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Abstract

A conjecture of Gyárfás and Sárközy says that in every 2-coloring of the edges
of the complete k-uniform hypergraph Kk

n, there are two disjoint monochromatic
loose paths of distinct colors such that they cover all but at most k − 2 vertices.
Recently, the authors affirmed the conjecture. In the note we show that for every
2-coloring of Kk

n, one can find two monochromatic paths of distinct colors to cover
all vertices of Kk

n such that they share at most k − 2 vertices. Omidi and Shahsiah
conjectured that R(Pk

t ,Pk
t ) = t(k − 1) + b t+1

2 c holds for k > 3 and they affirmed
the conjecture for k = 3 or k > 8. We show that if the conjecture is true, then k−2
is best possible for our result.

Keywords: Complete uniform hypergraphs; monochromatic loose path; covering

1 Introduction

A hypergraph H = (V,E) consists of a set V of vertices and a set E of edges, where each
edge is a subset of V . If all the edges of H have same size k, then the hypergraph H is
said to be k-uniform. Let Kk

n denote the complete k-uniform hypergraph on n vertices
(the family of all k-element subsets of an n-element set). For any integer m > 1, let
[m] = {1, 2, . . . ,m}. A k-uniform loose (or linear) path of length `, denoted by Pk

` , is a
k-uniform hypergraph with edges e1, e2, . . . , e` such that for any i ∈ [`− 1], |ei ∩ ei+1| = 1
and |ei ∩ ej| = 0 for all other pairs {i, j}, i 6= j. For a vertex v ∈ V (Pk

` ), we call v an
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endpoint of Pk
` if v ∈ ei for i ∈ {1, `} and v /∈ ej for each j 6= i. For k = 2 we obtain the

usual definition of a path P` with ` edges.
The subject of edge-coloring of graphs has been a classical topic of graph theory. A

famous result which is called Ramsey’s theorem showed that: Given an integer n > 2,
whenever the edges of a sufficiently large complete graph are colored with two colors,
red and blue, there is a monochromatic copy of the complete graph Kn. Then many
authors focused on the related research and expanded several branches in the subject.
For example, in generalized graph Ramsey theory, it is of interest and well motivated to
find desired monochromatic structures (cycles, paths, trees and so on) in edge-colored
graphs. In this paper, r-coloring always means edge-coloring with r colors (traditionally
red and blue when r = 2).

A simple and basic proposition, introduced by Gerencsér and Gyárfás in [8], says that

Proposition 1. ([8]) In any 2-coloring of a finite complete graph the vertices can be
partitioned into a red and a blue path. Here the empty set and a single vertex are accepted
as a path of any color.

In fact, Proposition 1 subsequently gave birth to the area of partitioning edge-colored
complete graphs into monochromatic subgraphs. In 1979, Lehel conjectured that Propo-
sition 1 remains true if paths are replaced by cycles. Here the empty set, a single vertex
and a single edge are accepted as a cycle of any color. Gyárfás [9] proved the following
weaker statement: The vertices of a 2-coloring of Kn can be covered by a red and a blue
cycle such that the two cycles have at most one common vertex. It took a long time to
get rid of the common vertex. Using the Regularity Lemma and some new techniques,
 Luczac, Rödl and Szemerédi [16] first succeeded to prove the conjecture for large n. Then
Bessy and Thomassé [1] found an elementary and elegant proof of Lehel’s conjecture. An-
other famous conjecture (usually called Ryser’s conjecture), appeared in the Ph.D. thesis
of Henderson [5], states that for any r-coloring of the edges of a graph G, the vertex set
V (G) can be covered by at most α(G)(r − 1) monochromatic trees, where α(G) is the
independence number of G. For the case α(G) = 1, i.e. for complete graphs, the cases
r = 3, 4, 5 were proved by Gyárfás [6], Duchet [3] and Tuza [22], respectively. However,
all remaining cases of Ryser’s conjecture are still open. There have been many further
results, questions and conjectures in this area, many of which generalize Proposition 1 in
graphs. We refer to two surveys [10, 14].

However, in contrast to the graph case, there are only a few results on covering the
vertices of hypergraphs with monochromatic pieces. Note that for any 2-coloring of com-
plete graph Kn, we cannot be guaranteed to obtain a monochromatic cycle of length
greater than d2n

3
e. However, in the case for hypergraphs, Gyárfás et al. [13] proved that

every 2-coloring of K3
n contains a monochromatic C3n and conjectured that for k > 2 and

sufficiently large n, every (k − 1)-coloring of Kk
n contains a monochromatic Ckn, where

the Hamiltonian Berge cycle Ckn is a sequence of distinct vertices v1, v2, . . . , vn, together
with a set of distinct edges e1, e2, . . . , en such that vi, vi+1 ∈ ei (vn+1 = v1). Bustamante,
Hàn and Stein [2] showed that for every η > 0 there exists an integer n0 such that every
2-coloring of the 3-uniform complete hypergraph on n > n0 vertices contains two disjoint
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monochromatic tight cycles of distinct colors that together cover all but at most ηn ver-
tices. The same result holds if we replace tight cycles with loose cycles. Gyárfás and
Sárközy [12] conjectured that for every k-uniform hypergraph H, the vertex set V (H)
can be partitioned into at most α(H) loose cycles. Ergemlidze, Györi and Methuku [4]
recently affirmed a weaker version of the conjecture for k = 3. If the conjecture is true
then it extends Pósa theorem to k-uniform hypergraphs. To the best of our knowledge,
even for α(H) = k − 1, that is, H is a complete k-uniform hypergraph, the conjecture is
still open. Somewhat surprisingly, Király [15] proved an analogue of Ryser’s conjecture
for hypergraphs: For k > 3 and every r-coloring of Kk

n, the vertex set can be covered by
at most d r

k
e monochromatic connected subhypergraphs. Gyárfás and Sárközy [11] also

proved that for every (k − 1)-coloring of Kk
n, there is a partition of the vertex set into

monochromatic loose cycles such that their number depends only on r and k. In [12]
they proved that in any r-coloring of a k-uniform hypergraph with independence number
α, there is a partition of the vertex set into monochromatic loose cycles such that their
number depends only on r, k and α. There are other results about partition and covering
of hypergraphs, many of the proofs use the hypergraph Regularity Lemma, we refer to
[7, 11, 20, 21].

In the note, we only consider covering hypergraphs by loose paths. A loose path is
proper if the path contains at least one edge. Similar to the graph case, a set of less
than k vertices in an edge-colored k-uniform hypergraph is accepted as a loose path of
any color. However, it is not always possible to extend Proposition 1 to loose paths of
hypergraphs. In 2013, Gyárfás and Sárközy [11] posed the following conjecture:

Conjecture 2. ([11]) In every 2-coloring of the complete k-uniform hypergraph Kk
n, there

are two disjoint monochromatic loose paths of distinct colors such that they cover all but
at most k − 2 vertices. This estimate is sharp for sufficiently large n.

Recently, the authors affirmed the conjecture in [17]. Based on Conjecture 2 and the
proof, we focus on the following natural question: For every 2-coloring of Kk

n, can we find
two monochromatic paths of distinct colors to cover all vertices of V (Kk

n) such that the
two paths share as few vertices as possible?

Note that any result on covering the vertices of edge-colored hypergraphs by monochro-
matic loose paths will imply a Ramsey-type result as a corollary (even though these
Ramsey-type corollaries are often not sharp). Conversely, the values of Ramsey numbers
of loose paths also imply that we can cover all vertices of edge-colored graphs hypergraphs
by a small number of monochromatic loose paths.

Omidi and Shahsiah posed the following conjecture on the values of Ramsey numbers
of loose paths for k > 3 in [19].

Conjecture 3. ([19]) For every s > t > 3, R(Pk
s ,Pk

t ) = s(k − 1) + b t+1
2
c.

For k = 3, Omidi and Shahsiah affirmed the conjecture in [18]. For k > 8 and s = t
(the diagonal case), they also gave a positive answer in [19].

Our main result is as follows:
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Theorem 4. For each 2-coloring of Kk
n, all the vertices can be covered by two monochro-

matic loose paths of distinct colors such that the two paths share at most k − 2 vertices.
Besides, if Conjecture 3 is true for diagonal case then k − 2 is best possible.

First of all we show that if Conjecture 3 is true then k − 2 is best possible. By
Proposition 1, we only need to consider k > 3. Let n = R(Pk

t ,Pk
t ), where t > 3 is

an integer satisfying that b t+1
2
c = k + 2. Then there is a 2-coloring of Kk

n such that it
contains no copy of a monochromatic Pk

t+1. Let PR and PB be two paths of distinct
colors covering all vertices of the colored Kk

n. To show the sharpness of the result, it
suffices to prove |PR ∩PB| > k− 2. It is obvious that the two paths are proper, since the
longest monochromatic path covers exactly t(k−1)+1 vertices and there are k+1 vertices
remained. Note that n = t(k−1)+b t+1

2
c = (t+1)(k−1)+3 and |PR|+ |PB| = r(k−1)+2

for some positive integer r > t+ 1. It means that |PR ∩PB| = |PR|+ |PB| − |PR ∪PB| =
|PR|+ |PB| − n > (r − t− 1)(k − 1)− 1 > k − 2.

2 Some Lemmas

The greatest common divisor (gcd) of two or more positive integers is the largest positive
integer that is a divisor of them. We first give two basic and well-known lemmas of number
theory. We modify slightly the latter lemma such that it is more suitable for us, so we
present its proof for the completeness.

Lemma 5. Let a1, a2 and n be three positive integers. Then the indeterminate equation

a1x+ a2y = n (1)

has an integer solution if and only if gcd(a1, a2)|n.

Lemma 6. Let a1 and a2 be two co-prime positive integers. For any integer n > a1a2,
the indeterminate equation (1) has a positive integer solution (x, y) with y 6 a1.

Proof. Let (x0, y0) be any integer solution of equation (1). Then (x0 + a2t, y0 − a1t) is
also an integer solution of equation (1), where t is an arbitrary integer. Then there exists
an integer t0 satisfying 0 < y0 − a1t0 6 a1. Hence x0 + a2t0 > 0 since (x0 + a2t0)a1 =
n− (y0−a1t)a2 > a1a2−a1a2 = 0. Now (x, y) = (x0 +a2t0, y0−a1t0) is a desired positive
integer solution of (1).

By Lemma 6 we have the following corollary:

Corollary 7. Let k > 3 and n > k(k − 2) + 4 be positive integers. Then there are
nonnegative integers x1 > 2 and x2 6 k − 2 such that n− 2 = x1(k − 1) + x2(k − 2).

Proof. By Lemma 6, the indeterminate equation n−2 = x1(k−1)+x2(k−2) has a positive
integer solution (x′1, x

′
2) with x′2 6 k − 1. If x′2 = k − 1 then let (x1, x2) = (x′1 + k − 2, 0),

otherwise let (x1, x2) = (x′1, x
′
2). Using n > k(k − 2) + 4 and x2 6 k − 2, we have

x1(k − 1) = n− 2− x2(k − 2) > k(k − 2) + 2− (k − 2)(k − 2) = 2(k − 1). Hence x1 > 2
and (x1, x2) is desired nonnegative integer solution of the indeterminate equation.
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The authors proved the following slightly stronger result than Conjecture 2 in [17].

Lemma 8. ([17]) Suppose that the edges of the complete k-uniform hypergraph Kk
n are

colored with two colors, where n ≡ 2 mod (k − 1). Then V (Kk
n) can be partitioned into

monochromatic loose paths of distinct colors.

In contrast to the graph case, there are few known results about the Ramsey numbers
of hypergraphs. Concerning to exact values of diagonal Ramsey numbers of loose paths
we have the following result, which is useful to our main proof of Theorem 4.

Lemma 9. ([7]) For t = 2, 3, 4 and k > 3, R(Pk
t ,Pk

t ) = t(k − 1) + b t+1
2
c.

Lemma 10. ([19]) For every t > 3 and k > 8, R(Pk
t ,Pk

t ) = t(k − 1) + b t+1
2
c.

3 The proof of Theorem 4

In this section we will prove Theorem 4. For simplicity, we partition the proof into the
following lemmas.

Lemma 11. Let n−2 = x1(k−1)+x2(k−2), where x1 > 2, x2 6 k−2 are two nonnegative
integers. For any 2-coloring of Kk

n, the vertices can be covered by two monochromatic loose
paths of distinct colors such that the two paths have at most k − 2 common vertices. In
particular, the result holds for all n > k(k − 2) + 4.

Proof. If all the edges of Kk
n are colored with the same color, then the result is trivial. So

we assume that both colors are used at least once.
We partition V (Kk

n) into two sets V1, V2 such that |V1| = x1(k−1)+2, |V2| = x2(k−2),
where x1 > 2 and x2 6 k − 2. Note that the initial case for x2 = 0 is easy to check by
Lemma 8. Now we consider the case for x2 > 1.

Denote by H1 the complete k-uniform subhypergraph induced by V1. Then by Lemma
8, V (H1) can be partitioned into a red path PR and a blue path PB.
Case 1 Both PR and PB are proper.

We partition V2 into x2 (k − 2)-element vertex subsets, say V 1
2 , . . . , V

x2
2 . For the first

(k−2)-element vertex subset V 1
2 , we consider the edge consisting of V 1

2 together with any
two endpoints picked from PR and PB respectively. If the edge is red, then adding it to
PR will form a longer red path, otherwise adding it to PB will form a longer blue path.

For 2 6 i 6 x2− 1, suppose that there is a red path P ′R and a blue path P ′B such that
they cover exactly V1 ∪ V 1

2 ∪ · · · ∪ V i
2 . Then consider the edge consisting of the (i+ 1)th

(k − 2)-element vertex subset V i+1
2 of V2 and two new endpoints picked from P ′R and P ′B

respectively. Note that x2 6 k − 2 ensures the two endpoints distinct from any endpoint
picked before. For any case (the edge is red or blue), we can obtain a longer red or blue
path. Then the two paths of distinct colors will cover V1 ∪ V 1

2 ∪ · · · ∪ V i+1
2 . By induction

on i we complete the proof.
Case 2 One of PR and PB is not proper.

Without loss of generality suppose that PB is not proper. Then PB is induced by a
singleton vertex, say v, since PR contains x(k − 1) + 1 vertices for some integer x and
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|V1| = x1(k−1)+2. If x2 = 1, then we are done since a set consisting of any k−1 vertices
can be regarded as an edge of any color. Now suppose that x2 > 2. Let e = {v1, . . . , vk}
be the last edge and v2, . . . , vk the k − 1 endpoints of PR. Denote by H2 the complete
subhypergraph induced by V2 ∪ {v, v2, . . . , vk}.
Subcase 2.1 H2 has a blue edge f .

Let V ′1 consist of all vertices of the red path PR − e and the blue edge f . Let V ′2 =
V (Kk

n)\V ′1 . Then V ′1 and V ′2 form a new partition of V (Kk
n) such that V ′1 can be partitioned

into two proper paths of distinct colors. The rest discussion is similar to Case 1.
Subcase 2.2 H2 is a red complete subhypergraph.

Denote H3 = H2 − {v2, . . . , vk−1}. Then we can choose a red path P ′R (as long as
possible) in H3 starting at vk such that the number of uncovered vertices by P ′R in H3 is
at most k− 2. Then PR together with P ′R form a new red path, such that the path covers
all but at most k − 2 vertices of Kk

n.
By Corollary 7, the result holds for all n > k(k−2)+4. This completes the proof.

Lemma 12. Let n 6 5k − 3 be a positive integer. For any 2-coloring of Kk
n, the vertices

can be partitioned into two monochromatic loose paths of distinct colors.

Proof. If n 6 2k−2 then the result is trivial. Now consider the case for 2k−1 6 n 6 5k−4.
Using Lemma 9, there is a monochromatic loose path Pk

t of length t ∈ {2, 3, 4} such that
Pk

t covers all but at most k−1 vertices of Kk
n. Then Pk

t together with the path consisting
of all remaining vertices will cover all vertices of Kk

n.
If n = 5k− 3 = 5(k− 1) + 2, then by Lemma 8, V (Kk

n) can be covered by two disjoint
monochromatic loose paths of distinct colors. This completes the proof.

The following result is easy to verify, but plays an important role in our proofs.

Lemma 13. For each 2-coloring of Kk
n, either V (Kk

n) can be covered by two monochro-
matic disjoint loose paths of distinct colors, or for each integer 1 6 x 6 k − 1 there are
two edges of distinct colors such that they have exactly x common vertices.

Proof. By Lemma 12 we only need to consider the case for n > 5k − 2. We prove the
result by induction on x. We first show that if two colors are used at least once for the
2-coloring of Kk

n, then there are two edges of distinct colors such that they have exactly
one common vertex. Otherwise, we can order randomly the vertices of Kk

n such that all
but at most k − 2 ordered vertices forms a monochromatic path, but this means that Kk

n

can be partitioned into two disjoint paths of distinct colors.
Now suppose that the result holds for smaller x, that is, there are two edges f and g

of distinct colors such that they have exactly x common vertices.
Let f = {u1, u2, . . . , ux, ux+1, . . . , uk} and g = {u1, u2, . . . , ux, vx+1, . . . , vk}. Consider

the edge e such that e∩f = {u1, u2, . . . , ux, ux+1} and e∩g = {u1, u2, . . . , ux, vx+1}. Then
either e and f are of distinct colors or e and g are. This completes the proof.

Lemma 14. Let n = 2k−x1+x2(k−2), where 0 6 x1 6 k−1, x2 6 min{k−x1+1, k−2}
are two positive integers. Then for every 2-coloring of Kk

n, the vertices can be covered by
two monochromatic loose paths of distinct colors such that they share at most k−2 vertices.
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Proof. Note that the case for x1 = 0 is proved in Lemma 11. Now consider x1 > 1. By
Lemma 13, we pick two edges f and g of distinct colors and |f ∩ g| = x1. Similar to
the proof of Lemma 11, either we find two desired paths or we fail in the final step. If
we fail, then all preceding x2 − 1 new edges are of common color, and the x2 − 1 edges
together with f or g, say f , form a monochromatic path P . Since we fail in the final
step, x2 = k− x1 + 1. Note that now all k vertices of g are in P (x1 vertices are in f and
the other k − x1 are in x2 − 1 new edges). Hence P and the path consisting of the last
(k − 2)-element vertex subset are two desired paths.

For two positive integers n and 3 6 k 6 7, we have the following corollary.

Corollary 15. Let 3 6 k 6 7 be an integer. For any 2-coloring of Kk
n, the vertices can be

covered by two monochromatic loose paths of distinct colors such that the two paths have
at most k − 2 common vertices.

Proof. By Lemmas 11 and 12, the statement is straight-forward for k 6 6. We now
consider the case for k = 7. Note that 5k − 2 = 33 and k(k − 2) + 3 = 38. By Lemmas
11 and 12 again, we only consider the case for 33 6 n 6 38. For each 34 6 n 6 38, there
are two integers x1 > 2 and 0 6 x2 6 k − 2 such that n = x1(k − 1) + x2(k − 2) + 2. By
Lemma 11, we are done. If n = 33 then n = 2k − 1 + 4(k − 2). By Lemma 14, we are
done as well. This completes the proof.

Lemma 16. Let k, s and t be three positive integers, where k > 8, 2 6 s 6 k − 2, 2 6 t 6
k − 1 and t(k − 1) + s 6 k(k − 2) + 3. Then one of the indeterminate equations

t(k − 1) + s = a(k − 1) + b(k − 2) + 2 (2)

t(k − 1) + s = 2k − a+ b(k − 2) (3)

has a nonnegative integer solution (a, b) such that a > 2, b 6 k − 2 if (2) holds, and
0 6 a 6 k − 1, b 6 min{k − a+ 1, k − 2} if (3) holds.

Proof. For each given k we consider all possible couples (s, t). For a couple (s, t), if (2)
or (3) has a desired solution, then we say that the couple (s, t) fits (2) or (3) for short. It
is easy to check that the initial couple (s, t) = (2, 2) fits (2).

If t 6 k − 2 then let (s, t + 1) be the successor of (s, t). If t = k − 1 then let
(s + 1, 2) be the successor of (s, t). Now suppose that (s, t) fits (2) or (3) for some
2 6 s 6 k − 2, 2 6 t 6 k − 2. We shall prove that its successor also fits (2) or (3). We
partition our discussion into two cases.
Case 1 The successor is (s, t+ 1).

If the couple (s, t) fits (2), then (t+ 1)(k−1) + s = (a+ 1)(k−1) + b(k−2) + 2 follows
by adding (k − 1) on both sides of (2) and hence (s, t + 1) fits (2) as well. If the couple
(s, t) fits (3), then (a− 1, b+ 1) solves (3) as desired, unless a = 0 or b = k − 2. If a = 0
then (t+ 1)(k − 1) + s = 2k + b(k − 2) + (k − 1) = 3(k − 1) + b(k − 2) + 2. If b = k − 2
then k− a+ 1 > k− 2 since b 6 min{k− a+ 1, k− 2}. That is, a ∈ {1, 2, 3}. For each a,
(t+ 1)(k − 1) + s = (k − a+ 1)(k − 1) + (a− 1)(k − 2) + 2. For the both cases, we have
(s, t+ 1) fits (2). So (s, t+ 1) fits (2) or (3) as well.
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Case 2 The successor is (s+ 1, 2).
Note that for all 2 6 s 6 k− 2, we have 2(k− 1) + s+ 1 = 2k− (k− s− 1) + (k− 2).

That is, (a, b) = (k − s− 1, 1) solves (3) as desired and (s+ 1, 2) fits (3).
This completes the proof.

Lemma 17. Let k > 8. For any 2-coloring of Kk
n, the vertices can be covered by two

monochromatic loose paths such that they share at most k − 2 vertices.

Proof. Let n = t(k − 1) + s, where t > 0 and 0 6 s 6 k − 2. If t 6 2 then n 6
2(k − 1) + s < 5k − 3. By Lemma 12, we are done. If t > k, then either k = 4 or
n > k(k − 1) + s > k(k − 2) + 4. By Corollary 15 or Lemma 11, we are done as well.
So we only need to consider the case for 3 6 t 6 k − 1. By Lemma 10, if s > b t+1

2
c,

then there is a monochromatic path Pk
t covering n− s+ 1 vertices of Kk

n. Hence Pk
t and

the path consisting of the s− 1 uncovered vertices cover all vertices of Kk
n. If s < b t+1

2
c,

then there is a monochromatic path Pk
t−1 covering n − s − k + 2 vertices of Kk

n. Let
U = V (Kk

n) \ V (Pk
t−1) and W be the endpoint set of Pk

t−1. Then |U | = s + k − 2 and
|W | = 2(k−1). If s = 0 or s = 1, then Pk

t−1 and the path consisting of U cover all vertices
of Kk

n. For s > 2, by Lemma 16, we have n = a(k−1)+b(k−2)+2 or n = 2k−a+b(k−2)
for desired (a, b). Using Lemmas 11 and 14, we complete the proof.

Now combining Corollary 15 and Lemma 17 together, we complete the proof of The-
orem 4.
Remark. We will spend the remainder of this paper discussing some problems on covering
edge-colored hypergraphs.

We proved Theorem 4 by partitioning the vertex set of Kk
n into two subsets of desired

sizes such that the resulting two paths covering Kk
n share at most k−2 vertices. However,

for each edge of the two paths, the edge contains at most one common vertex. That is, it
is possible that the two paths intersect at many edges. It would be interesting to know
if there are two paths covering Kk

n such that the two paths intersect at most one edge?
Lemma 8 says that if n ≡ 2 mod (k − 1) then the answer is yes.
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[10] A. Gyárfás. Vertex covers by monochromatic pieces-A survey of results and problems.
Discrete Math., 339:1970–1977, 2016.
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