(G′) with vertices
Cn (n ∈ N) such that for every n the tree subt(Cn;G′, R) contains infinitely many tokens.
The set U :=

⋃∞
n=0 V (Cn) may not have infinitely many outgoing edges in G′ otherwise

U violates the condition about G. Thus for a large enough n the tree subt(Cn;G′, R) is
just a terminal segment of the one-way infinite path we constructed. This implies that
infinitely many of the Cn’s contain at least one token. Since such a path cannot vanish
during the simplification process, it terminates with a t-infinite H again.

Proof of Theorem 2. Let a connected G and a 2-edge-connected component R of it be
fixed. Let T ⊆ V (G). We will show that case (A) of Theorem 2 occurs if and only if the
simplification process terminates with infinitely many tokens and (B)/(C) occurs if and
only if it terminates with an even/odd number of tokens respectively.

Assume first that the result H of the simplification process initialized by T (T -process
from now on) is t-infinite. Let T ′ ⊆ V (G) such that |T ′4T | < ∞. Call T ′-process the
simplification process with the initial tokens given by T ′ and denote by H ′ the result of
it. If G has a 2-edge-connected, t-infinite component C with respect to T , then C is
t-infinite with respect to T ′ as well. Observe that such a C remains untouched during the
simplification process. Thus H ′ is t-infinite and therefore there is a T ′-join in G by Claim
12.

We may suppose that there is no 2-edge-connected, t-infinite component in G. If a
t-infinite component C arises during the T -process, then C receives a token from infinitely
many children of it. Since |T4T ′| < ∞ we have |V (D) ∩ T | = |V (D) ∩ T ′| for all but
finitely many 2-edge-connected component D. Hence the token-structure of subt(D;G,R)
is the same for all but finitely many child D of C at the case of T ′. Thus C will receive
infinitely many tokens during the T ′-process as well.

Finally we suppose that such a component does not arise, i.e. H has no t-infinite
component. Then tree(H) must be an infinite tree since H is t-infinite. Furthermore,
subt(C;H,R) must contain at least one token for all 2-edge-connected component C of
H otherwise we may erase subt(C;H,R) to continue the simplification process. Fix a
one-way infinite path P in tree(H) with vertices Cn(n ∈ N), where C0 = R and infinitely
many Cn contain at least one token. For a large enough n0 the token-distribution of
subt(Cn0 ;G,R) is the same at the T and at the T ′ cases. Hence the T -process and
T ′-process runs identical on the subgraph of G corresponding to subt(Cn0 ;G,R). Thus

the electronic journal of combinatorics 24(3) (2017), #P3.2 8

subt(Cn0 ;H,R) = subt(Cn0 ;H
′, R) holds and the tokens on them are the same. But then

the terminal segment of the path P in tree(H ′) shows that H ′ is t-infinite as well.

Claim 13. There is no T -join in G if the simplification process terminates with an odd
number of tokens.

Proof. Remember that no t-infinite 2-edge-connected component may arise during the
simplification process in this case. Assume, to the contrary, that there is a T -join P in
G. We play a winning gameplay induced by P i.e. every step we move some token along
the appropriate P ∈ P towards its partner. If for a 2-edge-connected component C the
subgraph subt(C;G,R) does not contain any vertex from T , then clearly no P ∈ P comes
here. Hence we may delete these parts of the graph. If C is a leaf of (the remaining part
of) tree(G;R) with |T ∩ V (C)| even, then the corresponding paths are inside C. In the
odd case exactly one P ∈ P uses the unique outgoing edge of subt(C;G,R) and some other
paths match inside C the other T -vertices of C. Thus along P we may move one token
to the parent component and match the others along the other paths in C. Therefore
after we do these steps the quantity of the tokens on the 2-edge-connected components
will be the same as after the first step of the simplification process. Similar arguments
show that the remaining graph and the quantity of the tokens on the 2-edge-connected
components of this remaining graph of a successor step of the simplification process is the
same as in some step of the game induced by P . Since the first difference may not arise
at a limit step for all steps of the simplification process we have a corresponding position
of the gameplay induced by P where the remaining graph and the token quantities on
the 2-edge-connected components are the same. Since P is a T -join, it leads to a winning
gameplay, thus it may not arise a position with odd number of tokens in total. But in the
final position of the simplification process we have odd number of tokens in total which
is a contradiction.

Claim 14. If the simplification process for T terminates with an even (odd) number of
tokens and |T4T ′| = 1, then the simplification process for T ′ terminates with an odd
(even) number of tokens.

Proof. By symmetry we may let T ′ = T ∪ {v}. If v ∈ V (R), then the simplification
process for T ′ runs in the same way as for T except that at the end we have the extra
token on v which changes the parity of the remaining tokens as we claimed. If v is not in
the root R, then it is in subt(C;G,R) for some child C of R. This C is closer in tree(G)
to the 2-edge-connected component that contains v than R. On the one hand we know
by induction that the parity of the number of tokens on C will be different when C will
become a leaf in the case of T ′. On the other hand for the other children of R this parity
will be clearly the same, thus the parity of the number of the remaining tokens changed
again.

The remaining part of Theorem 2 follows from Claim 13 and from the repeated appli-
cation of Claim 14.

the electronic journal of combinatorics 24(3) (2017), #P3.2 9

References

[1] Frank, A. A survey on T-joins, T-cuts, and conservative weightings, Combinatorics,
Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 213–252, Bolyai Soc. Math. Stud., 2,
Jáos Bolyai Math. Soc., Budapest, 1996.

[2] Kunen, K. Set theory, volume 34 of Studies in Logic. College Publications, London,
2011.

[3] Soukup, L. Elementary submodels in infinite combinatorics. Discrete Math. 311,
15 (2011), 1585–1598.

the electronic journal of combinatorics 24(3) (2017), #P3.2 10

	Introduction
	The 2-edge-connected case
	The simplification process
	Proof of the theorems

