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Abstract

An intercalate matrix M of type [r, s, n] is an r × s matrix with entries in
{1, 2, . . . , n} such that all entries in each row are distinct, all entries in each column
are distinct, and all 2 × 2 submatrices of M have either 2 or 4 distinct entries.
Yuzvinsky’s Conjecture on intercalate matrices claims that the smallest n for which
there is an intercalate matrix of type [r, s, n] is the Hopf-Stiefel function r◦s. In this
paper we prove Yuzvinsky’s Conjecture is asymptotically true for 5

6 of integer pairs
(r, s). We prove the conjecture for r 6 8, and we study it in the range r, s 6 32.

Keywords: Yuzvinsky’s Conjecture; Intercalate matrices; Hopf-Stiefel function.

1 Introduction

Let M be an r × s matrix with entries in a set of colors {1, 2, . . . , n}. Let Mi,j be the
(i, j)-entry of M . The matrix M is said to be intercalate of type [r, s, n] if it satisfies the
following two conditions:

Latinicity The colors along each row and each column are distinct.

∗Supported by ABACUS-CINVESTAV, Conacyt grant EDOMEX-2011-C01-165873, SNI-Conacyt.
†Supported by UAM Azcapotzalco, research grant SI004-13, SNI-Conacyt.
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Intercalacy If Mi,j = Mi′,j′ , then Mi,j′ = Mi′,j.

These conditions imply that every 2× 2 submatrix of M involves an even number of
distinct colors. Those involving exactly two colors are called intercalations ; in this case
each color forms a half-intercalation. Observe that the set of intercalate matrices is closed
under transposition, taking submatrices, and permutation of rows, columns, or colors.
Intercalate matrices appeared in the context of the classical problem of sums of squares
formulae [21]. For more details see [19] and for a thorough exposition see [17].

In the 1940’s, Hopf [6] and Stiefel [18] introduced the function

r ◦ s = min
{
n ∈ N |

(
n
k

)
≡ 0 mod 2 for all k in the range n− r < k < s

}
in their work on real division algebras by topological methods. This function, currently
known as the Hopf-Stiefel function, plays an important role in several other subjects such
as algebraic topology [8, 11, 19], quadratic forms [12, 14], sums of squares formulae [15,
16, 19, 20, 21], and additive number theory [4, 5, 7, 14]. The Hopf-Stiefel function can
also be computed recursively by the following formula due to Pfister [13]:

r ◦ s =


s ◦ r if r > s

s if r = 1

2k if 2k−1 < r 6 s 6 2k

2k + r ◦ (s− 2k) if r 6 2k < s.

For an extensive description of reformulations of r ◦ s we refer the reader to [5].

Stated in Yiu’s standard terminology [19], Yuzvinsky showed in 1981 [21] that for
every r and s there is an intercalate matrix of type [r, s, r ◦ s]. For a simple proof see
Shapiro [17, p. 274]. Additionally, Yuzvinsky posed the following conjecture:

Conjecture 1 (Yuzvinsky’s Conjecture). Let f(r, s) be the smallest value of n for which
there exists an intercalate matrix of type [r, s, n]. Then f(r, s) = r ◦ s.

Since every r × s matrix whose entries are all distinct is intercalate, it follows that
f(r, s) 6 rs, therefore f(r, s) is well defined. Furthermore, Yuzvinsky’s result implies
f(r, s) 6 r ◦ s. Since intercalate matrices are closed under transposition, it follows that
f(r, s) = f(s, r). Furthermore, intercalate matrices are closed under taking submatrices,
hence the function f has the following property:

Monotonicity If r 6 R and s 6 S, then f(r, s) 6 f(R, S).

Yiu [20] verified Yuzvinsky’s Conjecture whenever r, s 6 16 and Lam [11] proved it
for square intercalate matrices, together with some other special cases. In the same paper
Lam gave a result implying the conjecture is asymptotically true for 2

3
of integer pairs

(r, s). In this paper we improve Lam’s asymptotic bound to 5
6

of integer pairs (r, s). We
prove the conjecture for r 6 8, and we study it in the range r, s 6 32.
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2 Dyadic intercalate matrices

There is a well-known general distinction between two main classes of intercalate matri-
ces: dyadic and non-dyadic. Dyadic intercalate matrices are an important class whose
construction comes from group theory. Let D = Z/2Z⊕· · ·⊕Z/2Z be an Abelian 2-group
with cardinality 2k. The addition table of D gives an intercalate matrix of type [2k, 2k, 2k],
whose color set is D. A dyadic matrix is a submatrix of the addition table of group D.
Following Yiu [19, 20], we can construct a canonical family of dyadic intercalate matrices.

Starting with D1 =

(
1 2
2 1

)
define inductively:

Dt+1 =

(
Dt 2t + Dt

2t + Dt Dt

)
for t = 1, 2, . . .

Here, we consider Dt as a matrix of integers, and obtain 2t + Dt by adding 2t to each
entry of Dt. The intercalate matrix Dt is of type [2t, 2t, 2t] and every submatrix of Dt is an
intercalate matrix. Given r, s 6 2t, let Dr,s be the principal r× s submatrix in the upper
left hand corner of Dt. Observe that Dr,s does not depend on t. Note that Di = D2i,2i ,
and an intercalate matrix is dyadic if it is a submatrix of some Dt. Yuzvinsky proved
in [21] that the submatrices of Dt with type [r, s, n] satisfy n > r ◦ s, hence Yuzvinsky’s
Conjecture is true for dyadic matrices. A conceptually elegant proof of this result was
obtained by Eliahou and Kervaire [4], using the polynomial method extensively developed
by Alon and Tarsi [1]. For different methods to decide when an intercalate matrix is dyadic
see [2], for further properties see [3, 22].

In contrast to the dyadic case, there are no theoretical methods to obtain non-dyadic
intercalate matrices, although there exist simple examples such as

1 2 3 4
2 1 4 3
5 6 7 8
6 5 9 10

 and


1 2 3 4 5
6 3 2 7 8
9 10 11 8 7
10 9 12 13 14
15 16 13 12 17

 .

Yuzvinsky’s Conjecture remains open for non-dyadic intercalate matrices.

3 Constructions relative to color frequencies

There are several known methods to obtain new intercalate matrices from a given in-
tercalate matrix. These have been described mostly in the context of sums of squares
formulae [8, 15, 16, 17, 19, 20]. In this section we introduce some constructions based
on the frequency of the colors appearing in an intercalate matrix to obtain new interca-
late matrices. The procedure given in Theorem 2 was originally introduced by Lam and
Yiu [9, 10] while studying sums of squares formulae from a topological perspective, and
later by Yiu [19] in combinatorial terms.
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Let M be an intercalate matrix of type [r, s, n] and let a be a color of frequency t in
M . By permuting rows and columns, we can assume color a appears in the first t rows
and columns along the main diagonal of M , to obtain

M =

(
A B
C D

)
with A a t×t submatrix. In this case M is said to be in block form with respect to color a.

Theorem 2 ([9, 10, 19]). Let M be an intercalate matrix of type [r, s, n] in block form
with respect to color a of frequency t. Then the matrix

M ′ =
(
A B CT

)
is intercalate of type [t, s + r − t, n′] with n′ 6 n. In particular n > f(t, s + r − t).

The matrix M ′ of Theorem 2 is called the intercalate matrix hidden behind color a [20].
Analogous to Theorem 2, in the following result we construct a new intercalate matrix
M ′′ when t = r − 1.

Theorem 3. Let M be an intercalate matrix of type [r, s, n] in block form with respect to
color a of frequency t = r − 1. Then the matrix

M ′′ =

(
A B CT

C D a

)
is intercalate of type [r, s + 1, n]. In particular n > f(r, s + 1).

Proof. Since a does not appear in C nor D, it follows that M ′′ satisfies the latinicity
condition. Now, we prove that each 2×2 submatrix N of M ′′ also satisfies the intercalacy

condition. By Theorem 2 we can assume N =

(
M ′′

i,j M ′′
i,s+1

M ′′
r,j a

)
. It follows that M ′′

i,j = a if

and only if i = j if and only if M ′′
i,s+1 = M ′′

r,j. Finally, M ′′ is intercalate of type [r, s+1, n]
since M ′′ is an r × (s + 1) intercalate matrix with the same number of colors as M .

It is not possible to generalize Theorem 3 for all t 6 r − 1. For example, consider the
intercalate matrix

M =


1 2 7 8
2 1 9 10
3 4 6 5
5 6 4 3


for which there are no colors y and z such that the matrix

1 2 7 8 3 5
2 1 9 10 4 6
3 4 6 5 1 z
5 6 4 3 y 1
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is intercalate. This is because the intercalation

(
8 5
5 z

)
implies z = 8, the intercalation(

9 4
4 y

)
implies y = 9, but the intercalation

(
1 z
y 1

)
implies y = z.

The following result deals with intercalate matrices M with only two distinct color
frequencies and allows us to construct two new intercalate matrices, one of them contained
in M .

Theorem 4. If M is an intercalate matrix of type [r, s, n] with r colors of frequency t < r
and all the others with frequency r, then there exist an intercalate matrix of type [t, n, n]
and an intercalate submatrix of type [r − t, s− t, s− t].

Proof. We have rs = rt+(n−r)r, hence n−r = s− t. Since there are n−r = s− t colors
of frequency r and each one of them occurs in every row, it follows that each row has
exactly t colors of frequency t. We can assume M is in block form with respect to color a
of frequency t. Let c be a color in the submatrix C. If c has frequency r, then it appears
in every row of the submatrix

(
A B

)
. A contradiction, since by Theorem 2 the matrix M ′

is intercalate. Hence, c has frequency t. Thus, C contains only t colors of frequency t and
D contains only colors of frequency r. Therefore, M ′ is of type [t, r + s− t, n] = [t, n, n]
and D is of type [r − t, s− t, s− t].

For example, the intercalate matrix

M =


1 2 5 6 7 8
2 1 6 5 8 7
3 4 7 8 5 6
4 3 8 7 6 5


is in block form with respect to color 1 and by Theorem 4 the matrices

M ′ =

(
1 2 5 6 7 8 3 4
2 1 6 5 8 7 4 3

)
and D =

(
7 8 5 6
8 7 6 5

)
are intercalate.

4 Asymptotic results

In this section we prove Yuzvinsky’s Conjecture is asymptotically true for 5
6

of integer
pairs (r, s).

Lemma 5. If r = 2k and s = t2k, then f(r, s) = r ◦ s.

Proof. By the monotonicity of f , we have f(r, s) > f(1, s) = t2k. We also have f(r, s) 6
r ◦ s = t2k. Hence equality holds.

The next result due to Yiu [20] restricts the size of certain intercalate matrices.
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Theorem 6. If M is an intercalate matrix of type [r, n, n] with n = 2p(2` + 1), then
r 6 2p.

For our purposes we include proofs of some results by Lam found in [11].

Lemma 7. If r + s = 2k + 1, then r ◦ s = 2k.

Proof. We may assume r 6 s. By induction on k. If k = 0, then r = s = 1 and r ◦ s = 20.
It follows that s > 2k−1 > r. Thus, Pfister’s formula implies r ◦ s = 2k−1 + r ◦ (s− 2k−1).
Furthermore, r+(s−2k−1) = 2k−1+1 and, by the induction hypothesis, r◦(s−2k−1) = 2k−1.
Therefore, r ◦ s = 2k.

Theorem 8 ([11]). If r + s = 2k + 1, then f(r, s) = r ◦ s.

Proof. By Lemma 7, we have r ◦ s = 2k. We assume without loss of generality that
r < s. By induction on r. If r = 1, then f(1, s) = 1 ◦ s. Now assume r > 2. Let
M be an intercalate matrix of type [r, s, n]. Suppose each color of M has frequency
r, hence n = rs

r
= s and M is of type [r, s, s]. Theorem 6 implies s > r ◦ s = 2k.

Consequently, r = 2k + 1 − s 6 1. A contradiction, hence M has a color of frequency
t < r. Thus, by Theorem 2, there is an intercalate matrix M ′ of type [t, r + s− t, n′] with
n′ 6 n. Furthermore, t + (r + s − t) = r + s = 2k + 1 and, by the induction hypothesis,
n′ > t ◦ (r + s− t) = 2k. Therefore, n > 2k = r ◦ s.

Corollary 9 ([11]). If r, s 6 2k and r + s > 2k + 1, then f(r, s) = r ◦ s = 2k.

Proof. By Lemma 5 and Pfister’s formula we have f(2k, 2k) = 2k ◦ 2k = 2k. Furthermore,
there are r′ 6 r and s′ 6 s such that r′ + s′ = 2k + 1, consequently the monotonicity
of f together with Theorem 8 imply 2k = f(r′, s′) 6 f(r, s) 6 f(2k, 2k) = 2k. Also,
2k = r′ ◦ s′ 6 r ◦ s 6 2k ◦ 2k = 2k. Therefore, f(r, s) = 2k = r ◦ s.

Let `k be the number of integer pairs (r, s) guaranteed to satisfy Yuzvinsky’s Con-
jecture by Corollary 9, namely such that 1 6 r, s 6 2i and r + s > 2i + 1 for some
1 6 i 6 k. For example, each dot in Figure 1 corresponds to a known value of f(r, s) for
1 6 r, s 6 64.

Corollary 10. The ratio between `k and the size of the interval [1, 2k]× [1, 2k] converges
asymptotically to 2

3
. That is, limk→∞

`k
2k×2k = 2

3
.

Proof. It is easy to see that Corollary 9 implies Yuzvinsky’s Conjecture is true for `k =
1
2

∑k
i=0 2k(2k+1) = 2

3
(4k−1)+2k integer pairs (r, s) with 1 6 r, s 6 2k. The ratio between

`k and the size of the interval is `k
2k×2k = 2

3

(
1− 1

4k

)
+ 1

2k
and hence limk→∞

`k
2k×2k = 2

3
.

As a consequence of Theorem 8 and Corollary 9, Lam obtained that Yuzvinsky’s
Conjecture is true for square matrices.

Corollary 11 ([11]). If r = s, then f(r, s) = r ◦ s.

We call the pair (r, s) Lam favorable if r + s = 2kh + · · · + 2k1 + 1 for some integers
kh > · · · > k1 > 0 and r 6 min(s, 2k1).
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Figure 1: Integer pairs for which Corollary 9 implies Yuzvinsky’s Conjecture.

Lemma 12. If (r, s) is Lam favorable, then r ◦ s = r + s− 1.

Proof. By induction on h. If h = 1 then, by Lemma 7, r ◦s = 2k = r+s−1. Now assume
h > 1. In this case, r+(s−2kh) = 2kh−1 + · · ·+2k1 +1. Thus, by the induction hypothesis,
r ◦ (s− 2kh) = r+ s− 2kh − 1. Hence, Pfister’s formula implies r ◦ s = 2kh + r ◦ (s− 2kh) =
r + s− 1.

Theorem 13. If (r, s) is Lam favorable, then f(r, s) = r ◦ s.

Proof. By induction on r. If r = 1, then f(1, s) = 1 ◦ s. Now assume r > 2. Let M be
an intercalate matrix of type [r, s, n]. Suppose all colors of M have frequency r, hence
n = rs

r
= s and M is of type [r, s, s]. Theorem 6 implies s > r ◦ s. Furthermore, by

Lemma 12, r ◦ s = r + s − 1, which implies r 6 1, a contradiction. Hence, there is a
color of frequency t < r. Consequently, by Theorem 2 there is an intercalate matrix M ′

of type [t, r + s− t, n′] with n′ 6 n. Since t+ (r + s− t) = r + s and t < r, it follows that
(t, r + s− t) is Lam favorable. Thus, by the induction hypothesis n′ > t ◦ (r + s− t). By
Lemma 12, t ◦ (r + s− t) = r + s− 1. Therefore, n > n′ > r + s− 1.

Corollary 14. Let kh > · · · > k1 > 0 and m = 2kh + · · · + 2k1. If r 6 2k1, s 6 m, and
r + s > m + 1, then f(r, s) = r ◦ s = m.

Proof. Lemma 5 implies f(2k1 ,m) = 2k1 ◦m. By Pfister’s formula we obtain 2k1 ◦m =
2kh +2k1 ◦ (2kh−1 + · · ·+2k1) = 2kh +2kh−1 +2k1 ◦ (2kh−2 + · · ·+2k1) = · · · = 2kh + · · ·+2k2 +
2k1 ◦ 2k1 = 2kk + · · ·+ 2k2 + 2k1 = m. Furthermore, there are s′ 6 s and r′ 6 r such that
s′ + r′ = m + 1. Consequently, (s′, r′) is Lam favorable, then Lemma 12 together with
Theorem 13 imply f(r′, s′) = r′ ◦ s′ = m. Hence, m = f(r′, s′) 6 f(r, s) 6 f(2k1 ,m) = m
and m = r′ ◦ s′ 6 r ◦ s 6 2k1 ◦m = m. Therefore, f(r, s) = m = r ◦ s.
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Figure 2: Integer pairs for which Corollary 14 implies Yuzvinsky’s Conjecture.

Similarly to `k, we define `′k as the number of integer pairs (r, s) guaranteed to satisfy
Yuzvinsky’s Conjecture by Corollary 14 such that 1 6 r, s 6 2k. For example, each dot
in Figure 2 corresponds to a known value of f(r, s) for 1 6 r, s 6 64.

Theorem 15. The ratio between `′k and the size of the interval [1, 2k]× [1, 2k] converges

asymptotically to 5
6
. That is, limk→∞

`′k
2k×2k = 5

6
.

Proof. It is easy to see that Corollary 14 implies Yuzvinsky’s Conjecture is true for `′k =

4k −
∑k−2

i=1 (2k−i−1 − 1)2i(2i − 1) = 1
6
(5 · 4k + 4) + (k − 1)2k−1 integer pairs (r, s) with 1 6

r, s 6 2k. The ratio between `′k and the size of the interval is
`′k

2k×2k = 1
6

(
5 + 1

4k−1

)
+ k−1

2k+1

and hence limk→∞
`′k

2k×2k = 5
6
.

We obtain a generalization of Lemma 5:

Corollary 16. If b = 2k, then f(a, b) = a ◦ b for all a > 1.

Proof. If a 6 b, then the claim follows from Corollary 14 with r = a and s = m = b. Now,
if a > b, then let n be the unique integer with (n − 1)b < a 6 nb. Let s1 = (n − 1)b + 1
and s2 = nb. By the monotonicity of f , we have f(s1, b) 6 f(a, b) 6 f(s2, b). Using
Corollary 14 with m = nb, r = b and s ∈ {s1, s2}, we obtain f(s, b) = s ◦ b = m.
Therefore, f(a, b) = m = a ◦ b since s1 ◦ b 6 a ◦ b 6 s2 ◦ b.

We close this section with a short proof of the following result of Lam (private com-
munication):

Theorem 17. Let a, b > 1. If r + s = 2a + 2b + 1, then f(r, s) = r ◦ s.
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Proof. By Corollary 9, we can assume a > b > 0. We can also assume r < s. If r 6 2b,
then (r, s) is Lam favorable and we are done by Theorem 13. Now, if 2b < r < s 6 2a

then, by Corollary 14 taking m = 2a, it follows that f(r, s) = r ◦ s.

5 The conjecture for matrices with eight rows or less

Yuzvinsky’s Conjecture is known to be true for intercalate matrices with four or less
rows [20]. In addition, Corollary 16 implies Yuzvinsky’s Conjecture is true for intercalate
matrices whose number of rows is a power of two. Hence, a natural step would be to give
a proof of Yuzvinsky’s Conjecture for intercalate matrices with eight or less rows. This is
our next main result.

Theorem 18. If r 6 8, then f(r, s) = r ◦ s for all s > 1.

To prove Theorem 18, we only need to give proofs for matrices with five, six, and
seven rows (Theorems 22, 23, and 25). The main idea in these proofs is as follows: First,
since we know the upper bound f(r, s) 6 r ◦ s, we can determine which matching lower
bounds we have to prove. Second, we assume a color of a given frequency t exists and
we use Theorems 2 and 3 to prove that the lower bound holds. Third, we prove that the
remaining cases are impossible.

Let us illustrate this method with a proof of f(3, s) = 3 ◦ s. For 1 6 i 6 4, let Mi be
an intercalate matrix of type [3, 4k + i, ni], and let a be a color of frequency 1 6 t 6 3.
We assume Mi is in block form with respect to color a. By the monotonicity of f we have:

1. 4k + 4 = 3 ◦ (4k + 4) > f(3, 4k + 4) > f(3, 4k + 3) > f(3, 4k + 2), and

2. 4k + 3 = 3 ◦ (4k + 1) > f(3, 4k + 1).

Therefore, it is enough to prove that n2 > 4k + 4 and n1 > 4k + 3.

1. If t = 1 then, by Theorem 2, we have n2 > f(1, 4k + 4) = 4k + 4. If t = 2 then,
by Theorem 2, we have n2 > f(2, 4k + 3) = 4k + 4. Now, we can assume M2

only has colors of frequency 3, hence n2 = 3(4k+2)
3

= 4k + 2. Thus, M2 is of type
[3, 4k + 2, 4k + 2], contradicting Theorem 6.

2. If t = 1 then, by Theorem 2, we have n1 > f(1, 4k + 3) = 4k + 3. If t = 2 then,
by Theorem 3, we have n1 > f(3, 4k + 2) = 4k + 4. Now, we can assume M1

only has colors of frequency 3, hence n1 = 3(4k+1)
3

= 4k + 1. Thus, M1 is of type
[3, 4k + 1, 4k + 1], contradicting Theorem 6.
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Lemma 19. The following table gives r ◦ (8k + i) for 1 6 r 6 8:

r 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7 8k + 8

1 8k + 1 8k + 2 8k + 3 8k + 4 8k + 5 8k + 6 8k + 7 8k + 8
2 8k + 2 8k + 2 8k + 4 8k + 4 8k + 6 8k + 6 8k + 8 8k + 8
3 8k + 3 8k + 4 8k + 4 8k + 4 8k + 7 8k + 8 8k + 8 8k + 8
4 8k + 4 8k + 4 8k + 4 8k + 4 8k + 8 8k + 8 8k + 8 8k + 8
5 8k + 5 8k + 6 8k + 7 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8
6 8k + 6 8k + 6 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8
7 8k + 7 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8
8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8 8k + 8

Proof. Using Pfister’s formula.

Lemma 20. Let M be an intercalate matrix of type [r, s, n]. For each 1 6 i 6 r, let ti be
the number of colors of M with frequency i. Then the following hold:

1. t1 + 2t2 + 3t3 + · · ·+ rtr = rs.

2. t2
(
2
2

)
+ t3

(
3
2

)
+ · · ·+ tr

(
r
2

)
≡ 0 (mod 2).

3. t2 + t3 + t6 + t7 + · · · ≡ 0 (mod 2).

Proof. The first identity counts the number of entries of M in two different ways. The left-
hand side of the second identity counts the number of half-intercalations of M . Since each
intercalation consists of two half-intercalations, this number is even. The third identity
follows from the second, noting that

(
i
2

)
is odd if and only if i ≡ 2, 3 (mod 4).

Lemma 21. There are no r × s intercalate matrices M with 3 6 r 6 s such that:

1. There are at most 2(r − 2) colors of frequency less than r.

2. There is a color of frequency 2 that intercalates with a color of frequency r.

Proof. By contradiction, assume there is such a matrix M . By Point 2, we can assume
color c has frequency r, color b has frequency 2, and they intercalate. By permuting rows
and columns, and filling its first two columns, M looks like:

c b 3 4 · · · r r + 1 · · ·
b c a3 a4 · · · ar · · · ·
3 a3 c d · · ·
...

...
. . . · · ·

r ar c · · ·

 .

We claim that all 2(r − 2) colors {3, . . . , r, a3, . . . , ar} are pairwise different. Indeed,
if j = ai with i, j ∈ {3, . . . , r}, then j 6= i and Mi,2 = M1,j. Hence, b = M1,2 = Mi,j,
a contradiction, since color b has frequency 2. Now, by Point 1, at least one of those
colors (say a3) must have frequency r and must appear in all rows of M . By permuting
columns, we can assume a3 = r + 1. Consequently, M1,r+1 = r + 1 = a3 = M3,2 which
implies d = M3,r+1 = M1,2 = b, a contradiction.
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Theorem 22. f(5, 8k + i) = 5 ◦ (8k + i) for all k > 0 and 1 6 i 6 8.

Proof. Let Mi be an intercalate matrix of type [5, 8k + i, ni] and let a be a color of
frequency 1 6 t 6 5. We assume Mi is in block form with respect to color a. By the
monotonicity of f and Lemma 19 we have:

1. 8k + 8 = 5 ◦ (8k + 8) > f(5, 8k + 8) > · · · > f(5, 8k + 4),

2. 8k + 7 = 5 ◦ (8k + 3) > f(5, 8k + 3),

3. 8k + 6 = 5 ◦ (8k + 2) > f(5, 8k + 2), and

4. 8k + 5 = 5 ◦ (8k + 1) > f(5, 8k + 1).

Therefore, it is enough to prove that n4 > 8k + 8, n3 > 8k + 7, n2 > 8k + 6, and
n1 > 8k + 5.

1. If 1 6 t 6 4 then, by Theorem 2, we have n4 > f(t, 8k + 9 − t) = 8k + 8. Now,

we can assume M4 only has colors of frequency 5, hence n4 = 5(8k+4)
5

= 8k + 4.
Consequently, M4 is of type [5, 8k + 4, 8k + 4], contradicting Theorem 6.

2. If t = 1 then, by Theorem 2, we have n3 > f(1, 8k + 7) = 8k + 7. If t = 3 then, by
Theorem 2, we have n3 > f(3, 8k + 5) = 8k + 7. If t = 4 then, by Theorem 3, we
have n3 > f(5, 8k + 4) = 8k + 8. Now, we can assume M3 has t2 colors of frequency
2 and t5 colors of frequency 5, hence 2t2 + 5t5 = 5(8k + 3). For a contradiction, we
can assume n3 6 8k + 6, therefore:

8k + 6 > n3 = t2 + t5 > f(5, 8k + 3) > f(4, 8k + 3) = 8k + 4.

The unique solution to this Diophantine system is t2 = 5 and t5 = 8k + 1. Since t2
is odd, this contradicts Lemma 20.

3. If t = 1 then, by Theorem 2, we have n2 > f(1, 8k + 6) = 8k + 6. If t = 2 then, by
Theorem 2, we have n2 > f(2, 8k + 5) = 8k + 6. If t = 4 then, by Theorem 3, we
have n2 > f(5, 8k + 3) = 8k + 7. Now, we can assume M2 has t3 colors of frequency
3 and t5 colors of frequency 5, hence 3t3 + 5t5 = 5(8k + 2). For a contradiction, we
can assume n2 6 8k + 5, therefore:

8k + 5 > n2 = t3 + t5 > f(5, 8k + 2) > f(4, 8k + 2) = 8k + 4.

The unique solution to this Diophantine system is t3 = 5 and t5 = 8k − 1. By
Theorem 4, there exists an intercalate matrix of type [5−3, (8k+2)−3, (8k+2)−3] =
[2, 8k − 1, 8k − 1], contradicting Theorem 6.

4. If t = 1 then, by Theorem 2, we have n1 > f(1, 8k + 5) = 8k + 5. If t = 4 then,
by Theorem 3, we have n1 > f(5, 8k + 2) = 8k + 6. Now, we can assume M1 has
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t2 colors of frequency 2, t3 colors of frequency 3, and t5 colors of frequency 5, hence
2t2+3t3+5t5 = 5(8k+1). For a contradiction, we can assume n1 6 8k+4, therefore:

8k + 4 > n1 = t2 + t3 + t5 > f(5, 8k + 1) > f(4, 8k + 1) = 8k + 4.

There are exactly three solutions to this Diophantine system:

(a) The solution t2 = 5, t3 = 0, and t5 = 8k−1. Since t2+t3 is odd, this contradicts
Lemma 20.

(b) The solution t2 = 3, t3 = 3, and t5 = 8k − 2. Since t2 is odd, a color of
frequency 2, say c, must intercalate with color a of frequency t ∈ {3, 5}. By
Lemma 21, we can assume t = 3. Recall that Mi is in block form with respect
to color a. Hence, A has no colors of frequency 5. If C contains a color of
frequency 5, then a appears in D, a contradiction. Therefore, A and C form
an intercalate matrix of type [5, 3, 6], a contradiction.

(c) The solution t2 = 1, t3 = 6, and t5 = 8k−3. Since t2+t3 is odd, this contradicts
Lemma 20.

Theorem 23. f(6, 8k + i) = 6 ◦ (8k + i) for all k > 0 and 1 6 i 6 8.

Proof. Let Mi be an intercalate matrix of type [6, 8k + i, ni] and let a be a color of
frequency 1 6 t 6 6. We assume Mi is in block form with respect to color a. By the
monotonicity of f and Lemma 19 we have:

1. 8k + 8 = 6 ◦ (8k + 8) > f(6, 8k + 8) > · · · > f(6, 8k + 3), and

2. 8k + 6 = 6 ◦ (8k + 2) > f(6, 8k + 2) > f(6, 8k + 1).

Therefore, it is enough to prove that n3 > 8k + 8 and n1 > 8k + 6.

1. If 1 6 t 6 5 then, by Theorem 2, we have n3 > f(t, 8k + 9− t) = 8k + 8. Now, we

can assume M3 only has colors of frequency 6, hence n3 = 6(8k+3)
6

= 8k + 3. Thus,
M3 is of type [6, 8k + 3, 8k + 3], contradicting Theorem 6.

2. If 1 6 t 6 2 then, by Theorem 2, we have n1 > f(t, 8k+7−t) = 8k+6. If t = 4 then,
by Theorem 3 (applied to the first five rows of M1) we have n1 > f(5, 8k+2) = 8k+6.
If t = 5 then, by Theorem 3, we have n1 > f(6, 8k + 2) = 8k + 6. Now, we
can assume M1 has t3 colors of frequency 3 and t6 colors of frequency 6, hence
3t3 + 6t6 = 6(8k + 1). For a contradiction, we can assume n1 6 8k + 5, therefore:

8k + 5 > n1 = t3 + t6 > f(6, 8k + 1) > f(5, 8k + 1) = 8k + 5.

The unique solution to this Diophantine system is t3 = 8 and t6 = 8k − 3. Since
t3 + t6 is odd, this contradicts Lemma 20.

Lemma 24. There is no intercalate matrix of type [3, 4, 5].
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Proof. By contradiction, suppose M is an intercalate matrix of type [3, 4, 5]. Assume first
that there is a color of frequency 3, say color 1. Hence, we may assume that M has the
form:  1 2 3 4

2 1 x ·
3 x 1 ·

 .

By latinicity of columns 2 and 3, we have x /∈ {1, 2, 3}. If x = 4, then by intercalacy
M2,4 = 3 and M3,4 = 2, a contradiction since M would have only 4 colors. It follows that
x = 5. By latinicity of row 2 and column 4, we have M2,4 = 3. A contradiction, by the
intercalacy condition on the upper-right 2× 2 submatrix. Thus, each color has frequency
at most 2. We can assume color 1 has frequency 2 and M has the form 1 2 · ·

2 1 a ·
c b 3 ·

 .

By latinicity and intercalacy in the last two rows, it follows that 1, 2, 3, a, b, c are
pairwise different, a contradiction.

Theorem 25. f(7, 8k + i) = 7 ◦ (8k + i) for all k > 0 and 1 6 i 6 8.

Proof. Let Mi be an intercalate matrix of type [7, 8k + i, ni] and let a be a color of
frequency 1 6 t 6 7. We assume Mi is in block form with respect to color a. By the
monotonicity of f and Lemma 19 we have:

1. 8k + 8 = 7 ◦ (8k + 8) > f(7, 8k + 8) > · · · > f(7, 8k + 2), and

2. 8k + 7 = 7 ◦ (8k + 1) > f(7, 8k + 1).

Therefore, it is enough to prove that n2 > 8k + 8 and n1 > 8k + 7.

1. If 1 6 t 6 6 then, by Theorem 2, we have n2 > f(t, 8k + 9− t) = 8k + 8. Now, we

can assume M2 only has colors of frequency 7, hence n2 = 7(8k+2)
7

= 8k + 2. Thus,
M2 is of type [7, 8k + 2, 8k + 2], contradicting Theorem 6.

2. If t ∈ {1, 3, 5} then, by Theorem 2, we have n1 > f(t, 8k + 8− t) = 8k + 7. If t = 6
then, by Theorem 3, we have n1 > f(7, 8k + 2) = 8k + 8. Now, we can assume M1

has t2 colors of frequency 2, t4 colors of frequency 4, and t7 colors of frequency 7,
hence 2t2 + 4t4 + 7t7 = 7(8k + 1). For a contradiction, we can assume n1 6 8k + 6,
therefore:

8k + 6 > n1 = t2 + t4 + t7 > f(7, 8k + 1) > f(6, 8k + 1) = 8k + 6.

There are exactly three solutions to this Diophantine system:

(a) The solution t2 = 7, t4 = 0, and t7 = 8k−1. Since t2 is odd, there exist a color
of frequency 2 that intercalates with a color of frequency 7. A contradiction
by Lemma 21.
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(b) The solution t2 = 4, t4 = 5, and t7 = 8k−3. Since t2+t7 is odd, this contradicts
Lemma 20.

(c) The solution t2 = 1, t4 = 10 and t7 = 8k − 5. By contradiction, suppose M is
an intercalate matrix of type [7, 8k + 1, 8k + 6]. Let b be the color of frequency
2, and let c be the color that intercalates with b. Observe that c must have
frequency either 4 or 7.

We assume first c has frequency 7. By the proof of Lemma 21, we obtain a
contradiction if at least one element of W = {3, . . . , 7, a3, . . . , a7} has frequency
7 or if at least two of them are equal. This implies these 10 colors have frequency
4. Hence, M has the form:

M =


c b 3 · · · 7 · · ·
b c a3 · · · a7 · · ·
3 a3 c · · · · · · ·
...

...
...

. . .
...

7 a7 · · · · c · · ·

 .

If the other two appearances of these 10 colors are on the first 7 columns of M ,
then the rest of M would be an intercalate matrix of type [7, 8k − 6, 8k − 6],
contradicting Theorem 6. Consequently, at least one color in W does not
appear in the first 7 columns. So, we can assume color 3 appears in column
8. Since the frequency of color 3 is 4, we can assume 3 appears in column 9.
Furthermore, by the intercalacy condition, we have aij = aji for 3 6 i 6 7,
3 6 j 6 7. Hence, by the intercalations induced by colors 3 and c, it follows
that M has the form:

c b 3 4 5 6 7 8 9 · · ·
b c a3 a4 a5 a6 a7 a8 a9 · · ·
3 a3 c 8 9 · · 4 5 · · ·
4 a4 8 c · · · 3 · · · ·
5 a5 9 · c · · · 3 · · ·
6 a6 · · · c · · · · · ·
7 a7 · · · · c · · · · ·


.

Now, suppose M4,9 = M5,8 = d, then by latinicity of columns 8, 9 and latinicity
of rows 4, 5, we have d /∈ {3, 4, 5, 8, 9, a4, a5, a8, a9}. If d = a3, then a4 = 5.
But the colors in W are pairwise different, hence d 6= a3. If d = 6, then by the
intercalations induced by colors 6 and c, M would look like:
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c b 3 4 5 6 7 8 9 · · ·
b c a3 a4 a5 a6 a7 a8 a9 · · ·
3 a3 c 8 9 · · 4 5 · · ·
4 a4 8 c · 9 · 3 6 · · ·
5 a5 9 · c 8 · 6 3 · · ·
6 a6 · 9 8 c · 5 4 · · ·
7 a7 · · · · c · · · · ·


.

Consequently, by the intercalations induced by colors 9 and c, we have M3,6 =
M4,5 = M5,4 = M6,3 = u. Since color 7 has frequency 4, it follows that
u 6= 7 and we can assume Mi,10 = 7 for some i ∈ {2, 3, 4, 5, 6}. Thus, M7,10 ∈
{b, 3, 4, 5, 6}. But these colors have frequency 2 or 4. Hence d 6= 6. Now, if
d = a6, then by the intercalations induced by colors a6 and c, M would have
the following form:

c b 3 4 5 6 7 8 9 · · ·
b c a3 a4 a5 a6 a7 a8 a9 · · ·
3 a3 c 8 9 · · 4 5 · · ·
4 a4 8 c · a9 · 3 a6 · · ·
5 a5 9 · c a8 · a6 3 · · ·
6 a6 · a9 a8 c · a5 a4 · · ·
7 a7 · · · · c · · · · ·


.

We assume M4,5 = e, then by intercalacy M5,4 = e. By latinicity of columns 4
and 5, we have e /∈ {4, 5, 8, 9, a4, a5, a8, a9}. Furthermore, by latinicity of row
4, we have e /∈ {3, a6}. If e = 6 or e = a3, then by intercalacy a9 = 5 or a5 = 8.
A contradiction by latinicity of columns 9 and 8, respectively. Consequently
e /∈ {6, a3}. Now, if e ∈ {7, a7}, then M7,4 = M4,7 ∈ {5, a5}. A contradiction,
since a5 and 5 have frequency 4. Hence, e /∈ W ∪ {8, 9, a8, a9}. In particular
e has frequency 7, so we can assume M1,10 = e. Thus, by the intercalacy
condition on color e we have M4,10 = 5 implying M3,10 = a6. A contradiction,
since a6 has frequency 4. Consequently, we can assume d /∈ {6, a6}. Similarly
d /∈ {7, a7}. Therefore, d /∈ W , implying d has frequency 7. So, we can assume
M1,10 = d, and M has the form:

c b 3 4 5 6 7 8 9 d · · ·
b c a3 a4 a5 a6 a7 a8 a9 · · · ·
3 a3 c 8 9 · · 4 5 f · · ·
4 a4 8 c f · · 3 d 9 · · ·
5 a5 9 f c · · d 3 8 · · ·
6 a6 · · · · · · · · · · ·
7 a7 · · · · · · · · · · ·


,

where f is the color that intercalates with c in columns 4 and 5. Consequently,
f /∈ W since these colors have frequency 4. Furthermore, by latinicity of row
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4, we have f /∈ {8, 9, d}. If f = a8, then a5 = 3. A contradiction, since the
elements of W are pairwise different. Hence f 6= a8. Similarly we have f 6= a9.
Therefore, f has frequency 7 and we can suppose M looks like:

c b 3 4 5 6 7 8 9 d f · · ·
b c a3 a4 a5 a6 a7 a8 a9 · · · · ·
3 a3 c 8 9 · · 4 5 f d · · ·
4 a4 8 c f · · 3 d 9 5 · · ·
5 a5 9 f c · · d 3 8 4 · · ·
6 a6 · · · c · · · · · · · ·
7 a7 · · · · · · · · · · · ·


.

If Mi,j = 7 for some i ∈ {3, 4, 5}, then by intercalacy M7,j = Mi,1 = i. A con-
tradiction, since i has frequency 4. If M2,i = 7, then by intercalacy M7,i = b, a
contradiction. So, 7 can only appear in rows 1, 6 and 7. This is a contradiction,
since 7 has frequency 4. Hence, our assumption that c had frequency 7 cannot
hold.

Therefore, c must have frequency 4. Hence, we can assume

M =


c b z w
b c y v
z y c x Q
w v x c

P R

 .

If v = z, then x = b by intercalacy with M3,1 = z. A contradiction, so
v 6= z. This implies w 6= y. Therefore, by latinicity c, b, z, w, v, y, x are pairwise
different colors. If there is a color u in P whose frequency is 7, then we can
suppose M5,i = u for some i ∈ {1, 2, 3, 4}. Also, we can assume Mi,5 = u, hence
M5,5 = c. A contradiction, hence each color of P has frequency 4 in M . If Mi,j

has frequency 7 with i ∈ {1, 2} and j ∈ {3, 4}, then we can assume Mi′,5 = Mi,j

with {i, i′} = {1, 2}. Consequently, Mj,5 = b, since Mj,i = Mi,j = Mi′,5 and
Mi,i′ = b. This is a contradiction. Therefore, z, y, w, v have frequency 4. Now,
suppose x has frequency 7, then x is not a color of P . By the intercalations
induced by color x, M would look like:

c b z w x · · · · ·
b c y v · x · · · ·
z y c x w v · · · ·
w v x c z y · · · ·

· · x · · ·
P · · · · · ·

· · · · · ·


.

If M5,1 ∈ {y, v} or M5,2 ∈ {z, w}, then M5,3 = b or M5,4 = b. Furthermore,
if M5,3 ∈ {w, v} or M5,4 ∈ {z, y}, then M5,5 = c or M5,6 = c. A contradic-
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tion, hence {w, v, z, y, c} do not appear in P . Consequently, P has at most
5 colors, since these colors have frequency 4 in M . We take the frequencies
f1, f2, f3, f4, f5 of these colors in P , then 0 6 fi 6 3 and f1+f2+f3+f4+f5 = 12.
We can suppose f1 6 f2 6 · · · 6 f5, then f5 = 3. By Lemma 24 we have
(f5, f4, f3, f2, f1) = (3, 3, 3, 3, 0). We take d, e, f, g as the colors of P , then M
has the form: 

c b z w x · · · · · ·
b c y v · x · · · · ·
z y c x w v g · · · ·
w v x c z y f · · · ·
d e f g · · x · · · ·
· · · · · · · x · · ·
· · · · · · · · · · ·


.

If M6,3 = g or M6,4 = f , then M6,7 = c. A contradiction, since c has frequency
4. Consequently, M6,1 = f or M6,1 = g. This implies M6,7 = w = M5,8 or
M6,7 = z = M5,8. This is a contradiction, since w and z have frequency 4.
Therefore, x has frequency 4. Then there exists a row in P without color x.
Assume it is row 5, hence

M =



c b z w
b c y v B
z y c x
w v x c
d e f g
· · · · C
· · · ·


with x /∈ {d, e, f, g}. By latinicity of column 1, we have d /∈ {c, b, z, w}. Since
b 6= f and g 6= b, it follows that d /∈ {y, v} and e /∈ {z, w}. Furthermore,
e, c, y, v are pairwise different by latinicity of column 2. If f ∈ {v, w} or g ∈
{y, z}, then e = x or d = x. A contradiction, therefore z, y, c, x, w, v, d, e, f, g
are the 10 pairwise different colors of frequency 4. If color x appears in P , then
we can assume M6,1 = x and M would have the form:

c b z w
b c y v B
z y c x
w v x c
d e f g
x h w z C
· · · ·


where M6,2 = h. By latinicity of column 2 and row 6, we have h /∈ {c, y, v, e, x,
w, z}. Furthermore, since e /∈ {x,w, z}, then by intercalacy h /∈ {d, f, g}.
A contradiction, since h has frequency 4. Hence, x is not in P and d, e, f, g
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are the colors of P . Since P is a 3 × 4 matrix, it follows that d, e, f, g have
frequency 3 in P . Furthermore, there is a color of P that appears in columns
1 and 2, since P has 3 rows. Thus, without loss of generality, we can assume
M5,1 = M6,2 = M7,3 = d and

M =



c b z w
b c y v B
z y c x
w v x c
d e f g
e d g f C
f g d e


,

since every row of P has the colors d, e, f, g. Furthermore, d has frequency
4, and we can suppose Mi,5 = d for some i ∈ {1, 2, 3, 4}. If 1 6 i 6 3, then
M4+i,5 = c. A contradiction, so M4,5 = d. Hence, M6,5 = v and M7,5 = x.
Thus, M3,5 = e since M7,4 = e. Consequently, M6,5 = z by intercalacy of M3,5

with M3,1 and M6,1. This is a contradiction because M6,5 = v and z 6= v.
Hence, c cannot have frequency 4.

Since c cannot have frequency neither 4 nor 7, this concludes the proof of the
theorem.

6 The conjecture in the range 32 × 32

As mentioned in the introduction, Yiu [20] verified Yuzvinsky’s Conjecture whenever
r, s 6 16. In this section we extend his result to r, s 6 32, except for 19 integer pairs (r, s)
in this range.

Lemma 26. If 2k−1 < r 6 s 6 2k for some k, then r ◦ s = 2k = r ◦ (s− 1).

Proof. If s 6= 2k−1 + 1, then s− 1 > 2k−1 and by Pfister’s formula, r ◦ s = 2k = r ◦ (s− 1).
Now, if s = 2k−1 + 1, then r = 2k−1 + 1 and r ◦ s = 2k. Thus, by Pfister’s formula,
r ◦ (s− 1) = 2k−1 ◦ r = 2k−1 + 2k−1 ◦ (r − 2k−1) = 2k. Hence, r ◦ s = 2k = r ◦ (s− 1).

Lemma 27. Let r, s be integers such that 1 6 r 6 s, then

max{(r − 1) ◦ s, r ◦ (s− 1)} > (r ◦ s)− 1.

Proof. By induction on r + s. If r = 1, then 1 ◦ (s − 1) = s − 1 = (1 ◦ s) − 1. Thus,
by Lemma 26, we can assume 2 6 r 6 2k < s for some integer k. Hence, by Pfister’s
formula, r ◦ s = 2k + r ◦ (s− 2k). By the induction hypothesis

max
{

(r − 1) ◦ (s− 2k), r ◦ (s− 2k − 1)
}
> r ◦ (s− 2k)− 1.

If s 6= 2k + 1, then Pfister’s formula implies (r − 1) ◦ s = 2k + (r − 1) ◦ (s − 2k) and
r ◦ (s − 1) = 2k + r ◦ (s − 2k − 1). Hence, max{(r − 1) ◦ s, r ◦ (s − 1)} > r ◦ s − 1.
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Now, we suppose s = 2k + 1. By Pfister’s formula, r ◦ s = 2k + r ◦ 1 = 2k + r and
(r − 1) ◦ s = 2k + (r − 1) ◦ 1 = 2k + r − 1. Therefore, (r − 1) ◦ s = (r ◦ s)− 1.

We give a shorter proof of the following lemma found in [22].

Lemma 28. If M is an intercalate matrix of type [r, s, n] which is a counterexample to
Yuzvinsky’s Conjecture with minimal r + s, then n = r ◦ s− 1 = r + s− 2.

Proof. Since M is a counterexample to the conjecture, r ◦ s > n. By the minimality of
r+s, it follows that f(r, s−1) = r◦ (s−1) and f(r−1, s) = (r−1)◦s. Consequently, the
monotonicity of f together with Lemma 27, imply f(r, s) > max{f(r, s−1), f(r−1, s)} >
r ◦ s− 1. Furthermore, n > f(r, s), hence n = r ◦ s− 1 = r + s− 2.

Finally, we obtain the following result in the range 32× 32.

Theorem 29. If M is an r×s intercalate matrix which is a counterexample to Yuzvinsky’s
Conjecture with minimal r+s and r 6 s 6 32, then one of the following conditions holds:

1. r = 9 and s ∈ {17, 18, 19, 20, 21, 22, 23}.

2. r = 10 and s ∈ {17, 19, 21}.

3. r = 11 and s ∈ {17, 18, 21}.

4. r ∈ {12, 14, 15} and s = 17.

5. r = 13 and s ∈ {17, 18, 19}.

Proof sketch. By Theorem 18, there are no counterexamples with r 6 8. By Yiu’s
result [20], there are no counterexamples with r 6 s 6 16. Hence, if M is a minimal
counterexample, then 17 6 s 6 32 and 9 6 r 6 s. The only values of r and s in
this range satisfying the conditions of Lemma 28 and not covered by Theorem 13 nor
Corollary 14 are those listed above.
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