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Abstract

The independence polynomial of a graph is the generating polynomial for the
number of independent sets of each size and its roots are called independence roots.
We investigate the stability of such polynomials, that is, conditions under which the
independence roots lie in the left half-plane. We use results from complex analysis to
determine graph operations that result in a stable or nonstable independence poly-
nomial. In particular, we prove that every graph is an induced subgraph of a graph
with stable independence polynomial. We also show that the independence polyno-
mials of graphs with independence number at most three are necessarily stable, but
for larger independence number, we show that the independence polynomials can
have roots arbitrarily far to the right.

Keywords: graph; independent set; independence polynomial; stable polynomial;
root

1 Introduction

A subset of vertices of a (finite, undirected and simple) graph G is called independent
if it induces a subgraph with no edges; the independence number of G is the size of the
largest independent set in G and is denoted by α(G) (or just α if the graph is clear from
context). The independence polynomial of G, denoted by i(G, x), is defined by

i(G, x) =
α∑
k=0

ikx
k,
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Figure 1: Independence roots of all graphs on 9 or fewer.

where ik is the number of independent sets of size k in G. We call the roots of i(G, x) the
independence roots of G.

Research on the independence polynomial and in particular, the independence roots,
has been very active (see, for example, [2, 3, 4, 5, 8, 14] and [13] for an excellent survey)
since it was first defined by Gutman and Harary in 1983 [11] (including recent connections,
in the multivariate case, to the hard core model in statistical physics [15]). On the nature
of these roots, Chudnovsky and Seymour [7] showed that the independence roots of claw-
free graphs are all real, and Brown and Nowakowski [5] showed that with probability
tending to 1, a graph will have a nonreal independence root.

Asking when the independence roots are all real is a very natural question, but what
about their location in the complex plane? While Brown et al. [4] showed that the
collection of the independence roots of all graphs are in fact dense in the complex plane,
plots of the independence roots of small graphs show a different story (see Figures 1 and
2). One striking thing about these plots is that not a single root lies in the open right
half-plane (RHP) {z ∈ C : Re(z) > 0}, so we are left to wonder: how ubiquitous are
graphs with stable independence polynomials, that is, with all their independence roots in
the left half-plane (LHP) {z ∈ C : Re(z) 6 0}? (A polynomial with all of its roots in the
LHP is called Hurwitz quasi-stable, or simply stable, and such polynomials are important
in many applied settings [6]). Such a region is a natural extension of the negative real
axis, which plays such a dominant role in the Chudnovsky-Seymour result on claw-free
graphs.

We shall call a graph itself stable if its independence polynomial is stable. It is known
that the independence root of smallest modulus is always real and therefore negative
(see [2]), so no independence polynomial has all its roots in the RHP, but it is certainly
possible for it to have all roots in the LHP. This paper shall consider the stability of
independence polynomials, providing some families of graphs whose independence poly-
nomials are indeed stable, while showing that graphs formed under various constructions
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Figure 2: Independence roots of all trees on 14 or fewer vertices.

have independence polynomials that are not only nonstable but have roots with arbitrarily
large real part.

We shall first consider stability for graphs with small independence number, and show
that while all graphs with independence number at most 3 are stable, it is not the case
for larger independence number. Then we shall turn to producing stable graphs as well
as nonstable graphs. Graph operations will play roles in both. We conclude with a few
open questions.

2 Stability for Small Independence Number

We begin by proving that all graphs with independence number at most three are indeed
stable. To do so, we shall utilize a necessary and sufficient condition, due to Hermite and
Biehler, for a real polynomial to be stable. Prior to introducing the theorem, we shall
need some notation.

A polynomial is standard when either it is identically zero or its leading coefficient is

positive. Given a polynomial P (x) =
d∑
i=0

aix
i, let

P even(x) =

bd/2c∑
i=0

a2ix
i,

and

P odd(x) =

b(d−1)/2c∑
i=0

a2i+1x
i;

P even(x) and P odd(x) are the “even” and “odd” parts of the polynomial, with

P (x) = P even(x2) + xP odd(x2).

For example, if P (x) = i(K3,3, x) = 1 + 6x + 6x2 + 2x3, then P even(x) = 1 + 6x and
P odd(x) = 6 + 2x.

Finally, let f(x) and g(x) be two real polynomials with all real roots, with say s1 6
s2 6 . . . 6 sn and t1 6 t2 6 . . . 6 tm being their respective roots. We say that
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• f interlaces g if m = n+ 1 and t1 6 s1 6 t2 6 s2 6 · · · 6 sn 6 tn+1, and

• f alternates left of g if m = n and s1 6 t1 6 s2 6 t2 6 · · · 6 sn 6 tn.

We write f ≺ g for either f interlaces g or f alternates left of g. A key result that we shall
rely upon is the Hermite-Biehler Theorem which characterizes when a real polynomial is
stable (see, for example, [17]).

Theorem 2.1 (Hermite-Biehler). Let P (x) = P even(x2)+xP odd(x2) be standard. Then
P (x) is stable if and only if both P even and P odd are standard, have only nonpositive roots
and P odd ≺ P even. �

We are now in a position to prove:

Proposition 2.1. If G is a graph of order n with α(G) 6 3, then i(G, x) is stable.

Proof. For graphs with independence number 1 (that is, a complete graph), the indepen-
dence polynomial is of the form 1 + nx. These polynomials are obviously stable for all
n. For graphs with independence number 2, the independence polynomial has the form
1 + nx + i2x

2. The complement of a graph with independence number 2 is triangle-free,
and hence by Turan’s famous theorem, has at most bn

2
cdn

2
e 6 n2

4
many edges. However,

clearly the number of edges in the complement is precisely i2, so that i2 6 n2

4
, which im-

plies that the discriminant of the independence polynomial 1 + nx+ i2x
2 is nonnegative,

and the roots are real (and hence negative). Therefore, the independence polynomial of
a graph with independence number 2 is necessarily stable.

For graphs with independence number 3, it is again the case that all independence poly-
nomials are stable. To show this, we utilize the Hermite-Biehler Theorem. If α(G) = 3,
then

i(G, x) = 1 + nx+ i2x
2 + i3x

3 = P even(x2) + xP odd(x2)

where P even = 1 + i2x and P odd = n+ i3x. It is clear that P even and P odd each have only
one real root, but we must show that P odd ≺ P even, i.e. that −n

i3
6 −1

i2
. Equivalently, we

need to show that ni2 > i3, but this follows as every independent set of size 3 contains an
independent set of size 2, so adjoining an outside vertex to each independent set of size
2 will certainly cover all independent sets of size 3 at least once. Thus by Theorem 2.1,
i(G, x) is stable for all α(G) = 3.

We now turn to independence number at least 4, and show, in contrast, that there
are many graphs whose independence roots lie in the RHP – in fact, we can find roots in
the RHP with arbitrarily large real part. We begin with a lemma. This lemma will be
pivotal for many of the results in the remainder of this section as well as in Section 4.

Lemma 2.1. Let R > 0 and f(x) ∈ R[x] be a polynomial of degree d with positive
coefficients. Then

1. if d > 4, then for m sufficiently large f(x) + mx has a root with real part greater
than R, and
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2. if d > 3, then for ` sufficiently large f(x) + ` has a root with real part greater than
R.

Proof. We consider the polynomial g(x) = f(x+R). As per the Hermite-Biehler theorem
let geven(x) and godd(x) denote the even and odd part of g(x), respectively, so that

g(x) = geven(x2) + xgodd(x2).

For the proof of part 1, consider the polynomial Pm(x) = m(x+R) + g(x). Clearly

P even
m (x) = mR + geven(x)

and
P odd
m (x) = m+ godd(x).

Suppose first that d is even. As d > 4, clearly deg(geven(x)) > 2. The leading coefficient
of P even

m (x) is positive (as f has all positive coefficients and R > 0), so it follows that
limx→∞ g

even(x) =∞. Let

M = max{|geven(z)| : (geven)′(z) = 0},

that is, M is the maximum absolute value of the function gevenm (x) at the latter’s critical
points (which are the same as the critical points of P even

m (x), as the two functions differ by
a constant). For any m > bM

R
c+ 1, the points on the graph of P even

m (x) whose horizontal
values are critical points of P even

m (x) all lie above the horzontal axis. It follows that the
roots of P even

m (x) = mR+geven(x) are simple (that is, have multiplicity 1), as if a root r of
P even
m (x) had multiplicity larger than 1, then it would also be a critical point of P even

m (x),
but for the chosen value of m, P even

m (r) > 0. Moreover, P even
m (x) has at most one real

root, as if it had two roots a < b, then by the simpleness of the roots, either the function
P even
m (x) is negative at some point between a and b, or to the right of b, but in either case
P even
m (x) would have a critical point c at which P even

m (c) < 0, a contradiction. In any event,
as P even

m (x) has at most one real root (counting multiplicities) and deg(P even
m (x)) > 2,

P even
m (x) must have a nonreal root. By the Hermite-Biehler theorem, it follows that
Pm(x) = m(x + R) + f(x + R) has a root in the RHP. Note that x = a + ib is a root of
Pm(x) if and only if x+R = (a+R) + ib is a root of f(x) +mx. Since there exists a root
x with Re(x) > 0 of Pm(x), x+R is a root of f(x) +mx with Re(x+R) > R. Therefore,
for sufficiently large m, f(x) +mx has roots with real part greater than R.

A similar (but slightly simpler) argument holds for part 2, provided d > 4, so all that
remains is the case d = 3. In this case, let f(x) = a0 + a1x+ a2x

2 + a3x
3. Set

g(x) = f(x+R)

= a0 + a1R + a2R
2 + a3R

3 + (a1 + 2Ra2 + 3R2a3)x+ (3Ra3 + a2)x
2 + a3x

3.

Now let P` = `+ g(x). By Theorem 2.1, P` is stable if and only if

−a1 + 2Ra2 + 3R2a3
a3

6 −a0 + a1R + a2R
2 + a3R

3 + `

3Ra3 + a2
,
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that is, if and only if

a1 + 2Ra2 + 3R2a3
a3

>
a0 + a1R + a2R

2 + a3R
3 + `

3Ra3 + a2
,

but clearly this fails if ` is large enough. Therefore, for ` sufficiently large, P odd
` 6≺ P even

`

and therefore, f(x) has a root with real part greater than R.

We shall shortly show the there are nonstable graphs of every independence number
greater than 3 by combining the previous lemma with another tool from complex analysis,
the well known and useful Gauss–Lucas Theorem, which states that the convex hull of
roots of polynomials only shrink when taking derivatives.

Theorem 2.2 (Gauss–Lucas). Let f(z) be a nonconstant polynomial with complex co-
efficients, and let f ′(z) be the derivative of f(z). Then the roots of f ′(z) lie in the convex
hull of the set of roots of f(z). �

Corollary 2.1. If f ′(z) has a root γ′ with Re(γ′) = R, then f(z) has a root γ such that
Re(γ) > R. �

We are now able to provide, for each α > 4, infinitely many examples of graphs with
independence number α that are nonstable. Moreover, we can embed any graph with
independence number α > 4 into another nonstable one with the same independence
number, and we can even do so with a (nonreal) independence root as as far to the right
as we like. To do this, we use the join operation. The join of two graphs G and H,
denoted G+H, is the graph obtained by joining all vertices of G with all vertices of H.

Proposition 2.2. Let G = H + F + F + · · ·+ F︸ ︷︷ ︸
k

, the join of a graph H and k copies of

F . If α(H) > α(F ) + 3, then for k sufficiently large, i(G, x) has roots with arbitrarily
large real part.

Proof. Let R > 0. Assume α(H) > α(F ) + 3. Also let c be the coefficient of xα(F ) in
i(F, x) (it is the number of independent sets of F of maximum cardinality). We take the
α(F )-th derivative of i(G, x), denoted i〈α(F )〉(G, x). Since

i(G, x) = i(H, x) + ki(F, x)− (k − 1),

we have
i〈α(F )〉(G, x) = i〈α(F )〉(H, x) + c · k · α(F )!

Since α(H) > α(F ) + 3, the polynomial i〈α(F )〉(H, x) has degree at least 3. We also
know that c and α(F )! are both at least 1 so we may choose a sufficiently large k and
apply Lemma 2.1 to show that i〈α(F )〉(G, x) has (nonreal) roots with arbitrarily large real
parts. By Corollary 2.1, the same is true of i(G, x).

Since the independence number of a complete graph is 1, the following corollary follows
immediately.
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Corollary 2.2. Let G be a graph with independence number at least 4, and let R > 0.
Then for all m sufficiently large, i(G+Km, x) has a root with real part greater than R.

Corollary 2.3. If G is a graph with α(G) > 4, then G is an induced subgraph of a graph
with independence number α(G) that is not stable.

Proof. From Corollary 2.2, H = G + Km is not stable for m sufficiently large. Joining a
clique does not change the independence number of the graph, so α(H) = α(G) and G is
a subgraph of H.

3 Graphs with Stable Independence Polynomials

While we have seen that graphs with small independence number are stable, what other
families of graphs are stable? By direct calculations, graphs on up to at least 10 vertices
and trees on up to at least 20 vertices have all their independence roots in the LHP.
As noted earlier, a graph with all real independence roots is necessarily stable since
the real independence roots must be negative (as independence polynomials have all
positive coefficients). The Chudnovsky-Seymour result therefore implies that all claw-free
graphs are stable. What about infinite stable families whose independence polynomials
do not have all real roots? We begin by showing that stars (which include the claw K1,3)
are examples of such graphs. We make use of another well-known result from complex
analysis, Rouché’s Theorem (see, for example, [9]).

Theorem 3.1 (Rouché’s Theorem). Let f and g be analytic functions on an open set
containing γ, a simple piecewise smooth closed curve, and its interior. If |f(z) + g(z)| <
|f(z)| for all z ∈ γ, then f and g have the same number of zeros inside γ, counting
multiplicities. �

Figure 3: The region γ in Proposition 3.1.
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Proposition 3.1. The roots of i(K1,n, x) are in the left half-plane.

Proof. Let G = K1,n; then i(G, x) = x + (1 + x)n. Let f(z) = −(1 + z)n and g(z) =
(1 + z)n + z and set

• γ1 = {z : Re(z) = 0 and − 2 6 Im(z) 6 2},

• γ2 = {z : −3 6 Re(z) 6 0 and Im(z) = 2},

• γ3 = {z : Re(z) = −3 and − 2 6 Im(z) 6 2}, and

• γ4 = {z : −3 6 Re(z) 6 0 and Im(z) = −2}.

Let γ be the curve consisting of four line segments γ1, γ2, γ3, γ4, i.e. γ = γ1 + γ2 + γ3 + γ4,
see Figure 3. The functions f and g are clearly analytic on C which contains γ and its
interior. The curve γ is a simple piecewise smooth closed curve so the hypotheses of
Rouché’s Theorem are satisfied.

We now show that |f(z) + g(z)| < |f(z)| for all z ∈ γ (we actually consider their
squares to simplify computations). Note that |f(z) + g(z)| = |z|. As i(K1,1, x) = 1 + 2x
has only one root at −1

2
, we will assume n > 2.

Case 1: If z ∈ γ1, then z = ki where −2 6 k 6 2. Now, |z|2 = k2 and |f(z)|2 =
|1 + x|2n = (1 + k2)n. Clearly k2 < (1 + k2)n, so it follows that |f(z) + g(z)|2 < |f(z)|2,
and hence |f(z) + g(z)| < |f(z)| for all z ∈ γ1.

Case 2: If z ∈ γ2, then z = k + 2i where −3 6 k 6 0. In this case |z|2 = k2 + 4 and
|(1 +x)n|2 = ((1 + k)2 + 4)n. As in case 1, it suffices to show ((1 + k)2 + 4)2 > k2 + 4 since
n > 2. Now h(k) = ((1 + k)2 + 4)2 − k2 − 4 takes on the value 59 at k = 1 and it can be
shown that h(k) has no real roots. Therefore, ((1 + k)2 + 4)2 > k2 + 4 for all k and hence
|f(z) + g(z)| < |f(z)| for all z ∈ γ2.

Case 3: If z ∈ γ3, then z = −3 + ki where −2 6 k 6 2. Now, |z|2 = 9 + k2 and
|(1 + z)n|2 = (4 + k2)n. It suffices to show that 9 + k2 < (4 + k2)2 since n > 2. Evaluating
at k = 0 (4 + k2)2 − k2 − 9 takes on the value 7 and it has no real roots. Hence the
inequality holds for all k, and so |f(z) + g(z)| < |f(z)| for all z ∈ γ3.

Case 4: If z ∈ γ4, then z = k − 2i where −3 6 k 6 0. If we set w = z̄ = k + 2i, then
|z|2 = |w|2 = k2 + 4 and |(1 + z)n| = |(1 +w)n| = ((1 + k)2 + 4)2 so we conclude our result
from our proof for case 2.

All cases together show that for all z ∈ γ, |f(z) + g(z)| < |f(z)|. Therefore by
Rouché’s Theorem we know that f and g have the same number of zeros inside γ counting
multiplicities. We know that f has one root of multiplicity n at z = −1 which is inside γ.
Therefore g(z) = i(G, z) has all n of its roots in γ which is contained in the (open) left
half-plane.
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We now extend the star family to a much larger family of graphs that are also stable.
The corona of a graph G with a graph H, denoted G ◦H, is defined by starting with the
graph G, and for each vertex v of G, joining a new copy Hv of H to v. The graph G ◦H
has |V (G)| + |V (G)||V (H)| vertices and |E(G)| + |V (G)||E(H)| + |V (G)||V (H)| edges.
For example, the star K1,n can be thought of as K1 ◦ Kn. See Figure 4 for an example
of the corona of two other graphs. There is a nice relationship between the independence
polynomials of G, H, and G ◦H that was first described by Gutman [10].

Figure 4: The graph K3 ◦K2

Theorem 3.2 ([10]). If G and H are graphs with G on n vertices, then

i(G ◦H, x) = i
(
G, x

i(H,x)

)
i(H, x)n.

One special case of the corona product that is particularly useful is the corona with
K1. The end result is adding a pendant vertex to each vertex of the graph. The product
G ◦ K1 is often denoted G∗ and called the graph star of G [16, 13]; from above it has
independence polynomial

i(G ◦K1, x) = i
(
G, x

i(H,x)

)
(1 + x)n.

It is easily seen that G∗ is always very well-covered, that is, all maximal independent sets
contain exactly half the vertex set.

For a graph G and positive integer k, let Gk∗ denote the graph k–star of G, that is,
the graph formed by iteratively attaching pendant vertices k times:

Gk∗ =

{
G∗ if k = 1,
(G(k−1)∗)∗ if k > 2.

We now show that the graph star operation preserves the stability of independence
polynomials. The proof uses properties of Möbius transformations, which are rational
functions of the form

T (z) =
az + b

cz + d

where a, b, c, d, z ∈ C and ad− bc 6= 0. More background on Möbius transformations can
be found, for example, in section 3.3 of Fisher’s book [9].
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Proposition 3.2. If the roots of i(G, x) lie outside of the region bounded by the circle
with with radius 1

2
centred at 1

2
, then i(G∗, x) is stable.

Proof. Let C be the circle with center z = 1/2 and radius 1/2. Note that the image of
the imaginary axis, {z : Re(z) = 0}, under the Möbius transformation f(z) = z

1+z
is C

(one need only observe that the image of the points 0, i, and −i are 0, 1
2

+ 1
2
i, and 1

2
− 1

2
i,

respectively). Moreover, as Möbius transformations send lines and circles to lines and
circles, and the interiors/exteriors of circles and half-planes of lines to the same set, we
find that the open right half-plane gets mapped to the interior of the circle C (as 1

2
, which

is in the open RHP, gets mapped to 1
3
, which is in the interior of C). It follows that the

open LHP gets mapped to the exterior of C.
The roots of i(G∗, x), along with −1 to some multiplicity, are found by solving f(z) = r

for every root r of i(G, x) since i(G∗, x) = (1+x)ni(G, x
1+x

) by Proposition 3.2. Therefore,
if i(G, x) has roots outside of C, then i(G∗, x) is stable.

Figure 5: Region in Proposition 3.2.

In Section 2 we will show that for α(G) 6 3, i(G, x) is always stable. That upcoming
discussion together with Proposition 3.2 and Theorem 3.1 proves the following corollary.

Corollary 3.1. If G is a claw-free graph, G = K1,n, or α(G) 6 3, then the graph k–star
of G is stable for all k > 1.

Corollary 3.1 provides more families of stable graphs, but can the k–star be used
to construct more families? It turns out it can be used to show that every graph is
eventually stable after iterating the star operation enough times. To prove this we will
need an extension of Theorem 3.2 that works for Gk∗ for any > 1.

Proposition 3.3 ([1]). For any graph G of order n and any positive integer k,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏
`=1

(`x+ 1)n2
k−`−1

.
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We are now ready to prove our result.

Theorem 3.3. Let G be a graph and S be the set of its independence roots. If

k > max
r∈S

{
Re(r)

|r|2

}
,

then Gk∗ is stable.

Proof. Let |V (G)| = n and

k > max
r∈S

{
Re(r)

|r|2

}
.

Then by Proposition 3.3,

i(Gk∗, x) = i(G, x
kx+1

)(kx+ 1)n
k−1∏
`=1

(`x+ 1)n2
k−`−1

.

We know that the rational roots of the form −1
`

will surely all lie in the LHP so we must
only consider the roots of i(G, x

kx+1
)(kx + 1)α(G) which can be found by solving for z in

r = z
kz+1

where r ∈ S, that is, r is an independence root of G. Let r ∈ S, with r = a+ ib

and consider the independence root of Gk∗ of the form z = r
1−kr . Now we have that

Re(z) =
(a2 + b2)(−k) + a

(1− ka)2 + b2
(1)

So the sign of Re(z) is the sign of (a2 + b2)(−k) + a = |z|2(−k) and

|z|2(−k) + a < |z|2
(
− a

|z|2

)
+ a

= −a+ a

= 0.

Therefore, Re(z) < 0 for all independence roots of Gk∗, z. Hence Gk∗ is stable.

The next corollary provides an interesting contrast with different graph operations
when compared with Corollary 2.3.

Corollary 3.2. Every graph is a subgraph of a stable graph.

4 Nonstable Families of Graphs

We have seen that, starting with a graph with independence number at least 4, joining
a large clique produces nonstable graphs. In this section we provide more constructions
that will produce families of nonstable graphs, the lexicographic product and the corona
product. The last construction preserves acyclicity and therefore provides families of

the electronic journal of combinatorics 25(1) (2018), #P1.46 11



nonstable trees, which the construction of the previous section does not (and is surprising,
given that we have noted that there are no roots in the RHP for trees of order at most
20).

The nonstable graph families that have been discovered so far have many vertices and
we do not know the smallest nonstable graphs. We will provide some relatively small
nonstable graphs via Sturm’s sequences.

For a real polynomial f , the Sturm sequence of f is the sequence f0, f1, . . . , fk where
f0 = f , f1 = f ′ and fi = −rem(fi−1, fi−2) for i > 2, where rem(fi−1, fi−2) is the remainder
when fi−1 is divided by fi−2 (fk is the last nonzero term in the sequence of polynomials of
strictly decreasing degrees). Sturm sequences are a very useful tool for determining the
nature of polynomial roots due to the following result (see [12]).

Theorem 4.1 (Sturm’s Theorem). Let f be a polynomial with real coefficients and
(f0, f1, . . . , fk) be its Sturm Sequence. Let a < b be two real numbers that are not roots
of f . Then the number of distinct roots of f in (a, b) is V (a) − V (b) where V (c) is the
number of changes in sign in (f0(c), f1(c), . . . , fk(c)).

The Sturm sequence (f0, f1, . . . , fk) of f is said to have gaps in degree if there is a
j 6 k such that deg(fj) < deg(fi−1) − 1. If there is a j 6 k such that fj has a negative
leading coefficient, the Sturm sequence is said to have a negative leading coefficient. We
now have the terminology to state the corollary of Sturm’s Theorem (see [3]) that will be
useful for our purposes.

Corollary 4.1. Let f be a real polynomial whose degree and leading coefficient are positive.
Then f has all real roots if and only if its Sturm sequence has no gaps in degree and no
negative leading coefficients.

We note that there are families of complete multipartite graphs that are stable. For
example, stars are complete bipartite graphs and we have shown that they are stable. As
well, it is not hard to see that

i(Kn,n,...,n, x) = k(1 + x)n − (k − 1).

The roots of this are zk =
(
k−1
k

)1/n
e2kπ/n − 1 for k = 0, 1, . . . , n − 1. Since

(
k−1
k

)1/n
< 1

for all k > 1, it follows that Re(zk) < 0 for all k. Therefore, Kn,n,...,n is stable for all n
and k.

It may seem that all complete multipartite graphs are stable, but such is not the case.
We will consider the graphs K1,2,3,...,n, the complete multipartite graph with one part of
each of the sizes 1, 2, . . . , n, and use Corollary 4.1 to prove that these graphs are not stable
if n > 15.

Theorem 4.2. i(K1,2,...,n, x) is not stable for n > 15.

Proof. We will prove n = 15 and n = 16 directly, and then provide a more general
argument for n > 17. For n = 15, i(K1,2,...,n, x) has a root with real part approximately
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0.009053086185689 and is therefore not stable. For n = 16, f8 of the Sturm sequence of
the odd part of i(K1,2,...,n, x) is

−1577448937796744128202619637524087852027658290220375925735260560

79627136162551065499783779429209235652424929298356031742670249
.

Thus, by Theorem 4.1 and Theorem 2.1, K1,2,...,n is not stable.
Now let n > 17 and G = K1,2,...,n. The independence polynomial of G can be written

as

i(G, x) =
n∑
k=1

(1 + x)k − (n− 1)

=
(1 + x)n+1 − (1 + x)

x
− (n− 1)

=
(1 + x)n+1 − nx− 1

x
.

Since i(G, 0) = 1, it follows that the nonzero roots of g = (1+x)n+1−nx−1 are precisely
the roots of i(G, x). Let godd be the odd part of g as in the Hermite-Biehler Theorem, so
godd = 1 +

(
n+1
3

)
x+

(
n+1
5

)
x2 + · · ·+

(
n+1
`

)
x(`−1)/2 where

` =

{
n if n is odd
n− 1 if n is even

is the largest odd number for which G has an independent with that size. Note that
godd(0) = 1 as well so 0 is not a root of godd, therefore, the roots of go are all real if and
only if the roots of f = xngodd

(
1
x

)
= xn +

(
n+1
3

)
xn−1 +

(
n+1
5

)
xn−2 + · · · +

(
n+1
`

)
xn−(`−1)/2

are all real. We will find the Sturm sequence of f and show that it has a negative leading
coefficient to prove that f has nonreal roots.

Let the Sturm sequence of f be (f0, f1, . . . , fk) ( where f0 = f and f1 = f ′). Both f0
and f1 are nonzero and have positive leading coefficient. The leading coefficient of f2 is
calculated as

c2 =
n5

36
− 2n4

45
+
n3

36
− n2

36
− n

18
+

13

180
,

a polynomial in n. This polynomial has its largest real root at approximately 1.454179113,
so for n > 2, c2 > 0. The third term in the sequence, f3, has leading coefficient

c3 =
(n−2)(n−3)(105n8+5719n7−34103n6+63299n5−79478n4+34046n3+5068n2−15584n+55488)n

35280 (5n3−8n2+10n−13)2 .

The denominator of c3 is defined and positive for all n as it has no integer roots (easily ver-
ified by the Rational Roots Theorem). The numerator’s largest real root is approximately
3.587037796, and thus for n > 4, c3 > 0.

We now consider the term f4. The leading coefficient of this term is

c4 = − γ(n+1)(n−1)(n−4)(n−5)(5n3−8n2+10n−13)
2
(n+2)

40772160 (105n8+5719n7−34103n6+63299n5−79478n4+34046n3+5068n2−15584n+55488)2
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where

γ = 1036035n14 − 18710307n13 + 60715080n12 − 1252685357n11 + 16301479454n10

− 71027287359, n9 + 150542755560n8 − 194411482671n7 + 73908295527n6

+ 81621340094n5 − 183113161400n4 + 127579216128n3 − 28712745216n2

+ 24221417472n+ 78617640960

The denominator of c4 has its largest root at approximately 3.587037796, so for n > 4,
the denominator is defined and positive. The largest root of the numerator is approxi-
mately 16.22715983, therefore for n > 17, c4 < 0.

Since there are no gaps in degree, as we have ensured c2, c3, and c4 are nonzero, and
the Sturm sequence has a negative leading coefficient, c4, it follows by Corollary 4.1 that
f , and therefore godd, has a nonreal root. Thus, by the Hermite-Biehler Theorem g, and
therefore i(G, x), is not stable.

The join has given us much to discuss in terms of nonstable graphs, but we turn now
to another graph operation, the lexicographic product, for constructing other nonstable
graphs. The lexicographic product (or graph substitution) is defined as follows. Given
graphs G and H such that V (G) = {v1, v2, . . . , vn} and V (H) = {u1, u2, . . . , uk}, the
lexicographic product of G and H which we will denote G[H] is the graph such that
V (G[H]) = V (G)× V (H) and (vi, ul) ∼ (vj, um) if vi ∼G vj or i = j and ul ∼H um. The
graph G[H], can be thought of as substituting a copy of H for each vertex of G.

Figure 6: The lexicographic product P3[K2].

The reason the lexicographic product has been so important to the study of the inde-
pendence polynomial is due to the way the independence polynomials interact.

Theorem 4.3 ([4]). If G and H are graphs, then i(G[H], x) = i(G, i(H, x)− 1).

In [4] it was shown that the independence roots of the family {Pn}n>1 are dense in
(−∞,−1

4
]. This leads to another application of Lemma 2.1.

Theorem 4.4. If H is a graph with α(H) > 4, then for some n sufficiently large, Pn[H]
has independence roots with arbitrarily large real part.

Proof. Suppose H is a graph with α(H) > 4. By Theorem 4.3, we know that i(Pn[H], x) =
i(Pn, i(H, x) − 1) and therefore the independence roots of Pn[H] are found by solving
i(H, x)− 1 = r, that is, i(H, x)− r − 1 = 0 for all independence roots r of Pn. Since we
know that {Pn}n>1 are dense in (−∞, 1

4
], it follows that we can make −r − 1 as large, in

absolute value, as we like. Finally, since α(H) > 4, Lemma 2.1 applies and i(Pn[H], x)
has roots with arbitrarily large real parts for n sufficiently large.
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Finally, we consider the stability of trees (we recall that all trees of order 20 and
less have been found to be stable). Could this be true in general? As we have learned
from the Chudnovsky-Seymour result on independence roots of claw-free graphs, a small
restriction in the graph structure can have a large impact on the independence roots.
Our previous constructions for producing graphs with roots arbitrarily far in the RHP
did not turn up any trees, and it would be reasonable to speculate that perhaps all trees
are stable, but this, in fact, turns out to be false. Before we can provide a family of trees
with nonstable independence polynomials, we first must show that there exist trees with
real independence roots arbitrarily close to 0.

Lemma 4.1. Fix ε > 0. Then for n sufficiently large, there exists a real root r of i(K1,n, x)
with |r| < ε.

Proof. We know that i(K1,n, x) = x + (1 + x)n. Evaluating i(K1,n, x) at 0 we obtain 1.

Evaluating at s = − 1

ln(n)
we obtain

− 1

ln(n)
+

(
1− 1

ln(n)

)n
(2)

To show that (2) is negative, we will require the following two elementary inequalities
for x ∈ (0, 1):

ln(x) >
x− 1

x
(3)

ln(1− x) 6 −x (4)

Set x = 1
ln(n)

; note that for n > 3, x ∈ (0, 1). If we can show that x+ x2e
1
x − 1 > 0, then

the following sequence of implications hold:

x+ x2e
1
x − 1 > 0
x− 1

x
> −xe

1
x

ln(x) > ln(1− x)e
1
x by inequalities (3) and (4)

ln

(
1

ln(n)

)
> n ln

(
1− 1

ln(n)

)
− 1

ln(n)
+

(
1− 1

ln(n)

)n
< 0.

We now show that h(x) = x + x2e
1
x − 1 > 0 is indeed true for x ∈ (0, 1). Now

h′(x) = 1 + e
1
x (2x − 1) and h′′(x) = e

1
x

(
2x2−2x+1

x2

)
. It is straightforward to see that for

x 6= 0, h′′(x) > 0 and therefore h(x) is always concave up. The function h′(x) is continuous
on [a, b] for all 0 < a < b so, by Rolle’s Theorem, h(x) has at most one positive critical
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point. The Intermediate Value Theorem gives that any positive critical point of h(x) must
lie in the interval (0.4, 0.5) since h′(0.4) ≈ −1.436498792 < 0 and h′(.5) = 1 > 0. Now
on (0.4, 0.5), h(x) > 0.4 + (0.4)2e2 − 1 ≈ .582248976 > 0. Thus h(x) is concave up for
all x 6= 0, has only one positive critical point which is in the interval (0.4, 0.5), and is
strictly positive on (0.4, 0.5). It follows that the absolute minimum of h(x) on (0,∞) is

strictly positive, and therefore h(x) = x + x2e
1
x − 1 > 0 for all x ∈ (0, 1). We conclude

that i(G, s) < 0.
Let n > e1/ε. We may conclude, by the Intermediate Value Theorem, that i(K1,n, x)

has a real root r in the interval
(
− 1

ln(n)
, 0
)

. Then

r > − 1

ln(n)

> − 1

ln(e1/ε)

=
−1

ε−1
= −ε.

Hence, i(G, x) has a root in (−ε, 0) for all ε > 0.

We can now prove that trees do not necessarily have stable independence polynomials
(and in fact can have independence roots with arbitrarily large real part).

Proposition 4.1. If G is a graph with α(G) > 4 and R > 0, then for sufficiently large
n, K1,n ◦G has independence roots in the RHP with real part at least R.

Proof. Set H = K1,n ◦G. By Theorem 3.2,

i(H, x) = (i(G, x))n+1 i

(
K1,n,

x

i(G, x)

)
so the independence roots of H are the roots of i(G, x) together with the roots of the
polynomials f(x) = −x

r
+ i(G, x) for all independence roots r of i(K1,n, x). By Lemma

4.1, there exist real roots r that are negative and arbitrarily close to 0 for sufficiently large
n. In this case, −x

r
= px for some p > 0 and since α(G) > 4, we can apply Lemma 2.1 to

show that for any R > 0 and sufficiently large n, f(x) has a root with real part greater
than R, and so the same holds for i(H, x).

This proposition implies that trees are not necessarily stable as K1,n ◦Km is a tree for
all m > 1, and will have independence roots in the RHP for all m > 4 and sufficiently
large n. Thus the independence roots of trees can be found with arbitrarily large real
parts.
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5 Concluding Remarks

We end this paper with a few open problems. First, we have seen that stars are stable,
while other complete multipartite graphs are not. Calculations suggest that complete
bipartite graphs are stable, so we ask:

Problem 1. Are all complete bipartite graphs stable?

While we have provided a number of families (and constructions) of nonstable graphs,
we still feel that stableness is a more common property, as small graphs suggest. For fixed
p ∈ (0, 1), a random graph, Gn,p, is a graph constructed on n vertices where each pair of
vertices is joined by an edge independently with probability p. Almost all graphs are said
to have a certain property if as n tends to∞, the probability that Gn,p has that property
tends to 1.

Problem 2. Are almost all graphs stable?

While we have shown that every graph with independence number at most 3 is stable,
and there are nonstable graphs of all higher independence numbers, we ask:

Problem 3. Characterize when a graph of independence number 4 is stable.

Problem 4. Characterize when a tree is stable.

Finally, we do not know the smallest graph with respect to vertex set size that is not
stable. Calculations show that the cardinality is greater than 10 and our arguments show
that it is at most 25, but it would be interesting to locate the extremal graph.
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