A Euclidean Ramsey result in the plane

Sergei Tsaturian
Department of Mathematics
University of Manitoba
Winnipeg, Canada
s.tsaturian@gmail.com

Submitted: Jul 9, 2017; Accepted: Nov 12, 2017; Published: Nov 24, 2017
Mathematics Subject Classification: 05D10

Abstract

An old question in Euclidean Ramsey theory asks, if the points in the plane are red-blue coloured, does there always exist a red pair of points at unit distance or five blue points in line separated by unit distances? An elementary proof answers this question in the affirmative.

1 Introduction

Many problems in Euclidean Ramsey theory ask, for some \(d \in \mathbb{Z}^+ \), if the \(d \)-dimensional Euclidean space \(\mathbb{E}^d \) is coloured with \(r \geq 2 \) colours, does there exist a colour class containing some desired geometric structure? Research in Euclidean Ramsey theory was surveyed in [4–6] by Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus; for a more recent survey, see Graham [7].

Say that two geometric configurations are congruent iff there exists an isometry (distance preserving bijection) between them. For \(d \in \mathbb{Z}^+ \), and geometric configurations \(F_1, F_2 \), let the notation \(\mathbb{E}^d \to (F_1, F_2) \) mean that for any red-blue coloring of \(\mathbb{E}^d \), either the red points contain a congruent copy of \(F_1 \), or the blue points contain a congruent copy of \(F_2 \).

For a positive integer \(i \), denote by \(\ell_i \) the configuration of \(i \) collinear points with distance 1 between consecutive points. One of the results in [5] states that

\[
\mathbb{E}^2 \to (\ell_2, \ell_4).
\]

(1)

In the same paper, it was asked if \(\mathbb{E}^2 \to (\ell_2, \ell_5) \), or perhaps a weaker result holds: \(\mathbb{E}^3 \to (\ell_2, \ell_5) \).

The result (1) was generalised by Juhász [10], who proved that if \(T_4 \) is any configuration of 4 points, then \(\mathbb{E}^2 \to (\ell_2, T_4) \). Juhász [9] informed me that Iván’s thesis [8] contains
a proof that for any configuration T_5 of 5 points, $\mathbb{E}^3 \rightarrow (\ell_2, T_5)$ (which implies that $\mathbb{E}^3 \rightarrow (\ell_2, \ell_5)$). Arman and Tsaturian [1] proved that $\mathbb{E}^3 \rightarrow (\ell_2, \ell_6)$.

In this paper, it is proved that $\mathbb{E}^2 \rightarrow (\ell_2, \ell_5)$:

Theorem 1. Let the Euclidean space \mathbb{E}^2 be coloured in red and blue so that there are no two red points distance 1 apart. Then there exist five blue points that form an ℓ_5.

The existence of a k, such that $\mathbb{E}^2 \not\rightarrow (\ell_2, \ell_k)$, was first noted by Erdős and Graham [3], who mention the upper bound of “10000000, more or less”. A more precise bound for $k = 10^{10}$ follows from a recent result of Conlon and Fox [2], who showed that for all $n \geq 2$, $\mathbb{E}^n \not\rightarrow (\ell_2, \ell_{10^n})$.

2 Proof of Theorem 1

The proof is by contradiction; it is assumed that there are no five blue points forming an ℓ_5. The following lemmas are needed.

Lemma 2. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. If there is no blue ℓ_5, then there are no three blue points forming an equilateral triangle with side length 3 and with a red centre.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose that blue points A, B and C form an equilateral triangle with side length 3 and with red centre O. Consider the part of the unit triangular lattice shown in Figure 1(a). The points D, E, F, G are blue, since they are distance 1 apart from O. The point X is red; otherwise $XADEB$ is a red ℓ_5. Similarly, Y is red (to prevent red $YAFGC$). Then X and Y are two red points distance 1 apart, which contradicts the assumption. □

Figure 1: Red points are denoted by diamonds, blue points are denoted by discs.
Lemma 3. Let \(\mathbb{E}^2 \) be coloured in red and blue so that there is no red \(\ell_2 \). If there is no blue \(\ell_5 \), then there are no three red points forming an equilateral triangle with side length 3 and with a red centre.

Proof. Suppose that \(\mathbb{E}^2 \) is coloured in red and blue so that there is no red \(\ell_2 \) and no blue \(\ell_5 \). Suppose that blue points \(A, B \) and \(C \) form an equilateral triangle with side length 3 and with red centre \(O \). Let \(A', B', C' \) be the images of \(A, B \) and \(C \), respectively, under a rotation about \(O \) so that \(AA' = BB' = CC' = 1 \) (see Figure 1(b)). Then \(A', B', C' \) are blue and form an equilateral triangle with side length 3 and red center \(O \), which contradicts the result of Lemma 2. \(\square \)

Define \(\mathcal{T}_3, \mathcal{T}_4, \mathcal{T}_5, \mathcal{T}_6, \mathcal{T}_7 \) to be the configurations of three, four, five, six and seven points (respectively), depicted in Figure 2 (all the smallest distances between the points are equal to \(\sqrt{3} \)).

![Figure 2](image)

Lemma 4. Let \(\mathbb{E}^2 \) be coloured in red and blue so that there is no red \(\ell_2 \). If there is no blue \(\ell_5 \), then there are no seven red points forming a \(\mathcal{T}_7 \).

Proof. Suppose that \(\mathbb{E}^2 \) is coloured in red and blue so that there is no red \(\ell_2 \) and no blue \(\ell_5 \). Suppose that \(A, B, C, D, E, F \) and \(G \) are red points forming a \(\mathcal{T}_7 \) (as in Figure 3). Let \(X \) be the reflection of \(F \) in \(BC \). Let \(X', A', F' \) be the images of \(X, A, F \), respectively, under the clockwise rotation about \(B \) such that \(XX' = AA' = FF' = 1 \). Since \(A \) and \(F \) are red, \(A' \) and \(F' \) are blue. If \(X' \) is blue, then \(X'A'F' \) is a blue equilateral triangle with side length 3 and red center \(B \), which contradicts the result of Lemma 2. Therefore, \(X' \) is red.

Let \(X'', D'', F'' \) be the images of \(X, D, F \), respectively, under the clockwise rotation about \(C \) such that \(XX'' = DD'' = FF'' = 1 \). Since \(D \) and \(F \) are red, \(D'' \) and \(F'' \) are blue. If \(X'' \) is blue, then \(X''D''F'' \) is a blue equilateral triangle with side length 3 and red center \(C \), which contradicts the result of Lemma 2. Therefore, \(X'' \) is red. Consider the clockwise rotation through 60° about \(X \). This rotation sends \(C \) to \(B \), and so every
point on the circle with radius $\sqrt{3}$ centered at C is sent to the corresponding point on the circle with radius $\sqrt{3}$ centered at B; in particular, X' can be viewed as the image of X''. Therefore $XX'X''$ is a unit equilateral triangle, hence $X'X''$ is a red ℓ_2, which contradicts the assumption of the lemma.

\[\square \]

Figure 3

Lemma 5. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. Let A, B, C be three red points forming a Θ_3. If there is no blue ℓ_5, then there exists a red Θ_6 that contains $\{A, B, C\}$ as a subset.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Let A, B, C be three red points forming a Θ_3. Consider the unit triangular lattice depicted in Figure 4.

Suppose that there is no red point D such that A, B, C, D form a Θ_4. Then points X, Y, Z are blue. Points E, F, G, H, I, J are blue, since each of them is distance 1 apart from a red point. If the point K is red, then the points L and M are blue and $LMYGH$ is a blue ℓ_5. Therefore, K is blue. Then N is red (otherwise $KJIZN$ is a blue ℓ_5), hence P and Q are blue, which leads to a blue ℓ_5 $PQFEX$. A contradiction is obtained, therefore there exists a red point D such that A, B, C, D form a Θ_4.

\[\square \]

Figure 4
Let A, B, C, D form a red \mathfrak{T}_4. Consider the part of the unit triangular lattice depicted in Figure 5. Suppose that there is no red point E such that A, B, C, D, E form a \mathfrak{T}_5. Then the points X, F and G are blue. Points H, I, K, L, M, N are blue, since each of them is distance 1 apart from a red point. Point P is red (otherwise $FHIGP$ is a blue ℓ_5), therefore Q and R are blue. Then X, N, M, Q, R form a blue ℓ_5, which gives a contradiction. Hence, there exists a red point E such that A, B, C, D, E form a \mathfrak{T}_5.

Figure 5

Let A, B, C, D, E form a \mathfrak{T}_5 (Figure 6). Suppose that F is blue. By Lemma 3, points X and Y are blue (otherwise X, E, C (or Y, A, D) form a red triangle with side length 3 and red center B). Points G, H, I, J, K, L, M, N are blue, since each one of them is at distance 1 from a red point. If point P is blue, then Q is red (otherwise $QPKLF$ is a blue ℓ_5), U and T are blue and form a blue ℓ_5 with points G, H and X. Therefore, P is red. Similarly, R is red (otherwise S is red and $VWJIY$ is a blue ℓ_5). Then A, B, C, D, E, P, R form a red \mathfrak{T}_7, which is not possible by Lemma 4. Therefore, F is red and A, B, C, D, E, F form a red \mathfrak{T}_6.

Figure 6

Lemma 6. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. Let \mathcal{L} be a unit triangular lattice that contains three red points forming a \mathfrak{T}_3. If there is no blue ℓ_5 in \mathbb{E}^2, then the colouring of \mathcal{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 7.
Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose there exist three red points of \mathcal{L} that form a \mathcal{T}_3. By Lemma 5, it may be assumed that there is a red \mathcal{T}_6. Denote its points by A, B, C, D, E, F (see Figure 8). It will be proved that the translate $A'B'C'D'E'F'$ of $ABCDEF$ by the vector of length 5 collinear to \overrightarrow{AD} is red.

Consider the points shown in Figure 8. Since A, D and F are red, by Lemma 3, I is blue. Since C, F and D are red, by Lemma 3, J is blue. Points K, L, M, N are blue, since each one is distance 1 apart from a red point. If R is red, then both P and Q are blue and form a blue ℓ_5 with K, L and I. Therefore R is blue. Then the point A' is red (otherwise $A'JNMR$ is a blue ℓ_5).

Since S_1, S_2, S_3, S_4 are blue (as distance 1 apart from red points D and A'), B' is red. Similarly, F' is red. Points V and W are blue as they are distance 1 apart from C. Points U is blue by Lemma 3 (since A, D and B are red). If X is red, then X_1 and X_2 are blue and a blue ℓ_5 $UVWX_1X_2$ is formed. Therefore, X is blue. Similarly, Y is blue. By Lemma 5, $A'B'F'$ must be contained in a red \mathcal{T}_6, and since X and Y are blue, the only possible such \mathcal{T}_6 is $A'B'C'D'E'F'$. Hence, A', B', C', D', E', F' are blue.

Similarly, the translates of $ABCDEF$ by vectors of length 5 collinear to \overrightarrow{EB} and \overrightarrow{CF} are red. By repeatedly applying the same argument to the new red translates, it can be seen that all the translates of $ABCDEF$ by a multiple of 5 in \mathcal{L} are red. All the other points are blue, as each one is distance 1 apart from a red point. Hence, the colouring as in Figure 7 is obtained. \qed
Lemma 7. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. Let \mathcal{L} be a unit triangular lattice that does not contain three red points forming a \mathcal{T}_3. If there is no blue ℓ_5 in \mathbb{E}^2, then the colouring of \mathcal{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 9.

![Figure 8](image-url)

Figure 8

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5.

If \mathcal{L} does not contain a red point, then any ℓ_5 is blue, therefore \mathcal{L} contains a red point A. By Lemma 2, one of the points of \mathcal{L} at distance $\sqrt{3}$ to A is red (otherwise the three such points form a blue triangle with side length 3 and red centre A). Denote this point by B (Figure 10). Since \mathcal{L} does not contain a red \mathcal{T}_3, the points D and G are blue. Points E, F, I, H, K, J are blue, since they are distance 1 apart from B. Then the point B'
is red (otherwise blue ℓ_5 $DEFGB'$ is formed). Point N is 1 apart from B', hence blue. Then C and A' are red (otherwise a blue ℓ_5 is formed).

By repeating the same argument for points B and C, B and A (instead of A and B), and so on, it can be shown that any node of L on the line AB is red. Similarly, since A' and B' are both red, any node of L on the line $A'B'$ is red. By the same argument, A'', B'' and any node on the line containing them is red; A''', B''' and any node on the line containing them is red, and so on. By colouring all point distance 1 apart form red points blue, the colouring in Figure 9 is obtained.

\[\text{Figure 10}\]

Proof of Theorem 1. Let the Euclidean space E^2 be coloured in red and blue so that there are no two red points distance 1 apart. Suppose that there are no five blue points that form an ℓ_5. Then there is a red point A. Consider two points B and C, both distance 5 apart from A, such that $|BC| = 1$. At least one of the points B and C (say, B) is blue. Consider the unit triangular lattice L that contains A and B. By Lemma 6 and Lemma 7, L is coloured either as in Figure 7 or as in Figure 9. But neither one of the colourings contains two points of different colour distance 5 apart, which gives a contradiction. Therefore, there exist five blue points that form an ℓ_5.

Acknowledgements

I would like to thank Ron Graham and Rozália Juhász for providing information about the current state of the problem. I would like to thank Andrii Arman and David Gunderson for valuable comments and suggestions.

References

