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Abstract

Motivated by questions of Mulmuley and Stanley we investigate quasi-polyno-
mials arising in formulas for plethysm. We demonstrate, on the examples of S3(Sk)
and Sk(S3), that these need not be counting functions of inhomogeneous polytopes
of dimension equal to the degree of the quasi-polynomial. It follows that these
functions are not, in general, counting functions of lattice points in any scaled
convex bodies, even when restricted to single rays. Our results also apply to special
rectangular Kronecker coefficients.

Many problems in representation theory have combinatorial solutions. A well-known,
important example is the Littlewood–Richardson rule which gives the multiplicities of iso-
typic components in the tensor product of two irreducible GL(n) representations [FH91].
The solution is combinatorial in the sense that the answer is given by the number of lattice
points in explicit rational convex polyhedra, i.e. the multiplicities are equal to values of
an Ehrhart quasi-polynomial. Berenstein and Zelevinsky provided another interpretation
of the Littlewood–Richardson rule [BZ92], isomorphic, however, on the level of polytopes
[PV05]. The study of different polyhedral structures turned out to be very useful. Knut-
son and Tao [KT99] showed that the honeycomb polytopes (in spirit similar to [BZ92])
are nonempty if and only if they contain a lattice point. This was the crucial last step in
the solution to the Horn problem [Hor62] which goes back to Weyl’s work on eigenvalues
of partial differential equations [Wey12].
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In this paper we study the more complicated plethysm coefficients md,k
λ defined by

Sd(SkW ) =
⊕
λ

md,k
λ SλW,

where the sum is over partitions λ of dk.
The computation of the multiplicity functions in plethysms can be seen as an operation

on Schur polynomials [Mac98]. Viewed like this, it is surprising that when the plethysm is
written in terms of other Schur polynomials, the coefficients are always nonnegative. Of
course this must be true, because the coefficients are multiplicities of irreducible represen-
tations, but it would be desirable to have a combinatorial explanation for nonnegativity.
In [Sta00, Problem 9] Richard Stanley asked for a positive combinatorial method to com-
pute plethysm coefficients. A connection between plethysm and lattice point counting
was shown at least in [KM16, Col17, CDW12]. These connections are not direct in the
sense that plethysm coefficients are not seen to equal counts, but always involve some
opaque arithmetics.

The functions f(s) = md,sk
sλ and g(s) = msd,k

sλ share many properties with Ehrhart
functions of rational polytopes:

• Both f and g are nonnegative and f(0) = g(0) = 1.

• Both f and g are quasi-polynomials. This deep fact follows from [MS99, Corol-
lary 2.12]. See [KM16, Remark 3.12].

• For regular λ, the leading term of f is proportional to the Ehrhart function of a ra-
tional polytope corresponding to the Littlewood–Richardson rule [KM16, Section 4].

Remark 1. The scaling factor between the leading coefficient of f and the Ehrhart
function in the third bullet is the Plancherel measure on Young diagrams. It is conjectured
that the same is true for any λ, however we are not aware of a proof.

Example 2. The multiplicity of λ = s · (2k − 1, 1) inside S2(Ssk) equals 0 when s is
odd and 1 when s even. In particular, it is equal to the number of integral points in
the (zero-dimensional) polytope {s/2}. The multiplicity of s · (2k, k) inside S3(Ssk) is
equal to the number of integral points in the (one-dimensional) polytope s · [1/3, 1/2] or
s · [1/2, 2/3].

Ketan Mulmuley posed several conjectures concerning the behavior of plethysm and
Kronecker coefficients in relation to geometric complexity theory [MS01, Mul09].

Question 3. Fix positive integers k, d, and λ a partition of kd. Are the quasi-polynomials
s 7→ md,sk

sλ and s 7→ msd,k
sλ Ehrhart functions of rational polytopes?

The question about msd,k
sλ comes directly from [Mul09, Hypothesis 1.6.4]. We give a

negative answer for both functions in Remark 6. Our main goal, however, is a generalized
version of these questions for which we need some additional terminology. Following
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[Mul11, Section 5.1] we define a shifted or inhomogeneous rational polytope as a system
of inequalities

P (A, b, c) = {x ∈ Qm : Ax 6 b+ c},

where b, c are arbitrary rational vectors and A is a rational matrix. Splitting the right
hand side as b+ c is motivated by the definition of the dilations of P as

P (A, sb, c) = {x ∈ Qm : Ax 6 sb+ c}.

An asymptotic Ehrhart quasi-polynomial is a counting function of the form

s 7→ #(P (A, sb, c) ∩ Zm).

The dimension of a shifted rational polytope P is by definition the dimension of P (A, sb, c)
for large s (for small s the polytope can be empty). Contrary to the case of Ehrhart
quasi-polynomials, an asymptotic Ehrhart quasi-polynomial does not need to be a quasi-
polynomial, although it is for large arguments. Moreover, a quasi-polynomial may be an
asymptotic Ehrhart quasi-polynomial but not an Ehrhart quasi-polynomial. Asymptotic
Ehrhart quasi-polynomials do not have to satisfy Ehrhart reciprocity. Further, the dimen-
sion of a shifted rational polytope can be strictly greater than the degree of the associated
asymptotic Ehrhart quasi-polynomial. See [Sta82] and [Sta96, Chapter I] for structure
theory of asymptotic Ehrhart quasi-polynomials and the relation to linear diophantine
equations.

In [Mul11, Hypothesis 5.3] it is conjectured that the multiplicity of s · π in Ss·λ(Sµ) is
an asymptotic Ehrhart quasi-polynomial with additional complexity-theoretic properties.
The asymptotic part of the conjecture is motivated by the failure of Ehrhart type expla-
nations already for Kronecker coefficients [BOR09, KW09] which are often considered less
complicated than plethysm coefficients. In the present paper we make progress towards
a negative answer of the following simplified version.

Question 4. Is msd,k
sλ an asymptotic Ehrhart quasi-polynomial?

Our main result, Theorem 5, implies a negative answer to both cases in Question 3 and
strong restrictions on a positive solution to Question 4. We show that msd,k

sλ need not be
an asymptotic Ehrhart quasi-polynomial of a polytope of dimension equal to the degree
of its growth. At the moment we are not able either to exclude or confirm that msd,k

sλ

is an asymptotic Ehrhart quasi-polynomial for an inhomogeneous polytope of dimension
strictly larger than its degree.

In previous work the authors gave a formula for plethysm coefficients, which is a sum
of Ehrhart functions of various polytopes with (positive and negative) coefficients [KM16].
This allows to gather experimental data on the questions for many rays. A-posteriori,
the specific plethysm in Theorem 5 can also be confirmed using well-known formulas for
S3(Sk). General formulas for Sk(S3) are unknown, though. Our methods are inspired by
[KW09, BOR09].
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Theorem 5. The multiplicity functions of Ss·(7,5,0) in S3(S4s) and S4s(S3) equal

φ : s 7→ s+ r(s)

3

where r(s) has period 6 and takes the values 3,−1, 1, 0, 2,−2 on respectively the integers
0, . . . , 5. There do not exist rational vectors a, b, c ∈ Qn (of arbitrary length n) such that
φ equals the counting function of a one-dimensional inhomogeneous polytope P (a, b, c). In
particular, φ is not an Ehrhart function of any rational polyhedron.

Remark 6. Before giving a general proof, it is easy to see that φ cannot be an Ehrhart
function: it violates Ehrhart–Macdonald reciprocity [Ehr67, Mac71]. The value f(−s) of
an Ehrhart quasi-polynomial f of a rational polytope P at a negative integer argument
counts (up to a global sign) the number of interior lattice points in s · P . In particular,
|f(−s)| 6 f(s). However,

−φ(−1) = 1 > 0 = φ(1).

Interestingly, the jumps in values that make Ehrhart reciprocity fail are also the cru-
cial ingredient for our proof of non-representability by a one-dimensional inhomogeneous
polytope.

Proof. The equality of the multiplicities of the given ray in both plethysms is a con-
sequence of Hermite reciprocity [Her54], [FH91, Exercise 6.18]. There are now various
ways to determine the formula from the interpretation as a multiplicity in S3(S4s). One
is to simply evaluate the explicit formula from [KM16] along a ray. Another way is
to observe that the function must exhibit linear growth and that its period is at most
six [CGR84, MM15]. With this information and some values the function can be inter-
polated.

Let P be an inhomogeneous line segment as in the statement. Then the s-th dilation
of P can be written as

P (s) = {x ∈ Q : max
i

(sbi + ci) 6 x 6 min
i

(sb′i + c′i)}.

Asymptotically, P (s) becomes an interval of length s
3
. This means that there exists an s0

such that for all s > s0

P (s) = {x ∈ Q : sb+ c 6 x 6 s(b+ 1
3
) + c′)} =: Q(s), (1)

for some b, c, c′ ∈ Q. Making s0 even larger it can be assumed that s0b are integers and
that s0 is divisible by 6 (the period of φ). Since #Q(s) and #P (s) have the same linear
term and constants that are s0-periodic (by the divisibility assumptions) they agree for
all s.

The proof of nonexistence of the family Q(s) such that φ(s) = #Q(s) is by examination
of constraints on b, coming from the known values of the counting function φ. Without
loss of generality we have

0 6 b < 1. (2)
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Indeed, changing b by an integer also only shifts Q by an integral value.
As φ(5) + 2 = φ(6) there must be at least two integers x such that 5(b + 1

3
) + c′ <

x 6 6(b + 1
3
) + c′. Hence, b + 1

3
> 1. In particular, for any s there is always at least one

integer x satisfying s(b+ 1
3
) + c′ < x 6 (s+ 1)(b+ 1

3
) + c′ (an interval of length > 1 must

contain an integer). On the other hand, by (2) there is at most one integer x satisfying
sb + c′ < x 6 (s + 1)b + c′ (an interval of length < 1 may contain at most one integer).
The above two intervals are the difference between P (s) and P (s + 1). It follows that
φ(s) is nondecreasing. This contradicts φ(0) = 1 > 0 = φ(1).

Remark 7. We have confirmed that all examples with two rows and fewer boxes are in
fact Ehrhart functions. In this sense, our counter-example is minimal.

Remark 8. A different way to describe an inhomogeneous polytope is by linear integral
equations and nonnegativity. In this setting Stanley gave a general reciprocity theorem
which relates the Hilbert series (expanded at ∞) of the module of positive integral solu-
tions of linear Diophantine equations to the Hilbert series of negative solutions to the same
equations. In [Sta82, Theorem 4.2] there are, however, combinatorially defined correction
terms.

Remark 9. While this is not visible from the representation in [KM16], a general the-
orem of Meinrenken and Sjamaar [MS99] implies that the chambers of plethysm quasi-
polynomials are polyhedral cones (see [KM16, Remark 3.12], [PV15]). One may thus
ask the stronger question if they are Ehrhart quasi-polynomials in general. Of course,
Theorem 5 gives a negative answer to this much stronger property too.

Lattice point counting in polytopes and Ehrhart functions are arguably the most
natural combinatorial explanations one may hope for here, but they are not the only
ones. Our theorem also excludes other possibilities.

Corollary 10. The plethysm coefficients are not positive combinations of counting func-
tions of lattice points in integral scalings of any convex regions.

Proof. One-dimensional convex sets are polyhedra and the counting function in Theorem 5
would need to specialize to a positive combination of Ehrhart functions.

The plethysm counting function in Theorem 5 cannot be written as a positive com-
bination of Ehrhart quasi-polynomials as these also have to satisfy Ehrhart reciprocity.
However, it can be written as a sum of an asymptotic Ehrhart quasi-polynomial and an
honest Ehrhart quasi-polynomial as in the following proposition (which is very easy to
confirm).

Proposition 11. Fix a small rational ε > 0. Let P (s) = [ε, s · 1
3

+ ε] and Q(s) = s · {1
2
}.

Then φ(s) = #(P (s) ∩ Z) + #(Q(s) ∩ Z).

Remark 12. An interesting open question is the following. Suppose we are given a
piecewise quasi-polynomial whose chambers are cones. Is there a finite computational
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test if the quasi-polynomial is an (asymptotic) Ehrhart function? Assume it is not an
Ehrhart function globally, but is an Ehrhart function on each individual ray. Is there a
finite number of rays such that finding polytopes for each of the finitely many rays proves
the Ehrhart nature for all rays? Is it some multi-dimensional generalization of Apéry sets
known from numerical semigroups?

Remark 13. According to [KM16, Remark 3.8] the function φ in Theorem 5 also counts,
for example, the multiplicity of λ = s · (7 + 2t, 5 + 2t, 2t) in S3(Ss·(5+2t)) for any positive t.
Therefore counterexamples also exist for strictly interior rays.

Recently, there has been a lot of interest in Kronecker coefficients [Man16, BOR09,
SS16, BV15]. These are different from plethysm, but also hard to compute and im-
portant in geometric complexity theory. It is known that on rays they are given by
quasi-polynomials [Man15, Theorem 1] that do not have to be Ehrhart functions [KW09].
However, the problem is open for specific rays that are important in GCT. Emmanuel
Briand pointed us towards following observation. Two row partitions are useful because
Hermite reciprocity applies to them. Further, by the work of Vallejo [Val14], cf. [Mac98],
the plethysm coefficients in Theorem 5 are equal to special Kronecker coefficients:

φ(s) = K(34s, 33s, (7s, 5s)) = K((4s, 4s, 4s), (4s, 4s, 4s), (7s, 5s)),

where K depends on three partitions and is the Kronecker coefficient. Indeed, let pn(a, b)
denote the number of Young diagrams with n boxes contained inside an a× b rectangle.
Both the multiplicity of λ with two rows in the plethysm Sa(Sb) and the Kronecker
coefficient K(ab, ab, λ) can be expressed as the difference

pλ2(a, b)− pλ2−1(a, b).

For example by transposition, this immediately implies Hermite reciprocity.

Example 14. The multiplicity of (7, 5) inside S4(S3) equals zero. Here we have 4 dia-
grams with 5 boxes inside a 4 × 3 rectangle: (4, 1), (3, 2), (3, 1, 1), (2, 2, 1). We also have
4 such diagrams with 4 boxes: (4, 0), (3, 1), (2, 2), (2, 1, 1), hence the difference is indeed
zero.

The rectangular Kronecker coefficients K(ab, ab, λ) are of particular interest in GCT
(see e.g. [IP17]). Moreover, they exactly govern unimodality of q-binomial coefficients,
observed already in 1878 by Sylvester (see [PP14, p. 2]).

In a different direction, the following interesting question was recently brought to our
attention by Michèle Vergne.

Question 15. Are the plethysm coefficients Ehrhart polynomials after rescaling? Specif-
ically, are f̃(s) := f(ks) or g̃(s) := g(ks) Ehrhart polynomials for some k?

One can prove that the answer is positive when f or g are of degree one, thus to find
a counterexample one needs to consider partitions with more than one row.
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Cambridge and Dublin Mathematical Journal 9 (1854), 172–217.

[Hor62] Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific Journal of
Mathematics 12 (1962), no. 1, 225–241.

[IP17] Christian Ikenmeyer and Greta Panova, Rectangular Kronecker coefficients
and plethysms in geometric complexity theory, Advances in Mathematics 319
(2017), 40–66.

[KM16] Thomas Kahle and Mateusz Micha lek, Plethysm and lattice point counting,
Foundations of Computational Mathematics 16 (2016), no. 5, 1241–1261.

the electronic journal of combinatorics 25(1) (2018), #P1.41 7

http://arxiv.org/abs/1506.02472


[KT99] Allen Knutson and Terence Tao, The honeycomb model of GLn(C) tensor prod-
ucts I: Proof of the saturation conjecture, Journal of the American Mathemat-
ical Society 12 (1999), no. 4, 1055–1090.

[KW09] Ronald King and Trevor Welsh, Some remarks on characters of symmet-
ric groups, Schur functions, Littlewood–Richardson and Kronecker coeffi-
cients, work in progress http://congreso.us.es/enredo2009/Workshop_

files/Sevilla_King.pdf (2009).

[Mac71] Ian G Macdonald, Polynomials associated with finite cell-complexes, Journal of
the London Mathematical Society 2 (1971), no. 1, 181–192.

[Mac98] Ian Grant Macdonald, Symmetric functions and Hall polynomials, Oxford Uni-
versity Press, 1998.

[Man15] Laurent Manivel, On the asymptotics of Kronecker coefficients, Journal of Al-
gebraic Combinatorics 42 (2015), no. 4, 999–1025.

[Man16] , On the asymptotics of Kronecker coefficients, 2, Séminaire
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