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Abstract

For a representation of a matroid the combinatorially defined Kazhdan-Lusztig
polynomial computes the intersection cohomology of the associated reciprocal plane.
However, these polynomials are difficult to compute and there are numerous open
conjectures about their structure. For example, it is unknown whether or not the
coefficients are non-negative for non-representable matroids. The main result in
this note is a combinatorial formula for the coefficients of these matroid Kazhdan-
Lusztig polynomials in terms of flag Whitney numbers. This formula gives insight
into some vanishing behavior of the matroid Kazhdan-Lusztig polynomials.

1 Introduction

Flag Whitney numbers of the second kind are key players in the study of the cd-index
and are usually grouped together into one function called the flag f-vector (see [23]).
They count chains in a ranked partially ordered set with prescribed ranks. There are
many open conjectures about classical Whitney numbers of the first and second kind (for
example [17] and [5]). Some parts of these conjectures have just been recently resolved.
In particular, Adiprasito, Huh, and Katz in [1] proved the log-concavity conjecture for
arbitrary matroids (see 15.3 exercise 5 in [24]) and Huh and Wang in [9] proved the top
heaviness conjecture (see [12]) for representable matroids. There are also some classical
results, like the generalized “Hyperplane Theorem” (see [5]). However, there is still much
unknown about Whitney numbers, like the points-lines-planes conjecture (see [17]).
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In this note, flag Whitney numbers are used to understand the Kazhdan-Lusztig poly-
nomial of a matroid or more generally of a finite ranked poset. The Kazhdan-Lusztig
polynomial of a matroid, first studied in [13], is a single variable polynomial defined by
a recursion which mimics the classical Kazhdan-Lusztig polynomials (see [11]). In the
combinatorial recursion the characteristic polynomial takes the place of the classical “R-
polynomials”. It turns out that these matroid Kazhdan-Lusztig polynomials sit in the
general framework of Kazhdan-Lusztig-Stanley polynomials as developed by Stanley in
[22] and refined by Brenti in [3]. If the matroid is realizable over C then the matroid
Kazhdan-Lusztig polynomial is the intersection cohomology Poincaré polynomial of the
associated reciprocal plane (again see [13]). These polynomials are notoriously difficult to
compute in general. For example, the main focus in [14] is the intersection cohomology
for uniform matroids of rank n−1 on n elements. In [6] an equivariant matroid Kazhdan-
Lusztig polynomial is defined and impressively used to find a formula for the ordinary
matroid Kazhdan-Lusztig polynomial for all uniform matroids.

Our main result, Theorem 11, is a formula for the coefficients of the posets Kazhdan-
Lusztig polynomial in terms of sums of “top-heavy pairs” of flag Whitney numbers of the
second kind (see Section 2). The crux of this formula is developing the index set to which
we sum over. At this point this index set is written down recursively, however probably
with a little more work one can write it down in a closed form. In [13] the degree 1
and 2 coefficients of the Kazhdan-Lusztig polynomial of a matroid are written in terms
of doubly-indexed Whitney numbers of the second kind (see [7]). Theorem 11 extends
those formulas to arbitrary coefficients. This “top-heavy” formula gives a clear picture
of why these polynomial’s positive degree coefficients vanish when the poset is modular.
Recently, Proudfoot, Xu, and Young in [15] have found a formula similar to Theorem
11 using a completely different technique. Their result is not decomposed in terms of
top-heavy pairs, but is stated much more concretely and in closed form.

The paper is organized as follows. In Section 2 some basic facts concerning flag
Whitney numbers are collected. The central focus there is the celebrated Theorem of
Phillip Hall [8] on the Euler characteristic of a finite lattice. Then in Section 3 we review
the definition of matroid Kazhdan-Lusztig polynomials and some basic combinatorial
results. In section 4 we create the index set used to state Theorem 11. Finally in Section
5 we state the main theorem and note a consequence and write down the formulas for
coefficients up to degree 5.

2 Whitney numbers

In this section we record combinatorial results on Whitney numbers for use on the matroid
Kazhdan-Lusztig polynomials. Let P be a ranked locally finite poset. For the remainder
of the paper we use I = {i1, . . . , ik} (or other k-tuples) to denote an ordered (by usual 6)
k-tuple such that for all j, ij ∈ {0, 1, 2, . . . , rkP}. The set of partial flags in P indexed
by I is

PI = {(X1, . . . , Xk) ∈ Pk | ∀ 1 6 j 6 k, rk(Xj) = ij}.
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Definition 1. The partial flag Whitney numbers of the second kind indexed by I are

WI(P) = |PI |.

When the context of the poset is clear we will just write WI instead of WI(P).

The classical Whitney numbers of the second kind are those with k = 1 and in this
case we just write Wi. A good reference for classical Whitney numbers is [2] and these
were generalized to 2 subscripts in [7]. These flag Whitney numbers of the second kind
have the property that some indices are “trivial”. For example, if P is a lattice then
W0,i = Wi.

Remark 2. What we call flag Whitney numbers here were studied by Richard Stanley in
multiple papers [19], [18], [20], and [21] where they were denoted by α(P , I), but they were
only considered for strictly increasing flags. Here we study flags where some coordinates
may be equal.

Example 3. Let Bn be the rank n Boolean lattice. For just this example we let Bn(j) =
(Bn)j the rank j component of Bn. If I = (i1, . . . , ik) then

WI(Bn) =

(
n

i1, i2 − i1, i3 − i2, . . . , ik − ik−1, n− ik

)
.

Proof. We start at the bottom of the chain i1 6 · · · 6 ik. There are exactly
(
n
i1

)
elements

of rank i1 in Bn (i.e. |Bn(j)| =
(
n
j

)
). Then for any X ∈ Bn(i1) the restriction to X is

BXn ∼= Bn−i1 and the elements above X of rank i2 in Bn are now of rank i2 − i1 in BXn .
So, for every X ∈ Bn(i1) the number of elements above it is

(
n−i1
i2−i1

)
. In general for every

Y ∈ BN(ij) there are
(
n−ij
ij+1−ij

)
above it in Bn(ij+1). Hence

WI(Bn) =

(
n

i1

)(
n− i2
i2 − i1

)
· · ·
(
n− ik−1
ik − ik−1

)
=

(
n

i1, i2 − i1, i3 − i2, . . . , ik − ik−1, n− ik

)
.

Now we work towards a formula that relates the multi-indexed Whitney numbers of
second kind to that of the first. The Whitney numbers of the first kind are built using
the Möbius function on the poset. The Möbius function on a poset P is µ : P × P → Z
defined recursively by µ(X,X) = 1 and

µ(X, Y ) = −
∑

X6Z<Y

µ(X,Z).

For a locally finite ranked poset with minimal element 0̂ the classical Whitney numbers
of the first kind are the numbers

wi =
∑
X∈Pi

µ(0̂, X).
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Let P be a locally finite ranked poset with smallest element 0̂. All the elements of P of
rank k we denote by Pk := {X ∈ P | rkX = k} and for I = {i1, . . . , is} we set P(I) =

{ ~X = (X1, . . . , Xs) | ∀1 6 i 6 s, Xi ∈ P(i)}. Also, we call PX = {Y ∈ P | Y 6 X} the
localization of P at X and PX = {Y ∈ P | Y > X} the restriction of P at X. Using these
new posets we record a few basic lemmas which are foundational for computing various
Whitney numbers.

Lemma 4. If I ⊆ {1, . . . , n− 1} then∑
X∈Pn

WI(PX) = WI∪{n}(P).

Proof. By definition

WI(PX) =
∑
~X∈P(I)
~X6X

ζ( ~X).

Thus ∑
X∈Pn

WI(PX) =
∑
X∈Pn

∑
~X∈P(I)
~X6X

ζ( ~X) =
∑
X∈Pn

∑
~X∈P(I)

ζ( ~X,X). (1)

Since the right hand side of 1 is exactly WI∪{n} we are done.

We add the “dual” of Lemma 4 for later use whose proof is very similar.

Lemma 5. Let r = rk(P) and I ⊆ {1, . . . , t − 1}. For I = {i1, . . . , ik} set I[t] =
{i1 + t, i2 + t, . . . , ik + t} and assume that i + t 6 r for all i ∈ I. With this notation we
have ∑

X∈Pt

WI(PX) = W{t}∪I[t](P).

Proof. In this case the indices I must be shifted to be accounted for in P because PX is
all elements above X. So, ∑

X∈Pt

WI(PX) =
∑
X∈Pt

∑
~X∈PX(I)

ζ( ~X)

=
∑
X∈Pt

∑
~X∈P(I+t)
X6 ~X

ζ( ~X) =
∑
X∈Pt

∑
~X∈P(I+t)

ζ(X, ~X) =
∑

~Y ∈({t}∪(I+t))

ζ(~Y )

which is exactly W{t}∪(I+t).

We add another lemma for use on understanding the Kazhdan-Lusztig polynomial,
which is really a combination of Lemma 4 and Lemma 5.
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Lemma 6. Let r = rk(P), k ∈ [r] and I, J ⊆ [r] such that for all i ∈ I, i 6 k and for all
j ∈ J , j + k 6 r. In this case we can define J [k] = {j + k | j ∈ J}. Then∑

F∈Lk

WI(PF )WJ(PF ) = WI∪{k}∪J [k](P).

Proof. Let I = {i1, . . . , is} and J = {j1, . . . , jt}. Look at the sum

∑
F∈Lk

WI(PF )WJ(PF ) =
∑
F∈Pk

(∑
X

1

)(∑
Y

1

)
where the summation condition X correspond to Xu ∈ Piu for 1 6 u 6 s and Xi1 6
· · ·Xis 6 F and the summation condition Y corresponds to Yv ∈ Pjv for 1 6 v 6 t and
F 6 Yj1 6 · · · 6 Yjt . Then we switch the sums and we have the result.

Now we present the main lemma of this section. This is proved on page 154 of [21]
and can follow by using the previous Lemmas. It can also be thought of as a consequence
of Phillip Hall’s Theorem (see [8] and [16], Proposition 6).

Lemma 7. If P is a locally finite, ranked poset with a minimal element and 1 6 n 6 rk(P)
then

w0,n =
∑

I⊆{1,...,n−1}

(−1)|I|+1WI∪{n}.

3 The Kazhdan-Lusztig polynomial of a matroid

The aim of this section is to develop formulas for certain coefficients of the Kazhdan-
Lusztig polynomial of a matroid. This result gives some hint that these polynomials may
be more tractable to understand than the classical Kazhdan-Lusztig polynomials. These
matroid Kazhdan-Lusztig polynomials were originally defined for matroids or equivalently
for geometric lattices. However they can be defined for any finite ranked poset with bottom
and top elements. To do this we need a little notation. Let P be a finite ranked poset
with a top element 0̂ and bottom element 1̂. For F ∈ P the restriction of P to F is

PF = {E ∈ P | E > F}

and the localization of P at F is

PF = {E ∈ P | E 6 F}.

The last ingredient we need is the infamous characteristic polynomial.

χ(P , t) =
∑
X∈P

µ(0̂, X)trk(X).

The following definition of matroid Kazhdan-Lusztig polynomials requires a fascinating
property of the characteristic polynomial, that it is a P-kernel in the sense of [3] and [22].
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Definition 8 ([13], Theorem 2.2). Let P be a finite ranked poset with top and bottom.
The Kazhdan-Lusztig polynomial of P , P (P , t) is the polynomial recursively defined which
satisfies

1. If rk(P) = 0 then P (P , t) = 1.

2. If rk(P) > 0 then deg(P (P , t)) < .5rk(P).

3. For all P ,

trk(P)P (P , t−1) =
∑
F∈P

χ(PF , t)P (PF , t).

Now we gather some basic results on the first few coefficients from [13].

Proposition 9 ([13], Propositions 2.11, 2.12, and 2.16). Let L be a geometric lattice with
rank r. Then

1. The constant coefficient of P (L, t) is 1.

2. The linear coefficient of P (L, t) is Wr−1 −W1.

3. The quadratic coefficient of P (L, t) is

−[W1,r−1 −W1,2] + [Wr−3,r−1 −Wr−3,r−2] + [Wr−2 −W2].

Using Proposition 9 for any matroid of rank less than 6 we can quickly calculate the
Kazhdan-Lusztig polynomials. However, a central aim in this field is to compute the
Kazhdan-Lusztig polynomials for certain infinite families of arrangements with higher
ranks. For example, a closed formula of the Kazhdan-Lusztig polynomials for the family
of braid matroids or reflection types is unknown. Quite surprisingly the only infinite
family of non-trivial matroids with a known closed formula are the uniform matroids (see
[14] and [6]). One aim of this note is to generalize Proposition 9 in order to compute the
Kazhdan-Lusztig polynomials for some families of matroids.

4 The index set

In this section we develop some notation to state a formula for any coefficient of the
Kazhdan-Lusztig polynomial. We are going to compute the degree k term. Developing
the index set to sum over is the crux. Throughout we denote {1, . . . , n} by [n]. We are
going to define the index set, which we will call Sk, recursively. Eventually Sk will be a
set of subsets of Z[r] where we will view r as a variable. The elements in each subset will
either be an integer or of the form r − n for an integer n. Then later when we want to
use the formula the aim will be to substitute the rank of the matroid or poset for r. The
base is S1 = {{1}}. For 1 6 t put

At =
{
I ∈ 2[t]

∣∣∣t ∈ I}
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and for t 6 0 we set At = ∅. So, for example A1 = {{1}}, A2 = {{2}, {1, 2}}, and
A3 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}}.

Next for 3 6 s 6 2k − 1 we need a function fs : Z[r]→ Z[r] defined by

fs(p) = eval(p, s) + r − s

where eval(p, s) means evaluating the polynomial p at s. Then for a finite subset I of Z[r]
put Fs(I) = {fs(i) | i ∈ I}. For example, F4({1, r − 2, r − 1}) = {r − 3, r − 2, r − 1}.
Then for k > 1 set

Sk = Ak ∪
2k−1⋃
s=3

T sk (2)

where
T sk =

⋃
u6i<s/2

T sk (i) (3)

with u = max{1, s− k} and

T sk (i) =
{
α t {r − s} t Fs(β)

∣∣∣α ∈ Ak−s+i, β ∈ Si}. (4)

It is important to make sure Sk is well defined. Note that i < s/2 < k implies the sets
T sk (i) are well defined and hence means Sk is well defined.

For example, with k = 2 we have S2 = A2 ∪ T 3
2 , u = 1, T 3

2 = T 3
3 (1), and

T 3
2 (1) =

{
α t {r − 3} t F3(β)

∣∣∣α ∈ A0 = ∅, β ∈ S1

}
= {{r − 3, r − 2}}. (5)

Hence S2 = {{2}, {1, 2}, {r − 3, r − 2}} and note that these are exactly the index sets of
the right hand terms in each bracket of (3) in Proposition 9. This is the aim of this index
set. It will give the “bottom terms” in the “top heavy pairs” for our main formula.

Now we need a technical lemma to finish the remainder of the construction. This
lemma is a key piece of the entire formula. To prove this lemma we will need a little
notation. For I ∈ T sk let

maxr(I) = max{n ∈ Z | r − n ∈ I}

and similarly
minr(I) = min{n ∈ Z | r − n ∈ I}.

Lemma 10. For each I = α t {r − s} t Fs(β) ∈ T sk there does not exist a different α′

and β′ such that I = α′ t {r − s} t Fs(β′).

Proof. First we need a few facts about the elements of I ∈ T sk . By induction on k > 2 we
show that

max{maxr(I) | I ∈ Sk} = 2k − 1. (6)

The base case is when k = 2 and we computed above that S2 = {{2}, {1, 2}, {r−3, r−2}}.
Hence, max{maxr(I) | I ∈ S2} = 3 = 2 · 2 − 1. Now suppose that k > 2. Since
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maxr(I) = 0 for I ∈ 2[k−1] we may assume that I ∈ T sk for some 3 6 s 6 2k − 1. So,
I = α t {r − s} t Fs(β) where α ∈ 2[k−s+i] and β ∈ Si for some max{1, k − s} 6 i 6 s/2.
Since α has no r variables we only need to consider Fs(β). By induction since i < k we
have maxr(β) 6 2i− 1 < s. Hence maxr(I) = s and since the maximum that s can be is
2k− 1 we have finished proving (6). Notice that within this proof we have also concluded
that

maxr(I) = s (7)

for I ∈ T sk . If I ∈ T sk is of the form I = α t {r − s} t Fs(β), since the elements of α are
all integers and Fs′(I) = Fs′(α) t {r − s} t Fs(β), then we can also conclude that

maxr(Fs′(I)) = max{s, s′ −min(α)}. (8)

Now we show directly that for each I = α t {r− s} t Fs(β) ∈ T sk there does not exist
another α′ and β′ such that I = α′ t {r − s} t Fs(β′). The base case is when k = 2 and
in this case there is only T 3

2 = {{r − 3, r − 2}} which only has one set as seen above.
Now suppose k > 2 and there was such an α′ and β′. Since the α and α′ sets only have
integer elements (i.e. no r variables) and all other elements contain the variable r then
definitely α = α′. Also, α = α′ = J ∪ {k − s + i} for some J ∈ 2[k−s+i−1]. This implies
that |β| = |β′| and β, β′ ∈ Si for some max{1, s− k} 6 i < s/2. Pairing with (7) we have
that Fs(β) = Fs(β

′) with β, β′ ∈ Si. If β, β′ ∈ Ai then clearly β = β′ since fs is injective
when restricted to just integers.

Suppose β ∈ Ai and β′ ∈ T s
′

i where 3 6 s′ 6 2i − 1. Then minr(Fs(β)) = s − i.
Also, there exists ᾱ ∈ Ai−s′+i′ and β̄ ∈ Si′ such that β′ = ᾱ t {r − s′} t Fs′(β̄) where
max{1, s′ − i} 6 i′ 6 s′/2. Note that the function Fs is the identity on elements that
are outputs from another function Fs′ because elements in the image set of Fs′ are of the
form r − d where d is an integer and the definition of Fs is to take these elements plug
in to r − s and then subtract off the s. Hence Fs(β

′) = Fs(ᾱ) t {r − s′} t Fs′(β̄). Then
minr(Fs(ᾱ)) = s − (i − s′ + i′) > s/2 + s′/2 > i + i′ > i′ > minr(Fs′(β̄)) by induction.
Hence by induction on i, with the base i = 1 clear from the fact that S1 = {{1}} and so
β = {1}, we have that minr(Fs′(β

′)) 6 i. Since s − i > i we have concluded that it is
impossible in this case to have Fs(β) = Fs′(β

′).
In order to treat this next case we need another general inequality. Suppose β ∈ T s′i

with β = αt {r− s′} t Fs′(λ) where α ∈ Ai−s′−i′ , λ ∈ Si′ , and max{1, s′ − i} 6 i′ < s′/2.
Then picking s such that max{1, s − k} 6 i < s/2 we will compute Fs(β). Note that
minr(Fs(α)) = s− (i− s′+ i′) = s− i+ s1− i1 > s/2 + s′/2 > s′ and maxr{Fs(β\α)} = s′.
Hence

minr(Fs(α)) > maxr(Fs(β\α)). (9)

Combining this with (8) we get

maxr(Fs(β)) = s−min(α). (10)

Now we can deal with the next case directly. Suppose that β ∈ T s1i and β′ ∈ T s2i
where Fs(β) = Fs(β

′). So, there exists i1 and i2 satisfying max{1, s1− i} 6 i1 6 s1/2 and
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max{1, s2−i} 6 i2 6 s2/2 with β = α1t{r−s1}tFs1(λ1) and β′ = α2t{r−s2}tFs2(λ2)
where α1 ∈ Ai−s1+i1 , α2 ∈ Ai−s2+i2 , λ1 ∈ Si1 , and λ2 ∈ Si2 . Now assume that s1 6 s2.
So, by (9) we have that α1 ⊇ α2. Then we can consider β\α1 and β\α2. If α2 6= ∅
then by a second induction on |β| = |β′| (with the base case being |β| = 1 is trivial) we
are done. If α2 = ∅ then Fs(β

′) = β′ = Fs(α1) t {r − s1} t Fs1(λ1). If |α1| > 1 then
β′\{r−s2} = Fs(Fs2(λ2)) = Fs(α1\{min{α1})t{r−s1}tFs1(λ1) and again by induction
we are done. If |α1| = ∅ then s1 = s2 and Fs1(λ2) = Fs1(λ1) and again by induction we
are done.

The set Sk will be the index set which we will sum over. But we need to create a “top
heavy” partner for each index set I to get the full formula. To do this we need a function
d : Sk → Z[r] defined as follows. For I ∈ Ak define

d(I) =

{
k if I = {k}
k −max{I\{k}} if I 6= {k}

and for I ∈ T sk define

d(I) = minr(I\{r −minr(I)})−minr(I).

For example, d({2}) = 2, d({1, 2}) = 1, and d({r − 3, r − 2}) = minr({r − 3}) − 2 = 1.
Finally the “top heavy” partner for I ∈ Sk is

t(I) =

{
I\{k} ∪ {r − d(I)} if I ∈ Ak
I\{r −minr(I)} ∪ {r − d(I)} otherwise.

For example, t({2}) = {r−2}, t({1, 2}) = {1, r−1}, and t({r−3, r−2}) = {r−3, r−1}
and again notice that these are exactly the index sets for the “top terms” (left hand) of
the “top heavy” pairs in the brackets of (3) in Proposition 9.

The last piece of the formula we need is a sign function sk : Sk → Z. We also do this
recursively. The base is k = 1 and we set s1({1}) = 0. For k > 1 again we split this up

differently for I ∈ Ak and I ∈
2k−1⋃
s=3

T sk . For I ∈ Ak set sk(I) = |I| − 1. For I ∈ T sk (i) there

exists α ∈ Ak−s+i and β ∈ Si such that I = α t {r − s} t Fs(β) where si(β) is already
defined in the context of Si. Then set sk(I) = |α| + si(β). This makes sense because of
Lemma 10. For example, s2({2}) = 0, s2({1, 2}) = 1. For {r−3, r−2} we get that α = ∅
and β = {1} as seen in 5. Hence s2({r − 3, r − 2}) = 0 + 0 and these signs again match
the “top heavy” decomposition of the Kazhdan-Lusztig coefficient of the k = 2 quadratic
term in (3) of Proposition 9. These are all the ingredients we need for the main formula.

5 Top-heavy formula for Kazhdan-Lusztig polynomials

In this section we state and prove the main formula which is the following theorem.
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Theorem 11. For any finite, ranked lattice P with rank r the degree k coefficient of the
Kazhdan-Lusztig polynomial of P for 1 6 k < r/2 is∑

I∈Sk

(−1)sk(I)
(
Wt(I)(P)−WI(P)

)
.

Proof. Induct on k. The base k = 1 is done in Proposition 9. Now we compute the degree
k term where k > 1. In (3) of the recursion in Definition 8 the left hand side has the
degree k coefficient on the tr−k term. This is the terms that we will examine on the right
hand side. First we split the right hand side up in terms of rank so that we rewrite it as

r∑
s=0

∑
F∈Pr−s

χ(PF , t)P (PF , t). (11)

Now we reduce this further. Suppose that s > 2k−1. Then for F ∈ Pr−s deg(χ(PF , t)) =
r−s and deg(P (PF , t)) < s/2. So, deg(χ(PF , t))+deg(P (PF , t)) < r−s+s/2 = r−s/2 6
r − k. Hence we can reduce (11) to

2k−1∑
s=0

∑
F∈Pr−s

χ(PF , t)P (PF , t). (12)

Note that since k < r/2 and deg(P (PF , t)) = s we know that the coefficients P (PF , t)
will all be computed by induction. For any polynomial p let u(i, p) denote the coefficient
of the ith term and d(i, p) be the ith term down from the top term (i.e. if deg p = d then
d(i, p) = u(d− i, p)). Then for each term in (12) the possible products which will yield a
degree r − k term are of the form

d(k − s+ i, χ(PF , t))u(i, P (PF , t))

where max{0, s− k} 6 i < s/2. Hence the total coefficient we are seeking is

2k−1∑
s=0

∑
F∈Pr−s

∑
max{0,s−k}

6i<s/2

d(k − s+ i, χ(PF , t))u(i, P (PF , t)). (13)

We first focus on the terms where i = 0. For these terms we have by Proposition 9

u(0, P (PF , t)) = 1

and
d(k − s, χ(PF , t)) = w0,k−s(PF ). (14)

Then we use Theorem 7 on (14) to get

d(k − s, χ(PF , t)) =
∑

I⊆{1,...,k−s−1}

(−1)|I|+1WI∪{k−s}(PF ). (15)
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Notice that 0 6 s 6 k. Summing over F ∈ Pr−s and applying Lemma 4 to (15) we get∑
F∈Pr−s

d(k − s, χ(PF , t)) =
∑

I⊆{1,...,k−s−1}

(−1)|I|+1WI∪{k−s}∪{r−s}(P) (16)

as long as s 6= 0. In that case since P is a lattice the sum only contains one term where
PF = P . Hence

d(k, χ(P , t)) =
∑

I⊆{1,...,k−1}

(−1)|I|+1WI∪{k}(P). (17)

The subscripts of (17) give exactly all the terms of Ak as well as the signs sk(I) for I ∈ Ak.
Finally for each I ⊆ Ak with I = J ∪{k−s}∪{k} for 1 6 s < k there is exactly one term
in (16), that being J ∪ {k− s} ∪ {r− s} which is the top heavy pair to I. Also note that
this exactly covers all the terms of (16) and (17). Hence we have verified the formula for
i = 0 and equivalently Ak.

Next we focus on the case where 1 6 i. Since i < s/2 6 k we have by induction that

u(i, P (PF , t)) =
∑
I∈Si

(−1)si(I)
(
Wt(I)(PF )−WI(PF )

)
. (18)

Because F ∈ Pr−s we know rk(PF ) = s and so when using this induction all the sub-
scripts in the formula have r replaced with s. The terms coming from the characteristic
polynomial are

d(k − s+ i, χ(PF , t)) = w0,k−s+i(PF ). (19)

Again using Theorem 7 (19) becomes

d(k − s+ i, χ(PF , t)) =
∑

α∈Ak−s+i

(−1)|α|Wα(PF ). (20)

Next putting (18) and (20) together for each i > 0 term of (13) we get

2k−1∑
s=0

[ ∑
α∈Ak−s+i

(−1)|α|Wα(PF )

][∑
β∈Si

(−1)si(β)
(
Wt(β)(PF )−Wβ(PF )

)]
. (21)

Moving sums together (21) becomes

2k−1∑
s=0

∑
α∈Ak−s+i

∑
β∈Si

(−1)|α|+si(β)
(
Wα(PF )Wt(β)(PF )−Wα(PF )Wβ(PF )

)
. (22)

Then summing over F ∈ Pr−s and applying Lemma 6 to (22) we get

2k−1∑
s=0

∑
α∈Ak−s+i

∑
β∈Si

(−1)|α|+si(β)
(
Wα∪{r−s}∪t(β)[r−s](P)−Wα∪{r−s}∪β[r−s](P)

)
. (23)

This all makes sense because inside PF the rank is s and all the elements of every β above
are < s. Hence in the total lattice P we can add r−s and satisfy the hypothesis of Lemma
6. Finally to finish the proof note that t(β)[r − s] = t(Fs(β)) and β[r − s] = Fs(β).
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In Table 1 we print the formula from Theorem 11 for k = {1, 2, 3, 4, 5}. For k = 6
the formula takes up too much space. This was calculated using Sage (see [4]). There we
only list the index set S(k) and the corresponding sign sk(I).

k sk(I)I for I in S(k)

1 +[1]

2 +[2], +[r - 3, r - 2], -[1, 2]

3 +[ 3], -[ 1, 3], -[ 2, 3], +[ 1, 2, 3], -[ 1, r - 3, r - 2], +[ r - 4, r - 3], +[ r - 5, r - 3],
+[ r - 5, r - 3, r - 2], -[ r - 5, r - 4, r - 3]

4 +[ 4], -[ 1, 4], -[ 2, 4], +[ 1, 2, 4], -[ 3, 4], +[ 1, 3, 4], +[ 2, 3, 4], -[ 1, 2, 3, 4],
-[ 2, r - 3, r - 2], +[ 1, 2, r - 3, r - 2], -[ 1, r - 4, r - 3], +[ r - 5, r - 4], -[1, r - 5, r - 3],
-[1, r - 5, r - 3, r - 2], +[1, r - 5, r - 4, r - 3], +[ r - 6, r - 4],
+[ r - 6, r - 3, r - 2], -[ r - 6, r - 5, r - 4], +[ r - 7, r - 4], -[ r - 7, r - 6, r - 4],
-[ r - 7, r - 5, r - 4], +[ r - 7, r - 6, r - 5, r - 4], -[ r - 7, r - 6, r - 3, r - 2],
+[ r - 7, r - 4, r - 3], +[ r - 7, r - 5, r - 3], +[ r - 7, r - 5, r - 3, r - 2],
-[ r - 7, r - 5, r - 4, r - 3]

5 +[ 5], -[ 1, 5], -[ 2, 5], +[ 1, 2, 5], -[ 3, 5], +[ 1, 3, 5], +[ 2, 3, 5], -[ 1, 2, 3, 5],
-[ 4, 5], +[ 1, 4, 5], +[ 2, 4, 5], -[ 1, 2, 4, 5], +[ 3, 4, 5], -[ 1, 3, 4, 5], -[ 2, 3, 4, 5],
+[ 1, 2, 3, 4, 5], -[ 3, r - 3, r - 2], +[ 1, 3, r - 3, r - 2], +[ 2, 3, r - 3, r - 2],
-[ 1, 2, 3, r - 3, r - 2], -[ 2, r - 4, r - 3], +[ 1, 2, r - 4, r - 3], -[ 1, r - 5, r - 4],
+[ r - 6, r - 5], +[ r - 7, r - 5], +[ r - 7, r - 3, r - 2], -[ r - 7, r - 6, r - 5],
+[ r - 8, r - 5], -[ r - 8, r - 7, r - 5], -[ r - 8, r - 6, r - 5], +[ r - 8, r - 7, r - 6, r - 5],
-[ r - 8, r - 7, r - 3, r - 2], +[ r - 8, r - 4, r - 3], +[ r - 8, r - 5, r - 3],
+[ r - 8, r - 5, r - 3, r - 2], -[ r - 8, r - 5, r - 4, r - 3], +[ r - 9, r - 5],
-[ r - 9, r - 8, r - 5], -[ r - 9, r - 7, r - 5], +[ r - 9, r - 8, r - 7, r - 5],
-[ r - 9, r - 6, r - 5], +[ r - 9, r - 8, r - 6, r - 5], +[ r - 9, r - 7, r - 6, r - 5],
-[ r - 9, r - 8, r - 7, r - 6, r - 5], -[ r - 9, r - 7, r - 3, r - 2],
+[ r - 9, r - 8, r - 7, r - 3, r - 2], -[ r - 9, r - 8, r - 4, r - 3],
+[ r - 9, r - 5, r - 4], +[ r - 9, r - 6, r - 4], +[ r - 9, r - 6, r - 3, r - 2],
-[ r - 9, r - 6, r - 5, r - 4], +[ r - 9, r - 7, r - 4], -[ r - 9, r - 7, r - 6, r - 4],
-[ r - 9, r - 7, r - 5, r - 4], +[ r - 9, r - 7, r - 6, r - 5, r - 4],
-[ r - 9, r - 7, r - 6, r - 3, r - 2], +[ r - 9, r - 7, r - 4, r - 3],
+[ r - 9, r - 7, r - 5, r - 3], +[ r - 9, r - 7, r - 5, r - 3, r - 2],
-[ r - 9, r - 7, r - 5, r - 4, r - 3]

Table 1: Low degree coefficient formulas for the matroid KL
polynomial

Remark 12. Note that Lemma 10 shows that there is exactly one term of each type in the
formula of Theorem 11.

The top heavy pairs decomposition of Theorem 11 together with the “Hyperplane The-
orem” ([2], Proposition 8.5.1) gives an easy proof of the “hard” implication of Proposition
2.14 of [13].

Corollary 13. If L is a modular lattice then P (L, t) = 1.
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Remark 14. Recently in [9] June Huh and Botong Wang proved that if the poset is the
lattice of flats of a realizable matroid then each term in Theorem 11 is positive (this was
called the “top heaviness conjecture”, see [12]). Also, it is conjectured that each of the
coefficients themselves are positive for matroids (see [13]). However many of the signs
sk are negative and at the moment we do not see a general relationship between these
conjectures other than the formula of Theorem 11 itself. A nice line of future research
would be to investigate how Theorem 11 and Huh and Wang’s result could prove the
non-negativity of the coefficients of the matroid Kazhdan-Lusztig polynomials.

Remark 15. The function α : [n] → Z defined by α(I) = WI is called the flag f-vector
in the literature (see [10] and [23]). The flag f-vector is used in the original definition of
the so called cd-index of the poset P . One possible problem for future research could be
to find a relationship between the cd-index and the matroid Kazhdan-Lusztig polynomial
using Theorem 11.
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