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Abstract

For a fixed r, let fr(n) denote the minimum number of complete r-partite r-
graphs needed to partition the complete r-graph on n vertices. The Graham-Pollak
theorem asserts that f2(n) = n − 1. An easy construction shows that fr(n) 6
(1 + o(1))

(
n
br/2c

)
, and we write cr for the least number such that fr(n) 6 cr(1 +

o(1))
(

n
br/2c

)
.

It was known that cr < 1 for each even r > 4, but this was not known for any
odd value of r. In this short note, we prove that c295 < 1. Our method also shows
that cr → 0, answering another open problem.
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1 Introduction

The edge set ofKn, the complete graph on n vertices, can be partitioned into n−1 complete
bipartite subgraphs: this may be done in many ways, for example by taking n − 1 stars
centred at different vertices. Graham and Pollak [4, 5] proved that the number n − 1
cannot be decreased. Several other proofs of this result have been found, by Tverberg [8],
Peck [7], and Vishwanathan [9, 10], among others.

Generalising this to hypergraphs, for n > r > 1, let fr(n) be the minimum number

of complete r-partite r-graphs needed to partition the edge set of K
(r)
n , the complete r-

uniform hypergraph on n vertices (i.e., the collection of all r-sets from an n-set). Thus
the Graham-Pollak theorem asserts that f2(n) = n − 1. For r > 3, an easy upper
bound of

(
n−dr/2e
br/2c

)
may be obtained by generalising the star example above. Indeed, for r

even, having ordered the vertices, consider the collection of r-sets whose 2nd, 4th, . . . , rth
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vertices are fixed. This forms a complete r-partite r-graph, and the collection of all
(
n−r/2
r/2

)
such is a partition of K

(r)
n . For r odd, we instead fix the 2nd, 4th, . . . , (r − 1)th vertices,

yielding a partition into
(
n−(r+1)/2
(r−1)/2

)
parts.

Alon [1] showed that f3(n) = n − 2. More generally, for each fixed r > 1, he showed
that

2(
2br/2c
br/2c

)(1 + o(1))

(
n

br/2c

)
6 fr(n) 6 (1− o(1))

(
n

br/2c

)
,

where the upper bound follows from the construction above. Writing cr for the least c
such that fr(n) 6 c(1 + o(1))

(
n
br/2c

)
, the above results assert that c2 = 1, c3 = 1, and

2

(2br/2c
br/2c )

6 cr 6 1 for all r. How do the cr behave?

Cioabǎ, Kündgen and Verstraëte [2] gave an improvement (in a lower-order term) to
Alon’s lower bound, and Cioabǎ and Tait [3] showed that the construction above is not
sharp in general, but Alon’s asymptotic bounds (i.e., the above bounds on cr) remained
unchanged. Recently, Leader, Milićević and Tan [6] showed that cr 6 14

15
for each even

r > 4. However, they could not improve the bound of cr 6 1 for any odd r – the point
being that the construction above is better for r odd than for r even (the exponent of n
is (r − 1)/2 for r odd versus r/2 for r even), and so is harder to improve.

In this note, we give a simple argument to show that c295 < 1. Our method also shows
that cr → 0, answering another question from [6].

It would be interesting to know what happens for smaller odd values of r: for example,
is c5 < 1? Determining the precise value of c4 (i.e., the asymptotic behaviour of f4(n))
would also be of great interest, as would determining the decay rate of the cr. See [6] for
several related questions and conjectures.

2 Main Result

The motivation for our proof is as follows. The key to the approach used in [6] in proving
cr < 1 for each even r > 4 was to investigate the minimum number of products of complete
bipartite graphs, that is, sets of the form E(Ka,b)× E(Kc,d), needed to partition the set
E(Kn)× E(Kn). Writing g(n) for this minimum value, it is trivial that g(n) 6 (n− 1)2,
by taking the products of the complete bipartite graphs appearing in a decomposition of
Kn into n− 1 complete bipartite graphs. It was shown in [6] that

g(n) 6

(
14

15
+ o(1)

)
n2. (1)

It turned out that this upper bound on g(n) was enough (via an iterative construction)
to bound cr below 1 for each even r > 4.

Now, as remarked above, for r odd the construction in the Introduction is much better
than for r even. In fact, while there are many iterative ways to redo the construction
when r is even, passing from n/2 to n, these fail when r is odd: it turns out that an
extra factor is introduced at each stage. However, rather unexpectedly, we will see that
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(at least if r is large) if we partition into many pieces, instead of just two pieces, then the
gain we obtain from the 14/15 improvement in g(n) outweighs the loss arising from this
extra factor – even though this extra factor grows as the number of pieces grows.

A minimal decomposition of a complete r-partite r-graph K
(r)
n is a partition of the

edge set into fr(n) complete r-partite r-graphs. A block is a product of the edge sets of
two complete bipartite graphs. Similarly, a minimal decomposition of E(Kn)× E(Kn) is
a partition of E(Kn)× E(Kn) into g(n) blocks. Finally, for a set V , we may write E(V )
to denote the edge set of the complete graph on V , that is, the set of all 2-subsets of V .

Theorem 1. Let r = 2d + 1 be fixed. Then for each k there exists εk, with εk → 0 as
k →∞, such that for all n we have

fr(kn) 6

((
14

15

)b d2c
+ d

(
14

15

)b d−1
2 c

+ εk

)
(1 + o(1))

(
kn

d

)
.

(Here the o(1) term is as n→∞, with k and d fixed.)

Proof. In order to decompose the edge set of K
(r)
kn , we start by splitting the kn vertices

into k equal parts, say V
(
K

(r)
kn

)
= V1 ∪ V2 ∪ · · · ∪ Vk, where |Vi| = n for each i. We

consider the r-edges based on their intersection sizes with the k vertex classes. For each
partition of r into positive integers r1 + r2 + · · ·+ rl with r1 6 r2 6 · · · 6 rl and for each
collection of l vertex classes Vi1 , Vi2 , . . . , Vil , the set of r-edges e with |e ∩ Vij | = rj for
all j can be decomposed into fr1(n)fr2(n) · · · frl(n) complete r-partite r-graphs: take a

complete rj-partite rj-graph from a minimal decomposition of K
(rj)
n for each j, and form

a complete r-partite r-graph by taking the product of them.
Note that if at least three values of the rj are odd, then fr1(n)fr2(n) · · · frl(n) =

O(nd−1), as fs(n) 6
(

n
bs/2c

)
for any s. So the set of r-edges e with |e ∩ Vi| is odd for

at least three distinct Vi can be decomposed into Cnd−1 complete r-partite r-graphs, for
some constant C depending on d and k.

Let C ′ be the number of partitions of r into at most d−1 positive integers where exactly
one of them is odd. Then we observe that the set of r-edges e such that e intersects with
at most d− 1 vertex classes and |e∩ Vi| is odd for exactly one Vi can be decomposed into
at most C ′kd−1nd complete r-partite r-graphs.

We are now only left with two partitions of r: r = 1+2+2+· · ·+2 and r = 2+2+· · ·+
2 + 3. The first case corresponds to the set of r-edges with r1 = 1, r2 = · · · = rd+1 = 2.
For each of the

(
k
d

)
collections of d vertex classes Vi1 , Vi2 , . . . , Vid , we claim that the set of

r-edges {e : |e ∩ Vij | = 2, j = 1, 2, . . . , d} can be decomposed into g(n)d/2 or ng(n)(d−1)/2

complete r-partite r-graphs, depending on whether d is even or odd. This is done by
pairing up the Vijs (or all but one of the Vijs if d is odd), and forming complete r-
partite r-graphs using products of blocks in a minimal decomposition of E(Kn)×E(Kn).
[For example, for d = 4, we would take a decomposition of E(Vi1) × E(Vi2) into blocks
Ex × Fx, 1 6 x 6 g(n), and similarly a decomposition of E(Vi3) × E(Vi4) into blocks
Gx × Hx, 1 6 x 6 g(n), and now the set of all 9-edges e with |e ∩ Vij | = 2 for all

the electronic journal of combinatorics 25(1) (2018), #P1.4 3



1 6 j 6 4 may be decomposed into g(n)2 complete 9-partite 9-graphs by taking the
Ex × Fx ×Gy ×Hy × (Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4)c for 1 6 x, y 6 g(n).]

Finally, the second case corresponds to the set of r-edges with r1 = r2 = · · · = rd−1 =
2, rd = 3. These can be decomposed in a similar fashion. Indeed, for each collection of d
vertex classes Vi1 , Vi2 , . . . , Vid , the set of r-edges {e : |e ∩ Vid | = 3 and |e ∩ Vij | = 2, j =

1, 2, . . . , d − 1} can be decomposed into n2g(n)(d−2)/2 or ng(n)(d−1)/2 complete r-partite
r-graphs, depending on whether d is even or odd. There are d

(
k
d

)
such sets of r-edges.

Combining the above and the bound on g(n) given in inequality (1), we have

fr(kn) 6

{(
k
d

)
g(n)

d
2 + d

(
k
d

)
n2g(n)

d−2
2 + C ′kd−1nd + Cnd−1 (if d even)(

k
d

)
ng(n)

d−1
2 + d

(
k
d

)
ng(n)

d−1
2 + C ′kd−1nd + Cnd−1 (if d odd)

6

(
k

d

)(
14

15

)b d2c
nd + d

(
k

d

)(
14

15

)b d−1
2 c

nd + C ′kd−1nd + o(nd)

6

((
14

15

)b d2c
+ d

(
14

15

)b d−1
2 c

+
d!C ′

k

)(
k

d

)
nd + o(nd)

6

((
14

15

)b d2c
+ d

(
14

15

)b d−1
2 c

+ εk

)
(1 + o(1))

(
kn

d

)
.

Corollary 2. Let r > 295 be a fixed odd number. Then there exists c < 1 such that

fr(n) 6 c(1 + o(1))

(
n

br/2c

)
.

Proof. As above, write r = 2d+1. It is straightforward to check that for d > 147 we have(
14
15

)b d2c + d
(
14
15

)b d−1
2 c < 1. Choosing k such that

c =

(
14

15

)b d2c
+ d

(
14

15

)b d−1
2 c

+ εk < 1,

we have fr(kn) 6 c(1 + o(1))
(
kn
d

)
for all n. However since the function fr(n) is monotone

in n, and k is constant as n varies, it follows that fr(n) 6 c(1 + o(1))
(
n
d

)
for all n.

From Theorem 1, we have

c2d+1 6

(
14

15

)b d2c
+ d

(
14

15

)b d−1
2 c

for every d. Also, it is easy to see that c2d 6 c2d+1. Indeed, by excluding a vertex in the
complete (2d+ 1)-graph on n+ 1 vertices, the complete (2d)-partite (2d)-graphs induced

from the complete (2d+ 1)-partite (2d+ 1)-graphs in a minimal decomposition of K
(2d+1)
n+1

form a decomposition of K
(2d)
n , implying that f2d(n) 6 f2d+1(n + 1). Hence we have the

following.
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Corollary 3. The numbers cr satisfy

cr 6
r

2

(
14

15

)r/4

+ o(1).

(Here the o(1) term is as r →∞.)

Corollary 3 implies that cr → 0 as r →∞, proving Conjecture 16 in [6].
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