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Abstract

A group G is a CI-group with respect to graphs if two Cayley graphs of G are
isomorphic if and only if they are isomorphic by a group automorphism of G. We
show that an infinite family of groups which include Dn × F3p are not CI-groups
with respect to graphs, where p is prime, n 6= 10 is relatively prime to 3p, Dn is the
dihedral group of order n, and F3p is the nonabelian group of order 3p.
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The Cayley isomorphism problem has been studied extensively for the last 50 years.
This problem is actually two different, but highly related problems. The most general
version asks for necessary and sufficient conditions to determine isomorphism between
two Cayley (di)graphs of a group G. Usually what is meant by “necessary and sufficient
conditions” is for an explicit and minimal list L (which may or may not depend on the
specific Cayley (di)graphs under consideration) of elements of SG, and which satisfies the
statement two Cayley (di)graphs of G are isomorphic if and only if they are isomorphic
by an element on the list L. The less general problem specifies the minimal list L in
advance as the group automorphisms of G, and asks for which G this list is necessary and
sufficient. The choice of group automorphisms as the minimal list is because the image
of a Cayley (di)graph of G under a group automorphism is also a Cayley (di)graph of G,
and so one must check whether group automorphisms are (di)graph isomorphisms.

In this paper, we contribute to the second problem by considering an infinite family
F of groups which include Dn×F3p, where Dn is the dihedral group of order n and F3p is
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the nonabelian group of order 3p, with n 6= 10 relatively prime to 3p and p a prime. We
show that testing only the group automorphisms of a group G in F is not sufficient to
test for isomorphism among Cayley graphs of G. Using the standard terminology for this
problem (defined below), we show these groups are not CI-groups with respect to graphs.
We remark that word graph here is chosen deliberately, as this fact is already know for
Cayley digraphs of these groups [10].

Definition 1. Let G be a group and S ⊂ G such that 1 6∈ S and S = S−1 = {s−1 : s ∈ S}.
Define a Cayley graph of G, denoted Cay(G,S), to be the graph with V (Cay(G,S)) = G
and E(Cay(G,S)) = {{g, gs} : g ∈ G, s ∈ S}. We call S the connection set of
Cay(G,S).

Definition 2. A group G 6 SX , where SX is the symmetric group on the set X, is
transitive if whenever x, y ∈ X then there exists g ∈ G with g(x) = y.

Define gL : G 7→ G by gL(h) = gh. It is straightforward to verify gL ∈ Aut(Cay(G,S)),
and so GL = {gL : g ∈ G} 6 Aut(Cay(G,S)). Here Aut(Cay(G,S)) is the group of all
automorphisms of Cay(G,S). The group GL is the left regular representation of
G. It is easy to see that GL 6 SG is a transitive group, and so Cayley graphs are
vertex-transitive graphs, that is, graphs whose automorphism group is transitive on their
vertex-set. More generally, a transitive group H 6 SX is regular if the stabilizer in H
of a point is trivial. Equivalently, |H| = |X|. This is where the word “regular” in “left
regular representation” comes from.

Definition 3. Let G be a group. We say G is a CI-group with respect to graphs if
whenever S, T ⊂ G with S−1 = S and T−1 = T , then Cay(G,S) and Cay(G, T ) are iso-
morphic if and only there exists a group automorphism α ∈ Aut(G) with α(Cay(G,S)) =
Cay(G, T ).

It is easy to show that if α ∈ Aut(G), then α(Cay(G,S)) = Cay(G,α(S)). Thus if
testing isomorphisms between two Cayley graphs of G, the group automorphisms of G
must be checked. The notion of a graphical regular representation or GRR of a group G
will be crucial in our construction.

Definition 4. A graphical regular representation or GRR of a group G is a Cayley
graph Γ of G such that Aut(Γ) = GL.

All groups which have a GRR are known, see [7]. There are two infinite families
of groups G which do not have GRR’s, namely abelian groups and generalized dicyclic
groups (the interested reader is referred to [7] for the definition of a generalized dicyclic
group). Additionally, there are 13 groups of small order not in these two infinite families
which do not have GRR’s, and one of these groups, namely D10, will play a role in this
paper. We now define some groups which will be of interest in this paper.

Definition 5. Let M be an abelian group such that every Sylow p-subgroup of M is
elementary abelian. Denote the largest order of any element of M by exp(M). Let
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n ∈ {2, 3, 4, 8} be relatively prime to |M |. Set E(n,M) = Zn nφ M , where if n is even
then φ(g) = g−1, while if n = 3 then φ(g) = g`, where ` is an integer satisfying `3 ≡ 1 (
mod exp(M)) and gcd(`(`− 1), exp(M)) = 1.

If M = Zp, and 3|(p− 1) then E(3,Zp) is the nonabelian group of order 3p, which we
denote by F3p (as this group is a Frobenious group). Similarly, E(2,Zn) is the dihedral
group of order 2n. The next result is a combination of results of Li, Lu, and Pálfy [9],
and Somlai [11], and lists all possible CI-groups with respect to graphs. Not every group
in this result is known to be a CI-group with respect to graphs - see [6] for a recent list
of the known CI-groups with respect to graphs.

Theorem 6. Let G be a CI-group with respect to graphs.

1. If G does not contain elements of order 8 or 9, then G = H1 ×H2 ×H3, where the
orders of H1, H2, and H3 are pairwise relatively prime, and

(a) H1 is an abelian group, and each Sylow p-subgroup of H1 is isomorphic to Zkp
for k < 2p+ 3 or Z4;

(b) H2 is isomorphic to one of the groups E(2,M), E(4,M), Q8, or 1;

(c) H3 is isomorphic to one of the groups E(3,M), A4, or 1.

2. If G contains elements of order 8, then G ∼= E(8,M) or Z8.

3. If G contains elements of order 9, then G is one of the groups Z2 n Z9, Z4 n Z9,
Z9 n Z2

2, or Zn2 × Z9, with n 6 5.

Before turning to our results, we need some additional terms and notation.

Definition 7. Let G 6 SX be transitive, where X is a set. A subset B ⊆ X is a block
of G if whenever g ∈ G, then g(B) ∩ B = ∅ or B. If B is a block of G, then g(B) is also
a block of G for every g ∈ G. The set {g(B) : B ∈ B} is an invariant partition of G.

Definition 8. Let G 6 SX be transitive with invariant partition B. An element g ∈ G
induces a permutation g/B on B given by g/B(B) = B′ if and only if g(B) = B′. We set
G/B = {g/B : g ∈ G}.

Definition 9. Let Γ be a vertex-transitive graph and G 6 Aut(Γ) be transitive with
invariant partition B. Define the block quotient graph of Γ with respect to B,
denoted Γ/B, to be the graph with vertex set B and edge set {{B,B′} : B 6= B′ ∈
B and uv ∈ E(Γ) for some u ∈ B and v ∈ B′}.

Intuitively, Γ/B is obtained by identifying all the vertices in each block of B, then
eliminating loops and multiple edges. Additionally, if Γ is a vertex-transitive graph with
G 6 Aut(Γ) transitive with an invariant partition B, then G/B 6 Aut(Γ/B). We will
need the following technical lemma.
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Lemma 10. Let G be a group and Γ1 = Cay(G,S1) ∼= Cay(G,S2) = Γ2 with a regular
group R 6 Aut(Cay(G,S1)) ∩ Aut(Cay(G,S2)). Let g ∈ G. If R is a CI-group with
respect to graphs, then Γ1 and Γ2 are isomorphic by and element of SG that normalizes R
and fixes g.

Proof. By [8, Lemma 3.7.2], we have Γ1 and Γ2 are isomorphic to Cayley graphs of R.
Then there exists δi such that δi(Γi) is a Cayley graph of R, i = 1, 2. Choose δi such
that δ−1i Rδi = RL. This can be done as R 6 Aut(Γ1) ∩ Aut(Γ2) (as in the proof of [8,
Lemma 3.7.2]). As R is a CI-group with respect to graphs, there exists α ∈ Aut(R) with
α(δ1(Γ1)) = δ2(Γ2). Then δ−12 αδ1 : Γ1 7→ Γ2 is an isomorphism, and as α normalizes RL

by [1, Corollary 4.2B], δ−12 αδ1 normalizes R. Let δ−12 αδ1(g) = g′ and r ∈ R such that
r(g′) = g. Then rδ−12 αδ1 is an isomorphism from Γ1 to Γ2 which normalizes R and fixes
g.

Theorem 11. Let p > 5 be prime such that 3|(p − 1), G be a group of order relatively
prime to 3p that has a GRR whose connection set contains a non self-inverse element,
and F3p be the nonabelian group of order 3p. Then G×F3p is not a CI-group with respect
to graphs.

Proof. We will construct graphs Γ and Γ′ that are isomorphic graphs whose automorphism
groups contain a common regular subgroup R ∼= G × F3p but are not isomorphic by an
element that normalizes R and fixes a point. The result will follow by Lemma 10. We
will construct these graphs as Cayley graphs of K = G× Z3 × Zp.

We define all permutations we shall have need of: Let ω, β ∈ Z∗p with ω of order 3,

and 〈β〉 = Z∗p. For h ∈ G, define h̄L, ρ, τ, τ
′, ω̂, β̂, ι,Ψ : K 7→ K by h̄L(g, i, j) = (hg, i, j),

ρ(g, i, j) = (g, i, j + 1), τ(g, i, j) = (g, i + 1, j), τ ′(g, i, j) = (g, i + 1, ωj), ω̂(g, i, j) =
(g, i, ωj), β̂(g, i, j) = (g, i, βj), ι(g, i, j) = (g,−i,−j), Ψ(g, 0, j) = (g, 0, j), Ψ(g, 1, j) =
Ψ(g, 1, j−1), and Ψ(g, 2, j) = (g, 1, j−1−ω). Note that (G×Z3×Zp)L = 〈h̄L, ρ, τ : h ∈ G〉,
and let

R = 〈h̄L, ρ, τ ′ : h ∈ G〉 ∼= GL × 〈ρ, τ ′〉 ∼= (G× F3p)L.

Set τ ′τ−1 = ω̂. As {h̄L : h ∈ G} is the unique normal subgroup of R of order |G| which
is relatively prime to 3p, we see {h̄L : h ∈ G} characteristic in R. Similarly, 〈ρ, τ ′〉 is also
characteristic in R, and 〈ρ, τ〉 is characteristic in KL. As the orbits of 〈ρ, τ ′〉 and 〈ρ, τ〉
are identical, R and KL both have a unique invariant partition B with |G| blocks of size
3p. Also, Aut(R) ∼= Aut(G)× Aut(F3p) and Aut(K) = Aut(G)× Aut(Z3 × Zp).

By hypothesis, there exists a graph Cay(G, T ) with Aut(Cay(G, T )) = GL and t ∈
T ⊂ G is not self-inverse. Then T−1 = T , and there exists a minimal set V ⊂ T with
T = {v, v−1 : v ∈ V } and t ∈ V . Note |V | < |T | as t ∈ T . By [13, Theorem 1.2]
there exists a digraph Cay(Z3 × Zp, U) such that Aut(Cay(Z3 × Zp, U)) = 〈(x, y) 7→
(−x,−ωy) + (a, b) : a ∈ Z3, b ∈ Zp〉 ∼= Z6 n Z3p, and as the map (x, y) 7→ (−x,−y) is
contained in Aut(Cay(Z3 × Zp, U)), the digraph Cay(Z3 × Zp, U) is a graph. Let

S = {(1G, u) : u ∈ U} ∪ {(v, 1, ωk), (v, 1, ωk)−1 : v ∈ V, k = 0, 1, 2} ⊆ K.

Then S−1 = S and Γ = Cay(K,S) is a Cayley graph of K.
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Let Γ′ = ι(Γ). As ι ∈ Aut(G)× Aut(Z3 × Zp) = Aut(K), we see Γ′ = Cay(K, ι(S)) is
isomorphic to Γ and

ι(S) = {(1G, u) : u ∈ U} ∪ {(v, 2,−ωk), (v−1, 1, ωk) : v ∈ V, k = 0, 1, 2}

as U = −U . As t ∈ V and t 6= t−1, we see ι(S) 6= S and so Γ 6= Γ′.
Note that to determine if an automorphism of K is contained in the automorphism

group of a Cayley graph of K, it suffices to check that the automorphism of K fixes the
connection set of the Cayley graph. It is straightforward to verify that ω̂(S) = S and
ω̂(ι(S)) = ι(S), and so ω̂ ∈ Aut(Γ) ∩ Aut(Γ′) as ω̂ ∈ Aut(K). As τ ∈ KL 6 Aut(Γ) ∩
Aut(Γ′), and τ ′τ−1 = ω̂, we have τ ′ ∈ Aut(Γ) ∩ Aut(Γ′), and so R 6 Aut(Γ) ∩ Aut(Γ′).
Recalling R ∼= (G×F3p)L, we see Aut(Γ)∩Aut(Γ′) contains a regular subgroup isomorphic
to G× F3p.

Towards a contradiction, suppose α ∈ SG×Z3×Zp fixes (1G, 0, 0), normalizes R, and
α(Γ) = Γ′. As α normalizes R and B is the unique invariant partition of R with blocks of
size 3p, we see B is also an invariant partition of 〈α,R〉. This follows as α(B) is then an
invariant partition of R, and so α(B) = B. Then α/B : Γ/B 7→ Γ′/B is an isomorphism
that normalizes GL and fixes 1G, and so by [1, Corollary 4.2B] is an automorphism of G.
As Γ/B ∼= Γ′/B = Cay(G, T ), we see α/B ∈ Aut(Cay(G, T )) = GL, and so α/B = 1.

It is clear Ψ and β̂ centralize {h̄L : h ∈ G} and by [4, Lemma 2.5] Ψ and β̂ normalize
〈ρ, τ ′〉. Then Ψ, β̂ ∈ NSK

(R). As α/B = 1, we conclude by [4, Lemma 2.5] and [1,

Corollary 4.2B] that α ∈ 〈Ψ, β̂〉. As 〈Ψ〉 / 〈Ψ, β̂〉, we may write α = Ψaβ̂b where a ∈ Zp
and b ∈ Z∗p. As α maps the neighbors of (1G, 0, 0) to the neighbors of (1G, 0, 0),

α({(t, 1, ωkj) : k = 0, 1, 2}) = {(t, 1, βbωkj − a) : k = 0, 1, 2} ⊆ ι(S).

However, no element of the form (t, 1, j) is contained in ι(S) for any j ∈ Zp, a contradic-
tion. The result follows by Lemma 10.

Corollary 12. Let M be an abelian group that contains an element of prime order p > 5.
Let H = Q8, E(2,M ′), or E(4,M ′), where M ′ is an abelian group of order relatively
prime to 6 and |M |. If H 6= D10 then H × E(3,M) is not a CI-group with respect to
graphs.

Proof. There exists N/M such that M/N ∼= Zp and, as φ (as in the definition of E(3,M))
fixes every subgroup of M , N / E(3,M). Then E(3,M)/N ∼= F3p. As quotients of CI-
groups with respect to graphs are CI-groups with respect to graphs [5, Theorem 8], it
suffices to show that H × F3p is not a CI-group with respect to graphs. The groups Q8

and E(4,M ′) have a GRR [7] which is of course connected. As Q8 contains a unique
subgroup of order 2 and is a 2-group, any generating set of Q8 must contain an element
of order 4. As E(4,M ′) contains a unique subgroup H of index 2 that contains the
unique element of E(4,M ′) of order 2, any generating set of E(4,M ′) must also contain
an element of order 4. The result follows by Theorem 11 in the cases H = Q8 or E(4,M ′).

Suppose H = E(2,M ′). As H = E(2,M ′) 6= D10, either |M ′| is divisible by a prime q
other than 5 or by 25. Note that q 6= 2 or 3 as |M ′| is relatively prime to 6. Then there
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exists L / H × F3p such that (H × F3p)/L ∼= D2q × F3p, where either q = 25 or q > 7 is
prime. Again by [5, Theorem 8] it suffices to show that D2q × F3p is not a CI-group with
respect to graphs. As D2q has a GRR whose connection set contains an element of order
q by the proof of [12, Theorem 2], the result follows in this case by Theorem 11.

Noting that if H3 = A4 then H2 = 1 in Theorem 6, combining Corollary 12 with
Theorem 6 we have the following improvement to Theorem 6.

Corollary 13. Let G be a CI-group with respect to graphs.

1. If G does not contain elements of order 8 or 9, then G = H1 ×H2 ×H3, where the
orders of H1, H2, and H3 are pairwise relatively prime, and

(a) H1 is an abelian group, and each Sylow p-subgroup of H1 is isomorphic to Zkp
for k < 2p+ 3 or Z4;

(b) H2 is isomorphic to one of the groups E(2,M), E(3,M), E(4,M), Q8, A4, or
1;

(c) H3 is isomorphic to one of the groups D10, or 1.

2. If G contains elements of order 8, then G ∼= E(8,M) or Z8.

3. If G contains elements of order 9, then G is one of the groups Z2 n Z9, Z4 n Z9,
Z9 n Z2

2, or Zn2 × Z9, with n 6 5.

We remark that it has been shown that E(3, p) is a CI-group with respect to graphs
[2], and some groups H1×E(3,M) with H1 6= 1 as in the above result are CI-groups with
respect to graphs [3, Theorem 22].
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