Improved Bounds for the Graham-Pollak Problem for Hypergraphs

Imre Leader
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge Cambridge CB3 0WB, United Kingdom
I.Leader@dpmms.cam.ac.uk

Ta Sheng Tan
Institute of Mathematical Sciences
Faculty of Science
University of Malaya
50603 Kuala Lumpur, Malaysia
tstan@um.edu.my

Submitted: Aug 7, 2017; Accepted: Dec 16, 2017; Published: Jan 12, 2018
Mathematics Subject Classifications: 05D05, 05C70

Abstract

For a fixed r, let $f_{r}(n)$ denote the minimum number of complete r-partite r graphs needed to partition the complete r-graph on n vertices. The Graham-Pollak theorem asserts that $f_{2}(n)=n-1$. An easy construction shows that $f_{r}(n) \leqslant$ $(1+o(1))\binom{n}{\lfloor r / 2\rfloor}$, and we write c_{r} for the least number such that $f_{r}(n) \leqslant c_{r}(1+$ $o(1))\binom{n}{\lfloor r / 2\rfloor}$.

It was known that $c_{r}<1$ for each even $r \geqslant 4$, but this was not known for any odd value of r. In this short note, we prove that $c_{295}<1$. Our method also shows that $c_{r} \rightarrow 0$, answering another open problem.

Keywords: Hypergraph, Decomposition, Graham-Pollak

1 Introduction

The edge set of K_{n}, the complete graph on n vertices, can be partitioned into $n-1$ complete bipartite subgraphs: this may be done in many ways, for example by taking $n-1$ stars centred at different vertices. Graham and Pollak [4,5] proved that the number $n-1$ cannot be decreased. Several other proofs of this result have been found, by Tverberg [8], Peck [7], and Vishwanathan [9, 10], among others.

Generalising this to hypergraphs, for $n \geqslant r \geqslant 1$, let $f_{r}(n)$ be the minimum number of complete r-partite r-graphs needed to partition the edge set of $K_{n}^{(r)}$, the complete r uniform hypergraph on n vertices (i.e., the collection of all r-sets from an n-set). Thus the Graham-Pollak theorem asserts that $f_{2}(n)=n-1$. For $r \geqslant 3$, an easy upper bound of $\binom{n-[r / 27}{\lfloor r / 2\rfloor}$ may be obtained by generalising the star example above. Indeed, for r even, having ordered the vertices, consider the collection of r-sets whose $2 n d, 4 t h, \ldots, r t h$
vertices are fixed. This forms a complete r-partite r-graph, and the collection of all $\binom{n-r / 2}{r / 2}$ such is a partition of $K_{n}^{(r)}$. For r odd, we instead fix the $2 n d, 4 t h, \ldots,(r-1)$ th vertices, yielding a partition into $\binom{n-(r+1) / 2}{(r-1) / 2}$ parts.

Alon [1] showed that $f_{3}(n)=n-2$. More generally, for each fixed $r \geqslant 1$, he showed that

$$
\frac{2}{\binom{2\lfloor r / 2\rfloor}{\lfloor r / 2\rfloor}}(1+o(1))\binom{n}{\lfloor r / 2\rfloor} \leqslant f_{r}(n) \leqslant(1-o(1))\binom{n}{\lfloor r / 2\rfloor},
$$

where the upper bound follows from the construction above. Writing c_{r} for the least c such that $f_{r}(n) \leqslant c(1+o(1))\binom{n}{\lfloor r / 2\rfloor}$, the above results assert that $c_{2}=1, c_{3}=1$, and $\frac{2}{\binom{[r / 2]}{[r / 2]}} \leqslant c_{r} \leqslant 1$ for all r. How do the c_{r} behave?

Cioabǎ, Kündgen and Verstraëte [2] gave an improvement (in a lower-order term) to Alon's lower bound, and Cioabǎ and Tait [3] showed that the construction above is not sharp in general, but Alon's asymptotic bounds (i.e., the above bounds on c_{r}) remained unchanged. Recently, Leader, Milićević and Tan [6] showed that $c_{r} \leqslant \frac{14}{15}$ for each even $r \geqslant 4$. However, they could not improve the bound of $c_{r} \leqslant 1$ for any odd r - the point being that the construction above is better for r odd than for r even (the exponent of n is $(r-1) / 2$ for r odd versus $r / 2$ for r even), and so is harder to improve.

In this note, we give a simple argument to show that $c_{295}<1$. Our method also shows that $c_{r} \rightarrow 0$, answering another question from [6].

It would be interesting to know what happens for smaller odd values of r : for example, is $c_{5}<1$? Determining the precise value of c_{4} (i.e., the asymptotic behaviour of $f_{4}(n)$) would also be of great interest, as would determining the decay rate of the c_{r}. See [6] for several related questions and conjectures.

2 Main Result

The motivation for our proof is as follows. The key to the approach used in [6] in proving $c_{r}<1$ for each even $r \geqslant 4$ was to investigate the minimum number of products of complete bipartite graphs, that is, sets of the form $E\left(K_{a, b}\right) \times E\left(K_{c, d}\right)$, needed to partition the set $E\left(K_{n}\right) \times E\left(K_{n}\right)$. Writing $g(n)$ for this minimum value, it is trivial that $g(n) \leqslant(n-1)^{2}$, by taking the products of the complete bipartite graphs appearing in a decomposition of K_{n} into $n-1$ complete bipartite graphs. It was shown in [6] that

$$
\begin{equation*}
g(n) \leqslant\left(\frac{14}{15}+o(1)\right) n^{2} . \tag{1}
\end{equation*}
$$

It turned out that this upper bound on $g(n)$ was enough (via an iterative construction) to bound c_{r} below 1 for each even $r \geqslant 4$.

Now, as remarked above, for r odd the construction in the Introduction is much better than for r even. In fact, while there are many iterative ways to redo the construction when r is even, passing from $n / 2$ to n, these fail when r is odd: it turns out that an extra factor is introduced at each stage. However, rather unexpectedly, we will see that
(at least if r is large) if we partition into many pieces, instead of just two pieces, then the gain we obtain from the $14 / 15$ improvement in $g(n)$ outweighs the loss arising from this extra factor - even though this extra factor grows as the number of pieces grows.

A minimal decomposition of a complete r-partite r-graph $K_{n}^{(r)}$ is a partition of the edge set into $f_{r}(n)$ complete r-partite r-graphs. A block is a product of the edge sets of two complete bipartite graphs. Similarly, a minimal decomposition of $E\left(K_{n}\right) \times E\left(K_{n}\right)$ is a partition of $E\left(K_{n}\right) \times E\left(K_{n}\right)$ into $g(n)$ blocks. Finally, for a set V, we may write $E(V)$ to denote the edge set of the complete graph on V, that is, the set of all 2-subsets of V.

Theorem 1. Let $r=2 d+1$ be fixed. Then for each k there exists ϵ_{k}, with $\epsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$, such that for all n we have

$$
f_{r}(k n) \leqslant\left(\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}+\epsilon_{k}\right)(1+o(1))\binom{k n}{d} .
$$

(Here the o(1) term is as $n \rightarrow \infty$, with k and d fixed.)
Proof. In order to decompose the edge set of $K_{k n}^{(r)}$, we start by splitting the $k n$ vertices into k equal parts, say $V\left(K_{k n}^{(r)}\right)=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$, where $\left|V_{i}\right|=n$ for each i. We consider the r-edges based on their intersection sizes with the k vertex classes. For each partition of r into positive integers $r_{1}+r_{2}+\cdots+r_{l}$ with $r_{1} \leqslant r_{2} \leqslant \cdots \leqslant r_{l}$ and for each collection of l vertex classes $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{l}}$, the set of r-edges e with $\left|e \cap V_{i_{j}}\right|=r_{j}$ for all j can be decomposed into $f_{r_{1}}(n) f_{r_{2}}(n) \cdots f_{r_{l}}(n)$ complete r-partite r-graphs: take a complete r_{j}-partite r_{j}-graph from a minimal decomposition of $K_{n}^{\left(r_{j}\right)}$ for each j, and form a complete r-partite r-graph by taking the product of them.

Note that if at least three values of the r_{j} are odd, then $f_{r_{1}}(n) f_{r_{2}}(n) \cdots f_{r_{l}}(n)=$ $O\left(n^{d-1}\right)$, as $f_{s}(n) \leqslant\binom{ n}{\lfloor s / 2\rfloor}$ for any s. So the set of r-edges e with $\left|e \cap V_{i}\right|$ is odd for at least three distinct V_{i} can be decomposed into $C n^{d-1}$ complete r-partite r-graphs, for some constant C depending on d and k.

Let C^{\prime} be the number of partitions of r into at most $d-1$ positive integers where exactly one of them is odd. Then we observe that the set of r-edges e such that e intersects with at most $d-1$ vertex classes and $\left|e \cap V_{i}\right|$ is odd for exactly one V_{i} can be decomposed into at most $C^{\prime} k^{d-1} n^{d}$ complete r-partite r-graphs.

We are now only left with two partitions of $r: r=1+2+2+\cdots+2$ and $r=2+2+\cdots+$ $2+3$. The first case corresponds to the set of r-edges with $r_{1}=1, r_{2}=\cdots=r_{d+1}=2$. For each of the $\binom{k}{d}$ collections of d vertex classes $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{d}}$, we claim that the set of r-edges $\left\{e:\left|e \cap V_{i_{j}}\right|=2, j=1,2, \ldots, d\right\}$ can be decomposed into $g(n)^{d / 2}$ or $n g(n)^{(d-1) / 2}$ complete r-partite r-graphs, depending on whether d is even or odd. This is done by pairing up the $V_{i_{j}} \mathrm{~s}$ (or all but one of the $V_{i_{j}} \mathrm{~s}$ if d is odd), and forming complete r partite r-graphs using products of blocks in a minimal decomposition of $E\left(K_{n}\right) \times E\left(K_{n}\right)$. [For example, for $d=4$, we would take a decomposition of $E\left(V_{i_{1}}\right) \times E\left(V_{i_{2}}\right)$ into blocks $E_{x} \times F_{x}, 1 \leqslant x \leqslant g(n)$, and similarly a decomposition of $E\left(V_{i_{3}}\right) \times E\left(V_{i_{4}}\right)$ into blocks $G_{x} \times H_{x}, 1 \leqslant x \leqslant g(n)$, and now the set of all 9-edges e with $\left|e \cap V_{i_{j}}\right|=2$ for all
$1 \leqslant j \leqslant 4$ may be decomposed into $g(n)^{2}$ complete 9-partite 9-graphs by taking the $E_{x} \times F_{x} \times G_{y} \times H_{y} \times\left(V_{i_{1}} \cup V_{i_{2}} \cup V_{i_{3}} \cup V_{i_{4}}\right)^{c}$ for $1 \leqslant x, y \leqslant g(n)$.]

Finally, the second case corresponds to the set of r-edges with $r_{1}=r_{2}=\cdots=r_{d-1}=$ $2, r_{d}=3$. These can be decomposed in a similar fashion. Indeed, for each collection of d vertex classes $V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{d}}$, the set of r-edges $\left\{e:\left|e \cap V_{i_{d}}\right|=3\right.$ and $\left|e \cap V_{i_{j}}\right|=2, j=$ $1,2, \ldots, d-1\}$ can be decomposed into $n^{2} g(n)^{(d-2) / 2}$ or $n g(n)^{(d-1) / 2}$ complete r-partite r-graphs, depending on whether d is even or odd. There are $d\binom{k}{d}$ such sets of r-edges.

Combining the above and the bound on $g(n)$ given in inequality (1), we have

$$
\begin{aligned}
& f_{r}(k n) \leqslant \begin{cases}\binom{k}{d} g(n)^{\frac{d}{2}}+d\binom{k}{d} n^{2} g(n)^{\frac{d-2}{2}}+C^{\prime} k^{d-1} n^{d}+C n^{d-1} & \text { (if } d \text { even) } \\
\binom{k}{d} n g(n)^{\frac{d-1}{2}}+d\binom{k}{d} n g(n)^{\frac{d-1}{2}}+C^{\prime} k^{d-1} n^{d}+C n^{d-1} & \text { (if } d \text { odd) }\end{cases} \\
& \leqslant\binom{ k}{d}\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor} n^{d}+d\binom{k}{d}\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor} n^{d}+C^{\prime} k^{d-1} n^{d}+o\left(n^{d}\right) \\
& \leqslant\left(\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}+\frac{d!C^{\prime}}{k}\right)\binom{k}{d} n^{d}+o\left(n^{d}\right) \\
& \leqslant\left(\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}+\epsilon_{k}\right)(1+o(1))\binom{k n}{d} \text {. }
\end{aligned}
$$

Corollary 2. Let $r \geqslant 295$ be a fixed odd number. Then there exists $c<1$ such that

$$
f_{r}(n) \leqslant c(1+o(1))\binom{n}{\lfloor r / 2\rfloor} .
$$

Proof. As above, write $r=2 d+1$. It is straightforward to check that for $d \geqslant 147$ we have $\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}<1$. Choosing k such that

$$
c=\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}+\epsilon_{k}<1
$$

we have $f_{r}(k n) \leqslant c(1+o(1))\binom{k n}{d}$ for all n. However since the function $f_{r}(n)$ is monotone in n, and k is constant as n varies, it follows that $f_{r}(n) \leqslant c(1+o(1))\binom{n}{d}$ for all n.

From Theorem 1, we have

$$
c_{2 d+1} \leqslant\left(\frac{14}{15}\right)^{\left\lfloor\frac{d}{2}\right\rfloor}+d\left(\frac{14}{15}\right)^{\left\lfloor\frac{d-1}{2}\right\rfloor}
$$

for every d. Also, it is easy to see that $c_{2 d} \leqslant c_{2 d+1}$. Indeed, by excluding a vertex in the complete $(2 d+1)$-graph on $n+1$ vertices, the complete $(2 d)$-partite $(2 d)$-graphs induced from the complete $(2 d+1)$-partite $(2 d+1)$-graphs in a minimal decomposition of $K_{n+1}^{(2 d+1)}$ form a decomposition of $K_{n}^{(2 d)}$, implying that $f_{2 d}(n) \leqslant f_{2 d+1}(n+1)$. Hence we have the following.

Corollary 3. The numbers c_{r} satisfy

$$
c_{r} \leqslant \frac{r}{2}\left(\frac{14}{15}\right)^{r / 4}+o(1) .
$$

(Here the $o(1)$ term is as $r \rightarrow \infty$.)
Corollary 3 implies that $c_{r} \rightarrow 0$ as $r \rightarrow \infty$, proving Conjecture 16 in [6].

References

[1] N. Alon. Decomposition of the complete r-graph into complete r-partite r-graphs. Graphs and Combin., 2:95-100, 1986.
[2] S. M. Cioabǎ, A. Kündgen, and J. Verstraëte. On decompositions of complete hypergraphs. J. Combin. Theory Ser. A, 116:1232-1234, 2009.
[3] S. M. Cioabǎ and M. Tait. Variations on a theme of Graham and Pollak. Discrete Math., 313:665-676, 2013.
[4] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50(8):2495-2519, 1971.
[5] R. L. Graham and H. O. Pollak. On embedding graphs in squashed cubes. In Graph Theory and Applications, volume 303 of Lecture Notes in Math., pages 99110. Springer, 1972.
[6] I. Leader, L. Milićević, and T. S. Tan. Decomposing the complete r-graph. J. Combin. Theory Ser. A, 154:21-31, 2018.
[7] G. Peck. A new proof of a theorem of Graham and Pollak. Discrete Math., 49:327328, 1984.
[8] H. Tverberg. On the decomposition of K_{n} into complete bipartite graphs. J. Graph Theory, 6:493-494, 1982.
[9] S. Vishwanathan. A polynomial space proof of the Graham-Pollak theorem. J. Combin. Theory Ser. A, 115:674-676, 2008.
[10] S. Vishwanathan. A counting proof of the Graham-Pollak theorem. Discrete Math., 313(6):765-766, 2013.

