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Abstract

Two permutations of the vertices of a graph G are called G-different if there
exists an index i such that i-th entry of the two permutations form an edge in
G. We bound or determine the maximum size of a family of pairwise G-different
permutations for various graphs G. We show that for all balanced bipartite graphs
G of order n with minimum degree n/2 − o(n), the maximum number of pairwise
G-different permutations of the vertices of G is 2(1−o(1))n. We also present examples
of bipartite graphs G with maximum degree O(log n) that have this property. We
explore the problem of bounding the maximum size of a family of pairwise graph-
different permutations when an unlimited number of disjoint vertices is added to a
given graph. We determine this exact value for the graph of 2 disjoint edges, and
present some asymptotic bounds relating to this value for graphs consisting of the
union of n/2 disjoint edges.

Keywords: extremal combinatorics; permutations

1 Introduction

For any graph G, let two permutations of the vertices of G be G-different if there exists
some index i such that the i-th entry of the two permutations form an edge in G. This
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notion was first introduced in [1] by Körner and Malvenuto. Let F (G) be the maximum
size of a family of pairwise G-different permutations of the vertices of G. The value
of F (G) has been studied for many graphs G. One of the most studied such graphs is
the path on n vertices Pn (pairs of Pn-different permutations are also called colliding
permutations in [1]). Körner and Malvenuto [1] conjectured that F (Pn) =

(
n
bn/2c

)
. The

authors’ results implied that

F (G) 6

(
n

bn/2c

)
(1)

for all n-vertex balanced bipartite graphs G, and that F (Kbn/2c,dn/2e) =
(

n
bn/2c

)
, where

Kbn/2c,dn/2e is the complete balanced bipartite graph on n vertices. The current asymptotic
bounds on F (Pn) stand at

1.81 6 lim
n→∞

(F (Pn))1/n 6 2;

the lower bound was shown in [2].
It was conjectured in [1] that F (Pn) = F (Kbn/2c,dn/2e), which is surprising; the complete

balanced bipartite graph has many more edges than the path, which is one of the sparsest
connected balanced bipartite graphs. Therefore we investigate F (G) for balanced bipartite
graphs G more dense than the path but less dense than the complete balanced bipartite
graph.

In this paper, we present new bounds on F (G) for various bipartite graphs G, thereby
potentially making progress towards determining this value for the path. We show that for
all dense enough n-vertex balanced bipartite graphs G, F (G) is near F (Kbn/2c,dn/2e). We
also present a smaller family of much sparser bipartite graphs, which have average degree
O(log n), for which this growth holds. In comparison, the path graph has average degree
approximately 2. We investigate the properties of families of pairwise graph-different
permutations where arbitrarily many disjoint vertices are added to a graph. We develop
new methods for bounding this quantity for the matching graph and determine its exact
value for the 4-vertex matching graph (the graph of 2 independent edges).

In related work, Körner, Malvenuto, and Simonyi [3] bounded F (G) for various graphs
G with arbitrarily many isolated vertices, and completely determined this value for stars.
Cohen and Malvenuto [4] presented bounds on F (Cn), where Cn denotes the n-vertex
cycle. Their bounds are similar to the current bounds on F (Pn). Körner, Simonyi, and
Sinaimeri [5] investigated distance graphs, as well as specific graphs G with n vertices
such that F (G) does not grow exponentially with n, in contrast to the majority of the
results in this field. Frankl and Deza [6] looked at a slightly different problem, in which
they bounded the maximum number of pairwise t-intersecting permutations, where two
permutations are t-intersecting if they share t common positions.

The organization of this paper is as follows. In Section 2, we present classes of balanced
bipartite graphs for which F is near the upper bound given in (1). In Section 3, we
investigate the properties of families of pairwise matching-different permutations. We
present implications and potential future extensions of our work in Section 4.
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2 Dense Bipartite Graphs: Lower Bounds

In Section 2.1, we present lower bounds on F for n-vertex bipartite graphs with three
different maximum degrees of the bipartite complement; namely, 1, any positive constant,
and o(n). In Section 2.2, we present lower bounds for the graph consisting of the union
of small disjoint balanced bipartite graphs.

2.1 Bipartite Graphs with Specified Maximum Degree of Complement

It was shown in [1] that F (Pn) 6
(

n
bn/2c

)
; from the authors’ proof it immediately follows

that F (Ka,n−a) =
(
n
a

)
. Specifically, consider a function f mapping a permutation of the

vertices of Ka,n−a to a permutation of 0’s and 1’s, where all a vertices in the first subset
of Ka,n−a are replaced by 0 in the permutation, and all n−a vertices in the second subset
of Ka,n−a are replaced by 1. Then any two permutations π and σ are Ka,n−a-different if
and only if f(π) 6= f(σ). Therefore, the result that F (Ka,n−a) =

(
n
a

)
follows from the

existence of exactly
(
n
a

)
distinct permutations of a 0’s and n− a 1’s. The following trivial

lemma shows that this upper bound applies to all bipartite graphs.

Lemma 1. If G is a subgraph of H, then F (G) 6 F (H).

Proof. Any pair of G-different permutations must also be H-different by definition; there-
fore any family of pairwise G-different permutations is also pairwise H-different.

Corollary 2. If G is subgraph of Ka,n−a, then F (G) 6
(
n
a

)
.

Because it is conjectured that the upper bound in Corollary 2 is tight for the n-vertex
path, it is natural to try to show that this bound is tight for other classes of non-complete
bipartite graphs. We present such a class of graphs in the following result.

Let G(n, a) be the graph obtained by removing a maximal matching from Ka,n−a. (By
this definition, G(n, bn/2c) is the crown graph on n vertices.) We use induction on n and
a to determine F (G(n, a)) for all n and a in the below theorem.

Theorem 3. For all nonnegative integers a 6 n,

F (G(n, a)) =

{
1 n < 3(
n
a

)
n > 3.

Proof. If n < 3, there are at most 2 vertices in G(n, a), so the graph does not have any
edges by definition. Therefore no two permutations are G(n, a)-different, so F (G(n, a)) =
1. We now assume that n > 3. It suffices to show that F (G(n, a)) >

(
n
a

)
, as F (G(n, a)) 6(

n
a

)
by Corollary 2. We prove the result by induction. For the base case, note that for

any nonnegative integer n, F (G(n, 0)) = F (G(n, n)) = 1 =
(
n
0

)
=
(
n
n

)
. This is because

G(n, 0) and G(n, n) both have no edges, so no two permutations are G(n, 0)-different or
G(n, n)-different. Additionally, F (G(3, 1)) = F (G(3, 2)) = 3 =

(
3
1

)
=
(

3
2

)
. This is because

G(3, 1) and G(3, 2) each have 3 vertices and 1 edge, so it suffices to show that F (H) > 3,
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where H is a graph with vertices labeled 1,2,3 and with an edge between 1 and 2. The 3
permutations

1 2 3
3 1 2
2 3 1

are pairwise H-different, so F (H) > 3, and therefore F (H) = 3. For the inductive step,
assume n > 3, 0 < a < n, and F (G(n − 1, d)) =

(
n−1
d

)
for all 0 6 d 6 n − 1. It

follows that G(n, a) is not an empty graph, so let x and y be vertices in the first and
second subsets of G(n, a) respectively such that there is an edge between x and y. If x
is removed from G(n, a), the resulting graph is either G(n − 1, a − 1) or a supergraph
of G(n − 1, a − 1). Likewise, if y is removed from G(n, a), the resulting graph is either
G(n − 1, a) or a supergraph of G(n − 1, a). Then by the inductive hypothesis, there
exists a family of at least F (G(n− 1, a− 1)) permutations of V (G(n, a))− {x} that are
pairwise G(n, a)-different, and there exists a family of at least F (G(n−1, a)) permutations
of V (G(n, a)) − {y} that are pairwise G(n, a)-different; let these families be Fx and Fy

respectively. Let F be the family that consists of the union of x concatenated to all
elements of Fx and y concatenated to all elements of Fy. Then F is pairwise G(n, a)-
different, so

F (G(n, a)) > |F| = |Fx|+ |Fy| = F (G(n− 1, a− 1)) + F (G(n− 1, a)).

By this induction, F (G(n, a)) =
(
n
a

)
for n > 3, as

(
n
a

)
=
(
n−1
a−1

)
+
(
n−1
a

)
= F (G(n− 1, a−

1)) + F (G(n− 1, a)).

Therefore for all n > 3, there exist non-complete bipartite graphs on n vertices that
are subgraphs of Ka,n−a for which the upper bound of

(
n
a

)
is exactly equal to F . However,

the graphs G(n, a) considered in the above theorem are such that the maximum degrees
of their bipartite complements are 1. As the path is much more sparse, we want to extend
this result to apply to graphs with larger maximum bipartite complement degree. We
make the following definition in order to consider such graphs.

Definition 4. Let F (n, a,∆) be the minimum value of F (G) over all n-vertex bipartite
graphs G that are subgraphs of Ka,n−a, such that the maximum degree of the bipartite
complement of G is ∆.

We can now generalize Theorem 3 as follows.

Theorem 5. For all nonnegative integers n, a, and ∆ such that n > 2∆ and ∆ 6 a 6
n−∆,

F (n, a,∆) >

(
n− 2∆

a−∆

)
.

Proof. We show the result by induction on n and a, just as in Theorem 3. For the base
case, it suffices to note the trivial observation that F (n,∆,∆) > 1 and F (n, n−∆,∆) > 1
for all n > 2∆. For the inductive step, let n > 2∆. Assume that for all ∆ 6 d 6 n−1−∆,

F (n− 1, d,∆) >

(
n− 1− 2∆

d−∆

)
.
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It remains to be shown that for any ∆ < a < n−∆,

F (n, a,∆) >

(
n− 2∆

a−∆

)
.

Let G be any bipartite graph with n vertices that is a subgraph of Ka,n−a, such that the
maximum degree of the bipartite complement of G is ∆. We show that

F (G) > F (n− 1, a− 1,∆) + F (n− 1, a,∆),

as then it would follow that

F (G) >

(
n− 1− 2∆

a− 1−∆

)
+

(
n− 1− 2∆

a−∆

)
=

(
n− 2∆

a−∆

)
by the inductive hypothesis. First, note that G has more than 2∆ vertices, so it must have
at least one subset with more than ∆ vertices, and therefore, because ∆ is the maximum
degree of the bipartite complement graph, G must have at least one edge. Let this edge
connect vertices x and y in the first and second subsets respectively. Removing a vertex
from a graph cannot increase the maximum degree of the complement graph. Therefore,
F (G−{x}) > F (n−1, a−1,∆) and F (G−{y}) > F (n−1, a,∆). It follows by definition
that there exist pairwise G-different families Fx and Fy of permutations of V (G)−{x} and
V (G)−{y} respectively such that |Fx| > F (n−1, a−1,∆) and |Fy| > F (n−1, a,∆). Let
F be the family of permutations of V (G) consisting of all permutations in Fx concatenated
to x and all permutations in Fy concatenated to y. Then F is pairwise G-different by
construction, so

F (G) > |F| = F (n− 1, a− 1,∆) + F (n− 1, a,∆).

Corollary 6. For all nonnegative integers n and ∆ such that n > 2∆,

F (n, bn/2c,∆) > 2−2∆

(
n

bn/2c

)
.

Proof. It is easy to see by expanding the binomial coefficient that

F (n, bn/2c,∆) >

(
n− 2∆

bn/2c −∆

)
> 2−2∆

(
n

bn/2c

)
.

Although the lower bound in Theorem 5 does not quite reach the upper bound given in
Corollary 2, it comes within a constant factor of the upper bound for balanced bipartite
graphs when ∆ is a constant, as shown in Corollary 6. This constant factor is due to
the difficulty of finding sufficient base cases for the induction on n and a for large ∆.
Although for many ∆ better base cases are easily found (as in ∆ = 1), it is difficult to
find general base cases for all ∆.
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Because limn→∞
1
n

log2

(
n
bn/2c

)
= 1 by Stirling’s formula, the function F (Kbn/2c,dn/2e) =(

n
bn/2c

)
grows exponentially on the order of 2n. We therefore remain primarily interested in

showing that F grows on the order of 2n for various classes of balanced bipartite graphs,
and thereby showing that the upper bound on F of

(
n
bn/2c

)
is met asymptotically. We now

use Corollary 6 to show that F (n, bn/2c,∆) grows on the order of 2n if ∆ = o(n).

Theorem 7.

lim
n→∞

1

n
log2 F (n, bn/2c, o(n)) = 1.

Proof. First note that

lim
n→∞

1

n
log2 F (n, bn/2c, o(n)) 6 lim

n→∞

1

n
log2 F (Kbn/2c,dn/2e) = 1

by Stirling’s formula. It therefore suffices to show the opposite inequality to prove a lower
bound of 1. By Corollary 6,

lim
n→∞

1

n
log2 F (n, bn/2c, o(n)) > lim

n→∞

1

n
log2

(
2−2·o(n)

(
n

bn/2c

))
> lim

n→∞

1

n
log2

(
n

bn/2c

)
+ lim

n→∞

1

n
log2 2−2·o(n)

= 1− lim
n→∞

2 · o(n)

n
= 1.

This theorem is particularly interesting because it presents a very large class of graphs
such that any graph G in this class has the property that F (G) is near 2n. However, as
∆ = o(n), these graphs are relatively dense. In the next section we present specific but
much sparser graphs G for which F (G) is near 2n.

2.2 Union of Small Dense Balanced Bipartite Graphs

In this section we show that F grows on the order of 2n for graphs consisting of the
union of small complete balanced bipartite graphs. We first present the following well-
known lemma, which provides a method for placing lower bounds on F (G) for graphs G
composed of disjoint subgraphs. An equivalent result is shown in [3], but we present the
proof as it is related to future proofs in this paper.

Lemma 8. Let G be the union of disjoint graphs G1 and G2. Then F (G) > F (G1)·F (G2).

Proof. Let F1 = {π1, . . . , πF (G1)} and F2 = {σ1, . . . , σF (G2)} be families of pairwise G1-
different and G2-different permutations respectively of maximum size, so that |F1| =
F (G1) and |F2| = F (G2). Then let F be the family of permutations consisting of πi
concatenated to σj for all 1 6 i 6 F (G1) and 1 6 j 6 F (G2). Then F is G-different, as
for any two permutations πi1σj1 and πi2σj2 , if i1 6= i2, πi1 and πi2 are G-different; otherwise
j1 6= j2 and σj1 and σj2 are G-different. Therefore F (G) > |F| = F (G1) · F (G2).
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Intuitively, if F (G1) ≈ 2|V (G1)| and F (G2) ≈ 2|V (G2)|, then it follows that F (G1 +G2) ≈
2|V (G1)|+|V (G2)| = 2|V (G1+G2)| by Lemma 8. Because we want to find bipartite graphs G for
which F (G) ≈ 2|V (G)|, this idea is very useful, and forms the basis of the theorem below.

Theorem 9. Let B(n, k(n)) be the balanced bipartite graph of order n consisting of
the union of k(n) disjoint balanced complete bipartite graphs, each of order bn/k(n)c
or dn/k(n)e. If

k(n) = O

(
n

log2 n

)
,

then

lim
n→∞

1

n
log2 F (B(n, k(n))) = 1.

Proof. For some given n, let k = k(n), B = B(n, k(n)), and let the k disjoint subgraphs
of B be B1, . . . , Bk with orders n1, . . . , nk respectively. By Lemma 8,

F (B) >
k∏

i=1

F (Bi) =
k∏

i=1

(
ni

bni/2c

)
.

The right side can be expanded by Stirling’s formula, which is easily applied to show that
there exists a positive constant l for which(

x

bx/2c

)
> l · 2x

√
x

holds for all positive integers x. (The actual value of l is not relevant to us, but it is easily
bounded.) Then, as

∑k
i=1 ni = n, and by the AM-GM inequality,

F (B) >
k∏

i=1

(
ni

bni/2c

)
>

k∏
i=1

l · 2ni

√
ni

=
lk · 2n√∏k

i=1 ni

>
lk · 2n√(

n
k

)k =
lk · 2n

2
k
2

log2(n
k )

= lk · 2n− k
2

log2(n
k ).

Therefore
F (B(n, k(n))) > lk(n) · 2n− k(n)

2
log2( n

k(n)). (2)

If k(n) = O(n/ log2 n), it is easily verifiable from (2) that

lim
n→∞

1

n
log2 F (B(n, k(n))) > 1.

The opposite inequality is trivial as B(n, k(n)) is bipartite.
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Note that the proof of Theorem 9 holds even if the k(n) disjoint balanced complete
bipartite graphs have different orders; however, the union is sparsest when the disjoint
subgraphs are near in order.

Theorem 9 provides an n-vertex bipartite graph B(n, k(n)) with maximum degree
O(log2 n) such that F (B(n, k(n))) grows on the order of 2n, or more formally, such that
F (B(n, k(n))) = 2(1−o(1))n. This graph is the sparsest balanced bipartite graph we cur-
rently know with this property.

3 Families of Pairwise Matching-Different Permutations

In Section 2, we primarily dealt with relatively dense bipartite graphs G such that F (G)
was near 2n. Now we examine very sparse bipartite graphs. The most prominently studied
of these is the path; improvements on the lower bound on F (Pn) were made in [1, 3, 2].
In this paper we investigate F for the matching graph on n vertices, which we denote
M(n). (We will assume n to be even whenever referencing M(n) in this section.) As the
matching is a subgraph of the path, any lower bounds on F (M(n)) would also apply to
the n-vertex path. Additionally, the matching consists of the union of n/2 disjoint edges,
giving it a special structure relating to Lemma 8.

We first generalize the function F and show how the generalization is related to the
original function.

Definition 10. Let Fb(G) be the maximum size of a family of pairwise G-different per-
mutations of the vertices of G with an additional b blank spaces.

Here a blank space can be thought of as an isolated vertex added to G. For example,
consider the family F shown below.

1 2 ∗
∗ 1 2
2 ∗ 1

We say F is family of 3 pairwise M(2)-different permutations of the vertices of M(2) with
1 blank space; the blank space in each permutation is denoted by ‘∗’ and simply serves
as a placeholder. By this definition, it is clear that Fb(G) 6 Fc(G) if b 6 c for any graph
G. We now extend Definition 10 to account for families of permutations with unlimited
blank spaces; an equivalent definition was made in [3].

Definition 11. For any graphG, assign each element of V (G) to a unique natural number.
Let two infinite permutations of N be G-different if at some position their corresponding
elements are both assigned to vertices in G and form an edge in G. Then let F∞(G) be
the maximum size of a family of pairwise G-different infinite permutations of N.

Körner, Malvenuto, and Simonyi [3] showed that for any graph G on n vertices,

F∞(G) 6 (χ(G))n, (3)
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where χ(G) denotes the chromatic number of G. Therefore, for graphs with finitely many
vertices, F∞(G) is finite, so it follows that there exists a sufficiently large constant b for
which Fb(G) = F∞(G). (For example, it is easy to verify that b = n(χ(G))n satisfies this
equation.) We can therefore think of F∞(G) as the maximum size of a family of pairwise
G-different permutations of the vertices of G with arbitrarily many blank spaces, rather
than in terms of infinite permutations of the natural numbers.

If G(n) is a family of graphs defined for all positive integer n, then let

ρb(G) = lim sup
n→∞

1

n
log2 Fb(G(n)),

and let ρ(G) = ρ0(G). (In this paper G(n) will usually be graph induced by the first n
vertices of an infinite graph, as is the case with M(n).) Therefore ρb(G) measures the
asymptotic behavior of Fb(G(n)). Although it may seem that F∞(G(n)) should be much
larger than F (G(n)), the following two lemmas show that for certain graphs G(n) such
as the matching graph M(n), ρ(G) and ρ∞(G) are equal. Very similar results were shown
in [3, 2] for the path; we present a generalization of these proofs below.

Definition 12. If F is a family of permutations of the vertices of some graph G with any
number of blank spaces (or with no blank spaces), let HF ,G be the graph whose vertices
are the permutations in F and whose edges are all pairs of permutations σ, π ∈ F such
that σ and π are G-different.

Note that if F is pairwise G-different, then HF ,G is complete, which is equivalent to
the equality α(HF ,G) = 1.

Lemma 13. If F is a family of G0-different permutations of the vertices of G0 with
unlimited blank spaces, then ρ(G) > 1

|V (G0)| log2 |F|, where G(n) consists of the union of

n/|V (G0)| copies of G0, for all n which are divisible by |V (G0)|.

We omit the proof of this lemma, which is similar to the proof of Lemma 8. A nearly
identical result is shown in [3], which is specific to the path but easily generalizable.

Lemma 14. Let G(n) be a graph of order n defined for all positive n such that G(n1) +
G(n2) is a subgraph of G(n1 + n2). If either ρ(G) or ρ∞(G) exists (that is, either of their
limits exist and is not ∞), then both values exist and ρ(G) = ρ∞(G).

Proof. Clearly if ρ∞(G) exists, then ρ(G) exists and ρ∞(G) > ρ(G), as F∞(G(n)) >
F (G(n)) for all n. We now show by contradiction that if ρ(G) exists, then ρ∞(G) exists
and ρ(G) > ρ∞(G). Assume that ρ(G) exists and is not ∞, but that ρ∞(G) > ρ(G)
or that ρ∞(G) = ∞. Then, in both of these cases, there exists N such that there is
a family F of pairwise G(N)-different permutations of V (G(N)) with unlimited blanks,
where 1

N
log2 |F| > ρ(G). However, by assumption the union of k copies of G(N) is a

subgraph of G(kN) for all positive integers k. Therefore, ρ(G) > 1
N

log2 |F| by Lemma
13, which is a contradiction.
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Lemma 14 shows that ρ∞(M) = ρ(M). AsM(n) is bipartite, ρ(M) 6 1, so ρ∞(M) 6 1.
Therefore F∞(M(n)) grows exponentially on the order of at most 2n. This bound was
improved in [3], where it was shown that

√
3
n
6 F∞(M(n)) 6 2n. The upper bound of

2n was shown as part of the more general result that F∞(G) 6 (χ(G))|V (G)|, where χ(G)
denotes the chromatic number of G. We use a different approach for bounding F∞(M(n));
we first bound α(HF ,M(2)) for families F of permutations of the vertices of M(2), then
we use this result to bound α(HF ,M(n)) for larger n. This approach helps determine
F∞(M(n)) for small n and provides a slightly stronger upper bound on F∞(M(n)) for all
n (better than 2n by a constant factor). We also present some interesting constructions of
families F with relatively good upper bounds on α(HF ,M(n)); these results mark progress
towards potentially improving the lower bounds on F∞(M(n)).

Lemma 15. Let F be a family of permutations of the vertices of M(2) with b blank spaces,
and let c = b+ 2 be the length of the permutations in F . Then

α(HF ,M(2)) >
2c−2

2c − 2
· |F|.

Proof. Assume the vertices of M(2) are labeled 1 and 2, so that all permutations in F
consist of 1, 2, and c − 2 blanks. We first observe that an independent set in HF ,M(2)

cannot contain permutations π and σ such that π(j) = 1 and σ(j) = 2 for some position
j. Therefore, an independent set I in HF ,M(2) is characterized by a string s of 1’s and 2’s
of length c. A permutation π ∈ F is in I only if π(j) = s(j) for every position j at which
π does not have a blank space.

There are 2c possible labelings of the c positions with 1’s and 2’s, but 2 of these (all
1’s and all 2’s) always correspond to empty independent sets. Therefore let I1, . . . , I2c−2

be the 2c − 2 independent sets of maximal size in HF ,M(2) corresponding to strings of 1’s
and 2’s of length c. Each permutation π ∈ F belongs to exactly 2c−2 of these independent
sets, as each of the c−2 blank spaces in π may be labeled 1 or 2 in the string s. Therefore

2c−2∑
i=1

|Ii| = 2c−2 · |F|.

It follows by the pigeonhole principle that there exists some k for which

|Ik| >
2c−2

2c − 2
· |F|.

Corollary 16.

α(HF ,M(2)) >
1

4
· |F|.

The inequality in Lemma 15 is only significantly stronger than that in Corollary 16 for
families of permutations that are very short in length. It is therefore desirable to be able
to consider families of permutations with as few blank spaces as possible. The following
lemma shows that families of permutations with sufficiently many blank spaces can be
condensed to equivalent families with fewer blank spaces.
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Lemma 17. Let F = {π1, π2, . . . , πp} be a family of p permutations of the vertices of
M(2) with b blank spaces, and let c = b + 2 be the length of each permutation in F . If
p <

(
c
2

)
, then there exists a family F ′ = {π′1, π′2, . . . , π′p} of p permutations of the vertices

of M(2) with b− 1 blank spaces such that HF ,M(2) is a subgraph of HF ′,M(2).

Proof. There are
(
c
2

)
pairs of positions j1, j2 in the permutations in F . If p = |F| <

(
c
2

)
,

then by the pigeonhole principle there must be some pair of positions j1, j2 (1 6 j1 < j2 6
c) such that each permutation in F has a blank space in at least one of these positions.
Then for each πi, let π′i be the permutation consisting of πi with the entry at position j2

removed, and let π′i(j1) take on the value of whichever of πi(j1) or πi(j2) is not a blank
space. In other words, position j2 was merged into position j1 for each permutation πi to
obtain π′i. Then F ′ = {π′1, π′2, . . . , π′p} satisfies the desired properties.

We now apply Lemma 15 and Lemma 17 to determine the value of F∞(M(4)) and to
improve the existing upper bound on F∞(M(n)) by a constant factor.

Theorem 18. F∞(M(4)) = 9.

Proof. We show that a family of 10 permutations of V (M(2)) with unlimited blank spaces
cannot be M(2)-different. Specifically, it suffices to show that there is no family F1 of
10 permutations of the vertices of M(2) with unlimited blanks such that α(HF1,M(2)) 6 3
and |E(HF1,M(2))| > 22. To see this, label the vertices on the two edges in M(4) (1, 2)
and (3, 4) respectively. Then, for any family F = {π1, . . . , π10} of 10 permutations of the
vertices of M(4) with unlimited blanks, let F1 = {σ1,1, . . . , σ1,10} be the family F with all
3’s and 4’s replaced by blank spaces, and let F2 = {σ2,1, . . . , σ2,10} be the family F with all
1’s and 2’s replaced by blank spaces. By this definition, (πi1 , πi2) ∈ E(HF ,M(4)) if and only
if (σ1,i1 , σ1,i2) ∈ E(HF1,M(2)) or (σ2,i1 , σ2,i2) ∈ E(HF2,M(2)). Therefore, if S ⊆ {1, . . . , 10}
and if {σ1,i : i ∈ S} is an independent set in HF1,M(2), then {σ2,i : i ∈ S} must be a
clique in HF2,M(2) in order for HF ,M(2) to be complete; the same applies for independent
sets in HF2,M(2) and cliques in HF1,M(2). Because the largest clique in both HF1,M(2) and
in HF2,M(2) has order at most F∞(M(2)) = 3, the independence number of both graphs
must be 3 (it cannot be less than 3 by Lemma 15). Furthermore, the complete graph on
10 vertices has 45 edges, so either HF1,M(2) or HF2,M(2) must have at least 23 edges in
order for HF ,M(2) to be complete.

As
(

5
2

)
= 10, it is only necessary to consider families with at most 3 blank spaces by

Lemma 17. The case of 0 blanks is trivial; for families F1 of permutations of the vertices
of M(2) with 1 blank space, note that by Lemma 15,

α(HF1,M(2)) >
23−2

23 − 2
· 10 =

10

3
> 3.

If F1 has 3 blank spaces, then the permutations have length 5, so each of the 10 pairs of
positions j1, j2 must correspond to the 1 and the 2 of some permutation in F1; otherwise
the family could be condensed by Lemma 17. Therefore for each 1 6 j 6 5, exactly 4
permutations in F1 do not have a blank space at position j. Among these 4 permutations,
there are at most 2 ·2 = 4 pairs of M(2)-different permutations (πi1 , πi2) which correspond
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to edges in HF1,M(2). Therefore HF1,M(2) has at most 5 ·4 = 20 edges. The only remaining
case is when the permutations have 2 blank spaces. We used a brute force computer
search for this case, and found that no 10 permutations of the vertices of M(2) with 2
blanks has independence number 3.

Corollary 19. F∞(M(n)) < 9 · 2n−4 for even n > 4.

Proof. It suffices to show that for even n > 4, F∞(M(n)) < 4 · F∞(M(n − 2)). To show
this, we use the same method of separating out the independent edges that we used in
Theorem 18. Label the vertices of the n/2 edges in M(n) (1, 2), (3, 4), . . . , (n− 1, n). Let
F be some family of pairwise M(n)-different permutations of the vertices of M(n) with
unlimited blank spaces. Let F1 be the family F with all numbers other than 1’s and 2’s
replaced with blank spaces, and let F2 be the family F with all 1’s and 2’s replaced with
blank spaces. (By this definition, F1 contains permutations of the vertices of M(2) and
F2 contains permutations of the vertices of M(n − 2)). Because any independent set in
HF1,M(2) must correspond to a clique of equal size in HF2,M(n−2), the clique number of
HF2,M(n−2) must be at least α(HF1,M(2)) >

1
4
· |F|. By definition, F∞(M(n − 2)) is an

upper bound on the clique number of HF2,M(n−2), so

F∞(M(n− 2)) >
1

4
· |F|.

As this inequality holds for all pairwise M(n)-different families F of permutations of the
vertices of M(n) with unlimited blanks, it must be that

F∞(M(n− 2)) >
1

4
· F∞(M(n)).

To conclude this section we present results which were motivated by the problem
of improving the lower bound on F∞(M(n)). We first observe that there exist families
F of permutations of the vertices of M(2) such that α(HF ,M(2)) is very close to 1

4
· |F|.

Specifically, for any integer c > 2, let Ac be the family of the c(c−1) distinct permutations
of the vertices of M(2) with c− 2 blank spaces. Let s be a string of 1’s and 2’s of length
c characterizing an independent set I in HAc,M(2). If s has x 1’s and y 2’s, then |I| = xy
by the definition of F . Therefore the size of the largest independent set in HAc,M(2) is
α(HAc,M(2)) = bc/2c · dc/2e. It follows that

lim
c→∞

α(HAc,M(2))

|Ac|
= lim

c→∞

bc/2c · dc/2e
c(c− 1)

=
1

4
. (4)

This construction shows that the bound in Lemma 15 is nearly optimal. We now apply
the ideas in Lemma 15 and in (4) to get an interesting result.

Let F be a family of p pairwise M(n)-different permutations of the vertices of M(n)
with unlimited blank spaces, and once again label the vertices of the edges in M(n)
(1, 2), (3, 4), . . . , (n − 1, n). Let E2, E4, . . . , En be defined such that Ek = {σk,1, . . . , σk,p}
consists of the family F with all non-blank entries other than k − 1 and k replaced by
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blank spaces in each permutation. Let F0 = {π0,1, . . . , π0,p} be a family of p empty
permutations (or permutations of the vertices of M(0)). It follows that HF0,M(0) is empty
and α(HF0,M(0)) = p. Then let F2 = {π2,1, . . . , π2,p} be defined so that π2,j consists of π0,j

concatenated to σ2,j, and in general, let Fk = {πk,1, . . . , πk,p} be such that πk,j consists
of πk−2,j concatenated to σk,j. (This definition is such that HFn,M(n) = HF ,M(n).) Note
that for any positive even k and for any indices i1 and i2, (πk,i1 , πk,i2) ∈ E(HFk,M(k)) if
and only if either (πk−2,i1 , πk−2,i2) ∈ E(HFk−2,M(k−2)) or (σk,i1 , σk,i2) ∈ E(HEk,M(2)). It
follows by Lemma 15 that for any independent set I in HFk−2,M(k−2), there exists an
independent set I ′ in HFk,M(k), which is a subset of I, such that |I ′| > 1

4
· |I|. Therefore

α(HFk,M(k)) >
1
4
· α(HFk−2,M(k−2)), so by induction

α(HFk,M(k)) >
p

2k

for all positive even k. As shown in (4), for k = 2 there exist families F2 (namely, Ac

for large c) such that α(HF2,M(2)) is arbitrarily close to 1
2k

= 1
4
. However, if p ≈ 2n,

then α(HFk,M(k)) must be approximately p
2k

for all 1 6 k 6 n, as α(HFn,M(n)) = 1.
More generally, if ρ∞(M) > 1

2
log2 a for some constant a, then there must exist families

E2, . . . , En such that their corresponding families F0, . . . ,Fn satisfy α(HFk,M(k)) ≈ p
ak/2

and
n ≈ log√a p (loosely speaking). Below, we present a construction which partially answers
this question by providing families E2, . . . , El such that for certain a > 3, α(HFk,M(k)) is
within a constant factor of p

ak/2
for 0 6 k 6 l, where l grows logarithmically as a function

of p (but slower than log√a p). We later explain how this result could potentially be
extended to improve the lower bound on ρ∞(M).

Theorem 20. Let A be some family of permutations of the vertices of M(2) with unlimited
blank spaces, and let p be some positive integer. Let l = 2 · dlog|A| pe. Then there exists a
family Fl of p permutations of M(l) such that

α(HFl,M(l)) 6 P · al/2,

where P is the least power of |A| not less than p and a =
α(HA,M(2))

|A|
.

Proof. Let q = |A| and let A = {A1, A2, . . . , Aq}. For even k where 2 6 k 6 l, let
Ek = {σk,1, . . . , σk,P} consist of the pattern

A1, . . . , A1︸ ︷︷ ︸
qk/2−1

, A2, . . . , A2︸ ︷︷ ︸
qk/2−1

· · · Aq, . . . , Aq︸ ︷︷ ︸
qk/2−1

repeated P
qk/2

times. Let Fk = {πk,1, . . . , πk,P} be defined the same before: πk,j =
πk−2,j σk,j.

It remains to be shown that α(HFl,M(l)) = P · al/2. We first observe that any inde-
pendent set with indices Il of maximum size in HFl,M(l) is constructed in the following
manner. Let I0 = {1, . . . , P} represent the indices of the independent set π0,1, . . . , π0,P
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in HF0,M(0). For each 2 6 k 6 l, choose some independent set Bk in HA,M(2) of size
α(HA,M(2)). Then let Ik = {j ∈ Ik−2 : σk,j ∈ Bk}. By this construction, α(HA,M(2)) out of
every q elements of Ik−2 will be in Ik. Therefore by induction, as Ik is of maximum size
by assumption,

α(HFk,M(k)) = |Ik| = P · (α(HA,M(2))/q)
k/2 = P · ak/2

for all even 0 6 k 6 l.

4 Conclusion

In this paper, we develop new methods for bounding the maximum size of a family
of pairwise graph-different permutations for various bipartite graphs. For specific non-
complete bipartite graphs G with vertex subsets of size a and b, we show that the upper
bound on F (G) of F (Ka,b) is tight. We show that if G(n) is any balanced bipartite
graph on n vertices with minimum degree n/2 − o(n), then F (G(n)) grows on the same
exponential order as F (Kbn/2c,dn/2e) when n → ∞. We also show that this growth is
achieved for certain much sparser balanced bipartite graphs. We present several new
bounds on F∞ for the matching graph M(n). Specifically, we determine the exact value
of F∞(M(4)), and improve the upper bound on F∞(M(n)). Our new methods and bounds
make potential progress towards determining the value of F (Pn).
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