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Abstract

We will say that an Abelian group Γ of order n has the m-zero-sum-partition
property (m-ZSP-property) if m divides n, m > 2 and there is a partition of Γ into
pairwise disjoint subsets A1, A2, . . . , At, such that |Ai| = m and

∑
a∈Ai a = g0 for

1 6 i 6 t, where g0 is the identity element of Γ.
In this paper we study the m-ZSP property of Γ. We show that Γ has the m-ZSP

property if and only if m > 3 and |Γ| is odd or Γ has more than one involution.
We will apply the results to the study of group distance magic graphs as well as to
generalized Kotzig arrays.

Keywords: Abelian group, zero sum partition, group distance magic labeling,
Kotzig arrays

1 Introduction

Assume Γ is an Abelian group of order n with the operation denoted by +. For convenience
we will write ka to denote a + a + · · ·+ a (where the element a appears k times), −a to
denote the inverse of a and we will use a− b instead of a+ (−b). Moreover, the notation∑

a∈S a will be used as a short form for a1 + a2 + a3 + · · · , where a1, a2, a3, . . . are all
elements of the set S. The identity element of Γ will be denoted by g0. Recall that any
group element ι ∈ Γ of order 2 (i.e., ι 6= g0 and 2ι = g0) is called an involution.

In [13] Kaplan, Lev and Roditty introduced the notion of zero-sum partitions of subsets
in Abelian groups. Let Γ be an Abelian group and let A be a finite subset of Γ − {g0},
with |A| = n−1. We shall say that A has the zero-sum-partition property (ZSP-property)
if for every partition n − 1 = r1 + r2 + · · · + rt of n − 1, with ri > 2 for 1 6 i 6 t and
for any possible positive integer t, there is a partition of A into pairwise disjoint subsets
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A1, A2, . . . , At, such that |Ai| = ri and
∑

a∈Ai a = g0 for 1 6 i 6 t. When Γ is finite, we
shall say that Γ has the ZSP-property if A = Γ− {g0} has the ZSP-property.

The following theorem for cyclic groups was proved in [13].

Theorem 1 ([13]). The group Zn has the ZSP-property if and only if n is odd.

Moreover, Kaplan, Lev and Roditty showed that if Γ is a finite Abelian group of an
even order n such that the number of involutions in Γ is different from 3, then Γ does
not have the ZSP-property [13]. Their results along with results proved by Zeng [18] give
necessary and sufficient conditions for the ZSP-property for a finite Abelian group.

Theorem 2 ([13, 18]). Let Γ be a finite Abelian group. Then Γ has the ZSP-property if
and only if either Γ is of an odd order or Γ contains exactly three involutions.

They used those results to study anti-magic trees [13, 18]. In [4] the ZSP-property of
cyclic groups of an odd order was used for determining the group irregularity strength of
disconnected graphs.

We will say that an Abelian group Γ of order n has the m-zero-sum-partition property
(m-ZSP-property) if m divides n, m > 2 and there is a partition of Γ into pairwise disjoint
subsets A1, A2, . . . , At, such that |Ai| = m and

∑
a∈Ai a = g0 for 1 6 i 6 t.

A similar problem, where the orders of subsets are not important, is called the modular
sumset partition problem. This problem was studied in [14]. A non-increasing sequence
〈m1, . . . ,mk〉 of positive integers is said to be n-realizable if the set {1, 2, . . . , n} can be
partitioned into k mutually disjoint subsets X1, X2 . . . , Xk such that

∑
x∈Xi x = mi for

each 1 6 i 6 k. Lladó and Moragas considered the modular version of the problem and,
by using the polynomial method introduced by Alon [2], they proved that all sequences
in Zp of length k 6 (p − 1)/2 are realizable for any prime p > 3 [14]. The study of
n-realizable sequences was motivated by the ascending subgraph decomposition problem
posed by Alavi, Boals, Chartrand, Erdős and Oellerman [1].

Consider a simple graph G whose order we denote by n = |G|. We denote by V (G) the
vertex set and E(G) the edge set of G. The open neighborhood N(x) of a vertex x is the set
of vertices adjacent to x, and the degree d(x) of x is |N(x)|, the order of the neighborhood
of x. In this paper we also investigate distance magic labelings, which belong to a large
family of magic-type labelings. Generally speaking, a magic-type labeling of a graph
G = (V,E) is a mapping from V,E, or V ∪ E to a set of labels which most often is a set
of integers or group elements. Then the weight of a graph element is typically the sum of
labels of the neighboring elements of one or both types. When the weight of each element
is required to be equal, then we speak about magic-type labeling; when the weights are all
different (or even form an arithmetic progression), then we speak about an antimagic-type
labeling. Probably the best known problem in this area is the antimagic conjecture by
Hartsfield and Ringel [11], which claims that the edges of every graph except K2 can be
labeled by integers 1, 2, . . . , |E| so that the weight of each vertex is different.
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A distance magic labeling (also called sigma labeling) of a graph G = (V,E) of order
n is a bijection ` : V → {1, 2, . . . , n} with the property that there is a positive integer k
such that

w(x) =
∑

y∈N(x)

`(y) = k for every x ∈ V (G).

If a graph G admits a distance magic labeling, then we say that G is a distance magic
graph. O’Neal and Slater obtained a formula for the vertex magic constant in terms of a
fractional domination parameter of the graph, which implies the uniqueness of the magic
constant [17]. The following result was proved in [16].

Observation 3 ([16]). There is no distance magic r-regular graph with r odd.

Froncek in [10] defined the notion of group distance magic graphs, i.e., the graphs
allowing a bijective labeling of vertices with elements of an Abelian group resulting in
constant sums of neighbor labels.

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ` from
V to an Abelian group Γ of order n such that the weight w(x) =

∑
y∈N(x) `(y) of every

vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G
is called a group distance magic graph if there exists a Γ-distance magic labeling for every
Abelian group Γ of order |V (G)|.

The connection between distance magic graphs and Γ-distance magic graphs is the
following. Let G be a distance magic graph of order n with the magic constant µ′. If
we replace the label n in a distance magic labeling for the graph G by the label 0, then
we obtain a Zn-distance magic labeling for the graph G with the magic constant µ ≡ µ′

(mod n). Hence every distance magic graph with n vertices admits a Zn-distance magic
labeling. However, a Zn-distance magic graph on n vertices is not necessarily a distance
magic graph. Moreover, there are some graphs that are not distance magic while at the
same time they are group distance magic (see [5]).

A general theorem for Γ-distance magic labeling similar to Observation 3 was proved
recently.

Theorem 4 ([7]). Let G be an r-regular graph on n vertices, where r is odd. There
does not exist an Abelian group Γ of order n with exactly one involution ι such that G is
Γ-distance magic.

The following theorem was proved in [6].

Theorem 5 ([6]). Let G be a graph of order n ≡ 2 (mod 4) with all vertices of odd degree.
Then there is no Abelian group Γ of order n such that G is a Γ-distance magic graph.

Notice that the constant sum partitions of a group Γ lead to complete multipartite
Γ-distance magic labeled graphs. For instance, the partition {0}, {1, 2, 4}, {3, 5, 6} of
the group Z7 with constant sum 0 leads to a Z7-distance magic labeling of the complete
tripartite graph K1,3,3 (see [5, 6]).
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The paper is organized as follows. In Section 2 we give some preliminaries on Abelian
groups. In Section 3 we show that Γ has the m-ZSP property if and only if |Γ| is odd or Γ
has more than one involution. So far there was only one known example of a Γ-distance
magic labeling of an odd regular graph for a group Γ which has more than one involution,
namely K3,3,3,3 with Γ ∼= Z2×Z2×Z3 (see [7]). In Section 4 we use the m-ZSP property
of Abelian groups to show an infinite family of odd regular graphs possessing Γ-distance
magic labeling for groups Γ with more than one involution. Finally, in Section 5 we
introduce a generalization of Kotzig arrays and give necessary and sufficient conditions
for their existence.

2 Preliminaries

A non-trivial finite group has elements of order 2 (involutions) if and only if the order of
the group is even. The fundamental theorem of finite Abelian groups states that a finite
Abelian group Γ of order n can be expressed as the direct product of cyclic subgroups of
prime-power order. This implies that

Γ ∼= Zpα11
×Zpα22

× · · · × Zpαkk where n = pα1
1 · pα2

2 · · · p
αk
k

and pi for i ∈ {1, 2, . . . , k} are not necessarily distinct primes. This product is unique up
to the order of the direct product. When p is the number of these cyclic components whose
order is a multiple of 2, then Γ has 2p − 1 involutions. In particular, if n ≡ 2 (mod 4),
then Γ ∼= Z2×Λ for some Abelian group Λ of odd order n/2. Moreover every cyclic group
of an even order has exactly one involution. Since the properties and results in this paper
are invariant under the isomorphism between groups, we only need to consider one group
in each isomorphism class.

The sum of all elements of a group Γ is equal to the sum of its involutions and the
identity element. The following lemma was proved in [9] (see [9], Lemma 8).

Lemma 6 ([9]). Let Γ be an Abelian group.

- If Γ has exactly one involution ι, then
∑

g∈Γ g = ι.

- If Γ has no involutions, or more than one involution, then
∑

g∈Γ g = g0.

Zeng proves a lemma which plays an important role in the proof of the main result
(see [18], Lemma 2.1).

Lemma 7 ([18]). Let Γ be a finite Abelian group of an odd order or Γ contains exactly
three involutions. Let Bij(Γ) denote the set of all bijections from Γ to itself. Then there
exist φ, ϕ ∈Bij(Γ) (not necessarily distinct) such that g+φ(g)+ϕ(g) = g0 for every g ∈ Γ.
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3 Zero sum partition

Let the identity element of a group Λ be denoted by a0. By 〈g〉 we denote the subgroup
generated by g in the group Γ. A quotient group Γ modulo H for a subgroup H of Γ will
be denoted by Γ/H.

For convenience, let G denote the set consisting of all Abelian groups which are of odd
order or contain more than one involution.

We will start with some lemmas.

Lemma 8. Let Γ be an Abelian group with involution set I∗ = {ι1, ι2, . . . , ι2p−1}, p > 1
and let I = I∗ ∪ {g0}. Then there exists a partition A = {A1, A2, . . . , A2p−2} of I such
that |Ai| = 4,

∑
a∈Ai a = g0 for i ∈ {1, 2, . . . , 2p−2}.

Proof. Let ι0 = g0. Recall that I = {ι0, ι1, . . . , ι2p−1} is a subgroup of Γ. Moreover, notice
that Λ = {ι0, ι1, ι2, ι1+ι2} is a subgroup of I. Therefore there exists a coset decomposition
of I into ιj1 + Λ, ιj2 + Λ, . . . , ιj2p−2 + Λ for ιjk ∈ I, k = 1, 2, . . . , 2p−2. Set Ak = ιjk + Λ for
k = 1, 2, . . . , 2p−2. Obviously

∑
ι∈Ak ι = ι0.

Using the same method as in the proof of Lemma 7, we can obtain the following
lemma.

Lemma 9. Let Γ be a finite Abelian group of odd order or Γ contains more than one
involution. Let Bij(Γ) denote the set of all bijections from Γ to itself. Then there exist
φ, ϕ ∈Bij(Γ) (not necessarily distinct) such that g + φ(g) + ϕ(g) = g0 for every g ∈ Γ.

Proof. First we prove the following claim. Suppose that Γ1,Γ2 ∈ G and the assertion of
the lemma is true for Γ1,Γ2. Then the assertion holds for Γ = Γ1 × Γ2. Assume the
bijections for Γ1 are φ1 and ϕ1, whereas those for Γ2 are φ2 and ϕ2. Then

φ = (φ1, φ2) : Γ1 × Γ2 → Γ1 × Γ2, (a1, a2) 7→ (φ1(a1), φ2(a2))

and
ϕ = (ϕ1, ϕ2) : Γ1 × Γ2 → Γ1 × Γ2, (a1, a2) 7→ (ϕ1(a1), ϕ2(a2)).

By the assertion above and Lemma 7, and noting that this lemma is invariant under
isomorphism, it suffices to prove it for Γ = Z2α ×Z2β ×Z2κ with α, β, κ > 1.

The proof is by induction on |Γ|. We deal with three base cases. For Z2×Z2×Z2 the
table below gives the desired bijections.
g (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

φ(g) (0,0,1) (1,1,1) (0,1,0) (1,0,0) (0,0,0) (1,1,0) (0,1,1) (1,0,1)
ϕ(g) (0,0,1) (1,1,0) (0,0,0) (1,1,1) (1,0,0) (0,1,1) (1,0,1) (0,1,0)
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Whereas for Z2×Z2×Z4 the table:
g (0,0,0) (0,1,0) (1,0,0) (1,1,0) (0,0,1) (0,1,1) (1,0,1) (1,1,1)

φ(g) (0,1,0) (1,1,2) (1,0,1) (0,0,3) (1,0,3) (0,0,1) (0,1,3) (1,1,1)
ϕ(g) (0,1,0) (1,0,2) (0,0,3) (1,1,1) (1,0,0) (0,1,2) (1,1,0) (0,0,2)

g (0,0,2) (0,1,2) (1,0,2) (1,1,2) (0,0,3) (0,1,3) (1,0,3) (1,1,3)
φ(g) (0,0,2) (1,0,0) (1,1,3) (0,1,1) (0,0,0) (1,0,2) (1,1,0) (0,1,2)
ϕ(g) (0,0,0) (1,1,2) (0,1,3) (1,0,1) (0,0,1) (1,1,3) (0,1,1) (1,0,3)

Suppose that Z2×Z2×Z8. Then for g = (i, j, 0) and g = (i, j, 4) we use the table for

Z2×Z2×Z2 where in the last coordinate we put 4 instead of 1.

If g = (i, j, a) for a 6∈ {0, 4}, then set a triple

(a, b, c) ∈ {(2, 3, 3), (7, 2, 7), (5, 6, 5), (6, 1, 1), (1, 5, 2), (3, 7, 6)},

and for g = (i, j, a) we have the following table.
g (0,0,a) (0,1,a) (1,0,a) (1,1,a)

φ(g) (0,0,b) (1,0,b) (1,1,b) (0,1,b)
ϕ(g) (0,0,c) (1,1,c) (0,1,c) (1,0,c)

Now we proceed to the induction part. Suppose first that Γ = Z2α ×Z2β ×Z2κ with
β, κ > 2. Then there exists a subgroup Γ0 = 〈1〉 × 〈2〉 × 〈2〉 ∈ G of Γ such that Γ/Γ0

∼=
Z2×Z2. By the induction hypothesis, there are φ0, ϕ0 ∈Bij(Γ0) such that a + φ0(a) +
ϕ0(a) = g0 for every a ∈ Γ0. Choose a set of coset representatives for Γ/Γ0 to be
{0, c, d,−c− d}. Note that

(c+ Γ0)
⋃

(d+ Γ0)
⋃

(−c− d+ Γ0) =
⋃
b∈Γ0

{c+ b, d+ φ0(b),−c− d+ ϕ0(b)},

and every subset {c + b, d + φ0(b),−c − d + ϕ0(b)} is zero-sum. Therefore Γ = Γ0 ∪
(∪|Γ0|

i=1{ai,1, ai,2, ai,3}) where ai,1 + ai,2 + ai,3 = g0 for 1 6 i 6 |Γ0|. Thus define φ and ϕ as
follows.

φ(a) =


φ0(a) if a ∈ Γ0,
ai,2 if a = ai,1 for some 1 6 i 6 |Γ0|,
ai,3 if a = ai,2 for some 1 6 i 6 |Γ0|,
ai,1 if a = ai,3 for some 1 6 i 6 |Γ0|,

and

ϕ(a) =


ϕ0(a) if a ∈ Γ0,
ai,3 if a = ai,1 for some 1 6 i 6 |Γ0|,
ai,1 if a = ai,2 for some 1 6 i 6 |Γ0|,
ai,2 if a = ai,3 for some 1 6 i 6 |Γ0|.

Suppose now that Γ = Z2×Z2×Z2κ . The cases when κ 6 3 have been shown in
the base case. Thus we may assume that κ > 4 and there exists a subgroup Γ0 =
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〈1〉 × 〈1〉 × 〈8〉 ∈ G such that Γ/Γ0
∼= Z8. By the induction hypothesis, there are φ0,

ϕ0 ∈Bij(Γ0) such that a+ φ0(a) + ϕ0(a) = g0 for every a ∈ Γ0. Since

Z8 = {0, 4}
⋃
{1, 2,−3}

⋃
{−1,−2, 3},

we can choose a set of coset representatives for Γ/Γ0 to be {0, e, c, d,−c−d,−c,−d, c+d}
with 2e ∈ Γ0 (for example e = (0, 0, 4)). Therefore Γ1 = Γ0 ∪ (e + Γ0) (for example if
e = (0, 0, 4) then Γ1 = 〈1〉 × 〈1〉 × 〈4〉) is a group and moreover Γ1 ∈ G. Thus there exist
φ1, ϕ1 ∈Bij(Γ1) such that a+ φ1(a) + ϕ1(a) = g0 for every a ∈ Γ1. Similarly as above, we
have

(c+ Γ0)
⋃

(d+ Γ0)
⋃

(−c− d+ Γ0) =
⋃
b∈Γ0

{c+ b, d+ φ0(b),−c− d+ ϕ0(b)},

and

(−c+ Γ0)
⋃

(−d+ Γ0)
⋃

(c+ d+ Γ0) =
⋃
b∈Γ0

{−c+ b,−d+ φ0(b), c+ d+ ϕ0(b)}.

Hence Γ = Γ1 ∪ (∪2|Γ0|
i=1 {ai,1, ai,2, ai,3}) where ai,1 + ai,2 + ai,3 = g0 for 1 6 i 6 2|Γ0|. Define

φ and ϕ as follows.

φ(a) =


φ1(a) if a ∈ Γ1,
ai,2 if a = ai,1 for some 1 6 i 6 2|Γ0|,
ai,3 if a = ai,2 for some 1 6 i 6 2|Γ0|,
ai,1 if a = ai,3 for some 1 6 i 6 2|Γ0|,

and

ϕ(a) =


ϕ1(a) if a ∈ Γ1,
ai,3 if a = ai,1 for some 1 6 i 6 2|Γ0|,
ai,1 if a = ai,2 for some 1 6 i 6 2|Γ0|,
ai,2 if a = ai,3 for some 1 6 i 6 2|Γ0|.

This completes the proof.

Lemma 10. An Abelian group Γ of order n has the (2m)-ZSP-property if and only if
(2m)|n, m > 2 and Γ ∈ G.

Proof. We will show the necessity first. Suppose that Γ has the (2m)-ZSP-property and
A1, A2, . . . , At is the desired partition. Therefore the order of Γ is even and divisible by
2m. Hence Γ has at least one involution. Obviously m > 1. Assume now that there is
exactly one involution ι ∈ Γ. On one hand

∑
g∈Γ g =

∑t
i=1

∑
a∈Ai a = g0, on the other∑

g∈Γ g = ι by Lemma 6, a contradiction.
Let Γ be an Abelian group with involution set I∗ = {ι1, ι2, . . . , ι2p−1}, p > 1 and let

I = I∗ ∪ {g0}. Then there exists a partition {I1, I2, . . . , I2p−2} of I such that |Ii| = 4,∑
a∈Ii a = g0 for i ∈ {1, 2, . . . , 2p−2} by Lemma 8. Note that all elements in the set Γ− I

can be split into disjoint pairs Bi = {gi,−gi} for i = 1, 2, . . . , (|Γ| − 2p)/2.
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It is easy to see now that for 2m ≡ 0 (mod 4) there exists a partition A = {A1, A2, . . . ,
A|Γ|/2m} of Γ such that |Ai| = 2m and

∑
a∈Ai a = g0 for i ∈ {1, 2, . . . , |Γ|/2m}.

Recall that Γ can be expressed as a direct product of cyclic subgroups of prime-power
order. When p is the number of these cyclic components whose order is a power of
2, then Γ has 2p − 1 involutions. Note that for 2m ≡ 2 (mod 4), because m > 3 is
odd we obtain Γ ∼= Z2α1 ×Z2α2 × . . . × Z2αp ×Λ for α1, α2, . . . , αp > 1 and some Abelian
group Λ of an odd order divisible by m. Therefore (|Γ| − 2p) = |Γ − I| > (m − 1)|I| =
(m − 1)2p. Hence (|Γ| − 2p)/2 > 2p > 2p−2 = |I|/4 and one can check that there
exists a partition A = {A1, A2, . . . , A|Γ|/2m} of Γ such that |Ai| = 2m,

∑
a∈Ai a = g0 for

i ∈ {1, 2, . . . , |Γ|/2m}.

Lemma 11. An Abelian group Γ of order n has the (2m+ 1)-ZSP-property if and only if
m > 1, (2m+ 1)|n and Γ ∈ G.

Proof. We will show the necessity first. The assumptions m > 1 and (2m + 1)|n are
obvious. Suppose that Γ has exactly one involution ι and the (2m+1)-ZSP-property. Let
A1, A2, . . . , At be the desired partition. On one hand

∑
g∈Γ g =

∑t
i=1

∑
a∈Ai a = g0, on

the other
∑

g∈Γ g = ι by Lemma 6, a contradiction.
Assume that |Γ| is odd. Let t = n/(2m + 1). There exists a partition A′1, A

′
2, . . . , A

′
t

of the set Γ − {g0} such that |A′1| = 2m and for every 2 6 i 6 t, |A′i| = 2m + 1 with∑
a∈A′i

a = g0 by Theorem 2. We obtain the desired partition A1, A2, . . . , At by setting

A1 = A′1 ∪ {g0} and Ai = A′i for every 2 6 i 6 t.
Suppose now that Γ has 2p − 1 involutions for some positive integer p > 1. Therefore

Γ ∼= Γ0 × Λ for Γ0
∼= Z2α1 ×Z2α2 × · · · × Z2αp for α1, α2, . . . , αp > 1 and some Abelian

group Λ of odd order divisible by (2m + 1). Let t = |Λ|/(2m + 1). Obviously Γ0,Λ ∈ G.
Hence Λ has the (2m+ 1)-ZSP-property and there exists a partition A1, A2, . . . , At of the
group Λ such that for every 1 6 i 6 t, |Ai| = 2m+ 1 with

∑
a∈Ai a = a0. Denote the h-th

element in the set Ai by ai,h.
Define a function γ : Γ0 → Γ0 such that γ(w) = (2m− 1)w for all w ∈ Γ0. Note that

γ ∈Bij(Γ0) (and moreover it is an automorphism), because gcd(2α, 2m − 1) = 1 for any
positive integer α. Recall that there exist φ, ϕ ∈Bij(Γ0) such that g + φ(g) + ϕ(g) = g0

0

for every g ∈ Γ0 (g0
0 is the identity element of Γ0) by Lemma 7. Let f : Z|Γ0| → Γ0

be a bijection. Define Aji by replacing an element ai,h in Λ by aji,1 = (φ(f(j)), ai,1),

aji,2 = (ϕ(f(j)), ai,2), aji,h = (γ−1(f(j)), ai,h) for j = 0, 1, . . . , |Γ0| − 1, i = 1, 2, . . . , t,

h = 3, 4, . . . , 2m + 1. Observe that
∑2m+1

h=3 aji,h = (f(j), a0) for j = 0, 1, . . . , |Γ0| − 1,

i = 1, 2, . . . , t. Therefore A0
1, . . . , A

0
t , A

1
1, . . . , A

1
t , . . . , A

|Γ0|−1
1 , . . . , A

|Γ0|−1
t is a partition of

the group Γ such that for every 1 6 i 6 t, 0 6 j 6 |Γ0| − 1 we have |Aji | = 2m + 1 with∑
a∈Aji

a = (g0
0, a0) = g0.

By above Lemmas 10 and 11 the following theorem is true.

Theorem 12. An Abelian group Γ of order n has the m-ZSP-property if and only if
m > 3, m|n and Γ ∈ G.
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Since any group Γ ∈ G has the m-ZSP property for any m > 3, we state the following
conjecture.

Conjecture 13. Let Γ ∈ G be of an even order n. For every partition n− 1 = r1 + r2 +
· · · + rt of n − 1, with ri > 3 for 1 6 i 6 t and for any possible positive integer t, there
is a partition of Γ− {g0} into pairwise disjoint subsets A1, A2, . . . , At, such that |Ai| = ri
and

∑
a∈Ai a = g0 for 1 6 i 6 t.

Recently, it was proved that the conjecture is true for t = 3, see [6].

4 Group distance labeling of odd regular graphs

The lexicographic product or graph composition G ◦H of graphs G and H is a graph such
that the vertex set of G ◦H is the Cartesian product V (G)×V (H); and any two vertices
(u, v) and (x, y) are adjacent in G ◦H if and only if either u is adjacent with x in G or
u = x and v is adjacent with y in H. Note that G ◦H and H ◦G are not isomorphic in
general. One can imagine obtaining G ◦H by blowing up each vertex of G into a copy of
H.

By results proved in [3] (see Theorem 2.2, [3]) we have the following observation.

Observation 14 ([3]). If G is a regular graph, then the lexicographic product G ◦K2n is
group distance magic for any n > 1.

WhenG is an arbitrary graph (not necessarily regular), we can use them-ZSP-property
of Γ ∈ G to obtain the following.

Theorem 15. If G is a graph of order t, then the lexicographic product G ◦ Kn has a
Γ-distance magic labeling for n > 3 and any Γ ∈ G of order nt.

Proof. Let G be a graph with the vertex set V (G) = {v0, v1, . . . , vt−1}, and let V (K2n+1) =
{x0, x1, . . . , xn−1}. Since Γ ∈ G, there exists a partition A1, A2, . . . , At of Γ such that
|Ai| = n with

∑
a∈Ai a = g0 for every 1 6 i 6 t by Theorem 12. Label the vertices

of the i-th copy of Kn using elements from the set Ai for i = 1, 2, . . . , t. Therefore
w(vi, xj) = g0.

Theorem 15 implies immediately the following observation.

Observation 16. If G is a graph of odd order t, then the lexicographic product G◦K2n+1

is group distance magic for n > 1.

Observe that if G is an odd regular graph, then the lexicographic product G ◦K2n+1

is also an odd regular graph. Thus the order of the graph G ◦ K2n+1 is even by hand-
shaking lemma. Recall that K3,3,3,3

∼= K4 ◦K3 which is Z2×Z2×Z3-distance magic [7].
From Theorems 4 and 15 we obtain the following theorem showing that there exist in-
finitely many odd regular Γ-distance magic graphs where Γ is a group with more than
one involution.
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Theorem 17. If G is an odd regular graph of order t, then the lexicographic product
G ◦K2n+1 has a Γ-distance magic labeling for n > 1 and |Γ| = (2n+ 1)t if and only if Γ
has more than one involution.

For bipartite Eulerian graphs (i.e., a graph with all vertices of even degrees) such that
the partition sets have the same cardinality, we have the following theorem.

Theorem 18. If G is an Eulerian bipartite graph of order t ≡ 2 (mod 4) with partition
sets of the same cardinality, then G ◦K2n+1 is group distance magic for n > 1.

Proof. Notice that the partition sets V0, V1 of G have the same cardinality k = t/2. Let
V0 = {v0, v1, . . . , vk−1}, V1 = {w0, w1, . . . , wk−1} whereas V (K2n+1) = {x0, x1, . . . , x2n}.
Let Γ be any Abelian group of order (2n+ 1)t. Observe that Γ ∼= Z2×Λ for some Abelian
group Λ of odd order (2n+ 1)t/2 because t ≡ 2 (mod 4).
Since 2n+1 > 3, there exists a partition A1, A2, . . . , Ak of the group Λ such that for every
1 6 i 6 k, |Ai| = 2n+ 1 with

∑
a∈Ai a = a0 by Theorem 12. Define A0

i by replacing each
element a in Λ by (0, a) and analogously A1

i by replacing each element a in Λ by (1, a).
Label the vertices of the i-th copy of K2n+1 in V0, V1 using elements from the set A0

i , A
1
i ,

respectively for i = 1, 2, . . . , k.
Notice that w(x) = g0 for any x ∈ V (G ◦K2n+1) because x has an even degree.

Recall that any regular bipartite graph G has the partition sets with the same cardi-
nality, therefore by above Observation 14 and Theorem 18 we easily obtain the following
observation.

Observation 19. If G is an r-regular bipartite graph of order t ≡ 2 (mod 4) and n > 2,
then G ◦Kn is group distance magic if and only if rn is even.

Proof. Assume first that rn is odd, then nt ≡ 2 (mod 4) and by Theorem 5 there does
not exist a group Γ such that G ◦Kn admits a Γ-distance labeling. If n is even then we
are done by Observation 14. In the last case n odd and r even we apply Theorem 18.

5 Γ-Kotzig arrays

In [15] Marr and Wallis give a definition of a Kotzig array as a j × k grid, where each
row is a permutation of {0, 1, . . . , k − 1} and each column has the same sum. Note that
a Latin square is a special case of a Kotzig array.

Lemma 20 ([15]). A Kotzig array of size j × k exists if and only if j > 1 and j(k − 1)
is even.

Kotzig arrays play important role in graph labelings. There are many constructions
based on Kotzig arrays of various magic-type labelings of copies and products of regular
graphs [8, 12, 15].

For an Abelian group Γ of order k we define a Γ-Kotzig array of size j × k as a j × k
grid, where each row is a permutation of elements of Γ and each column has the same
sum. Denote by xi,j the entry in the i-th row and j-th column of the array.
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Lemma 21. A Γ-Kotzig array of size 2× k exists for any Abelian group Γ.

Proof. Let Γ = {g0, g1, . . . , gk−1}. Let x1,i = gi, x2,i = −gi for i = 0, 1, . . . , k − 1.

Lemma 22. A Γ-Kotzig array of size 3× k exists for any Abelian group Γ ∈ G.

Proof. Let Γ = {g0, g1, . . . , gk−1}. There exist φ, ϕ ∈Bij(Γ) such that g+φ(g) +ϕ(g) = g0

for every g ∈ Γ by Lemma 9. Let x1,i = gi, x2,i = φ(gi), x2,i = ϕ(gi).

Theorem 23. A Γ-Kotzig array of size j × k exists if and only if j > 1 and j is even or
Γ ∈ G.

Proof. Obviously for j = 1 there does not exist a Γ-Kotzig array. Assume first j is even.
To construct a Γ-Kotzig array of size j × k, we simply take j/2 of Γ-Kotzig arrays of size
2× k and “glue” them into an array j × k.

Suppose j is odd and there exists a Γ-Kotzig array for a group Γ containing only
one involution ι. Recall that kg = g0 for any g ∈ Γ and for some µ ∈ Γ we have
x1,i + x2,i + . . .+ xj,i = µ for any i = 1, 2, . . . , k. On one hand

∑k
i=1

∑j
l=1 xl,i = kµ = g0.

On the other
∑k

i=1

∑j
l=1 xl,i =

∑j
l=1

∑k
i=1 xl,i = j

∑
g∈Γ g = jι = ι, a contradiction.

Assume now that Γ ∈ G. To construct a Γ-Kotzig array of size j × k, we simply take
(j − 3)/2 of Γ-Kotzig arrays of size 2 × k, one Γ-Kotzig array of size 3 × k and “glue”
them into an array j × k.
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