A Short Proof of Moll’s Minimal Conjecture

Lun Lv
School of Sciences
Hebei University of Science and Technology
Shijiazhuang 050018, P.R. China
klunlv@163.com
Submitted: Mar 1, 2017; Accepted: Sep 25, 2017; Published: Oct 6, 2017
Mathematics Subject Classifications: 05A20, 11B83, 33F99

Abstract
We give a short proof of Moll’s minimal conjecture, which has been confirmed by Chen and Xia.

Keywords: Boros-Moll polynomial; Moll’s minimal conjecture; spiral property

1 Introduction
The Boros-Moll polynomials, denoted by $P_m(a)$, arise in the evaluation of the following quartic integral, see [2–6,12]. For any $a > -1$ and any nonnegative integer m,

$$\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^{m+1}} dx = \frac{\pi}{2^{m+3/2}(a+1)^{m+1/2}} P_m(a),$$

where

$$P_m(a) = 2^{-2m} \sum_{k=0}^m 2^k \binom{2m-2k}{m-k} \binom{m+k}{k} (a+1)^k. \tag{1.1}$$

Let $d_l(m)$ be the coefficient of a^l in $P_m(a)$. Then (1.1) gives

$$d_l(m) = 2^{-2m} \sum_{k=l}^m 2^k \binom{2m-2k}{m-k} \binom{m+k}{k} \binom{k}{l}. \tag{1.2}$$

Much progress has been made since Boros and Moll [1] proved the positivity of the coefficients of $P_m(a)$. Boros and Moll [4] have proved that the sequence $\{d_l(m)\}_{0 \leq l \leq m}$ is unimodal. The log-concavity of the sequence $\{d_l(m)\}_{1 \leq l \leq m-1}$ was conjectured by Moll [12], and it was proved by Kauers and Paule [11] based on recurrence relations. Chen and Xia [9] showed that the sequence $d_l(m)$ satisfies the strongly ratio monotone property...
which implies the log-concavity and the spiral property. Chen and Gu [7] proved the reverse ultra log-concavity of the Boros-Moll polynomials. By introducing the structure of partially 2-colored permutations, Chen, Pang and Qu [8] found a combinatorial proof of the log-concavity of the Boros-Moll polynomials. Moll also posed a conjecture that is stronger than the log-concavity of the polynomials \(P_m(a) \). This conjecture was called Moll’s minimum conjecture, and has been confirmed by Chen and Xia [10].

The main objective of this paper is to give a short proof of the following equivalent form of Moll’s minimal conjecture, which was confirmed by Chen and Xia [10].

\[\text{Theorem 1.1 (Theorem 2.1 [10]).} \text{ Given } m \geq 2, \text{ for } 1 \leq l \leq m, \text{ } l(l+1)(d_l^2(m) - d_{l+1}(m)d_{l-1}(m)) \text{ attains its minimum at } l = m \text{ with } m(m+1)d_m^2(m). \]

2 The Proof of Theorem 1.1

Chen and Gu [7] proved the following theorem, which gave a lower bound of \(\frac{d_l^2(m)}{d_{l+1}(m)d_{l-1}(m)} \).

\[\text{Theorem 2.1 (Theorem 1.2 [7]).} \text{ For } m \geq 2 \text{ and } 1 \leq l \leq m-1, \text{ we have} \]

\[\frac{d_l^2(m)}{d_{l+1}(m)d_{l-1}(m)} > \frac{(m-l+1)(m+l)(l+1)}{l(m-l)(m+l+1)}. \]

Multiplying both sides of (2.1) by \(l \) and then plusing \(ld_l^2(m) \) to the two sides gives the following result.

\[\text{Theorem 2.2.} \text{ For } m \geq 2 \text{ and } 1 \leq l \leq m-1, \text{ we have} \]

\[l(l+1) \left(d_l^2(m) - d_{l+1}(m)d_{l-1}(m) \right) > \left(l + \frac{2l^3}{(m+l)(m-l+1)} \right) d_l^2(m). \]

On the other hand, Chen and Xia [9] have shown the spiral property of sequence \(\{d_i(m)\}_{1 \leq i \leq m-1} \), that is

\[d_{m-1}(m) < d_1(m) < d_{m-2}(m) < d_2(m) < \cdots < d_{\lfloor m/2 \rfloor}(m). \]

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let \(f(l) = l + \frac{2l^3}{(m+l)(m-l+1)} \). Then for \(1 \leq l \leq m-1, \)

\[f'(l) = 1 + \frac{6l^2}{(m+l)(m-l+1)} + \frac{2l^3(2l-1)}{(m+l)^2(m-l+1)^2} > 0. \]

Restricting \(l \in N^+ \), we see that the sequence \(\{l + \frac{2l^3}{(m+l)(m-l+1)}\}_{1 \leq l \leq m-1} \) is strictly monotone increasing.
Combining (2.2) and (2.3), we get
\[
\begin{align*}
l(l+1)(d_l^2(m) - d_{l+1}(m)d_{l-1}(m)) &> (l + \frac{2l^3}{(m + l)(m - l + 1)})d_l^2(m) \\
&\geq \min\{(1 + \frac{2}{(m + 1)m})d_l^2(m), (m - 1 + \frac{(m - 1)^3}{2m - 1})d_{m-1}^2(m)\}. \tag{2.4}
\end{align*}
\]

By direct computation we may deduce from (1.2) that
\[
\begin{align*}
(1 + \frac{2}{(m + 1)m})d_l^2(m) &\geq m(m + 1)d_m^2(m), \\
(m - 1 + \frac{(m - 1)^3}{2m - 1})d_{m-1}^2(m) &\geq m(m + 1)d_m^2(m).
\end{align*}
\]

It follows by (2.4) that
\[
l(l+1)(d_l^2(m) - d_{l+1}(m)d_{l-1}(m)) > m(m + 1)d_m^2(m), \quad 1 \leq l \leq m - 1.
\]

This completes the proof. \hfill \Box

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Hebei Province (A2014208152) and the Top Young-aged Talents Program of Hebei Province.

References

