A classification of Motzkin numbers modulo 8

Ying Wang
School of Mathematical Sciences
Capital Normal University
Beijing 100048, PR China
wangying.cnu@gmail.com

Guoce Xin
School of Mathematical Sciences
Capital Normal University
Beijing 100048, PR China
guoce.xin@gmail.com

Submitted: Jun 10, 2017; Accepted: Dec 9, 2017; Published: Mar 16, 2018
Mathematics Subject Classifications: 05A10, 11B50

Abstract

The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be nonzero modulo 8. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers. We present a short proof by finding a recursive formula for Motzkin numbers modulo 8. Moreover, such a recursion leads to a full classification of Motzkin numbers modulo 8.

Keywords: Motzkin numbers, congruence classes

1 Introduction

Much work has been done in calculating the congruences of various combinatorial numbers modulo a prime power p^r. We begin by introduce some notations. We will use the p-adic notations $[n]_p = ⟨n_d n_{d-1} \cdots n_0⟩_p$ to denote the sequence of digits representing n in base p [15]. The p-adic order or p-adic valuation $\omega_p(n)$ of n is defined by

$$\omega_p(n) = \max\{t \in \mathbb{N} : p^t | n\}.$$

In words, it is the highest power of p dividing n, or equivalently, the number of 0’s to the right of the rightmost nonzero digit in $[n]_p$. The value $\omega_p(n)$ indicates the divisibility by powers of p, which can be found in many previous studies [5].

Many results have been established for the binomial coefficients. The most famous as well as age-old one is the Pascal’s fractal which is formed by the parities of the binomial coefficients $\binom{n}{k}$ [20]. Pascal’s triangle also has versions modulo 4 and 8 [3, 10]. The behavior of Pascal’s triangle modulo higher powers of p is more complicated. Some rules

*This work is partially supported by National Natural Science Foundation of China (11171231).
for this behavior are discussed by Granville [9]. Kummer computed the p-adic order of \(\binom{m+n}{m} \) [13], by counting the number of carries that occur when \([m]_p\) and \([n]_p\) are added. The elegant result of Lucas [15] states that \(\binom{n}{m} \equiv p \prod_i \binom{n_i}{k_i} \) where \(n_i \) and \(k_i \) come from \([n]_p\) and \([k]_p\), and \(\equiv_p \) denotes the congruence class modulo \(p \). A generalization of Lucas’ theorem for a prime power was established by Davis and Webb [2].

The most useful combinatorial numbers other than the binomial coefficients are the well-known Catalan numbers

\[
C_n = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}, \quad n \in \mathbb{N}.
\]

They have more than 200 combinatorial interpretations, as collected by Stanley in [18]. The congruence class of \(C_n \) modulo \(2^r \) was studied in [6, 11, 14, 21]. Several other combinatorial numbers have been studied for their congruences, for example, Apéry numbers [8, 16], Central Delannoy numbers [7] and weighted Catalan numbers [17].

In this paper we will focus on the well-known Motzkin numbers

\[
M(n) = M_n = \sum_{k \geq 0} \binom{n}{2k} C_k, \quad n \in \mathbb{N}.
\] (1)

Their congruences were only studied very recently. Klazar and Luca proved that the Motzkin numbers are never periodic modulo any prime number [12]. Deutsch and Sagan [4] studied the congruences of \(M_n \) modulo 2, 3 and 5 and made the following two conjectures.

Conjecture 1 ([4]). We have \(M_n \equiv_4 0 \) if and only if \(n = (4i + 1)4^{j+1} - 1 \) or \(n = (4i + 3)4^{j+1} - 2 \), where \(i \) and \(j \) are nonnegative integers.

Conjecture 2 ([4]). The Motzkin numbers are never congruent to 0 modulo 8.

The two conjectures were first proved by Eu-Liu-Yeh in [6]. They first derived the congruence class of the Catalan numbers \(C_n \) modulo 8 by using their factorial representations. Then they proved Conjecture 1 by careful analyzing formula (1) modulo 8. Finally they proved Conjecture 2 by confirming that \(M(n) \equiv_8 4 \) when \(n \) belongs to the two cases in Conjecture 1.

Our main result is the following explicit formula for \(M_n \) modulo 8, from which Conjectures 1 and 2 clearly follow.

Theorem 3. The congruence class of \(M(n) \) modulo 8 can be characterized as follows:

\[
M(4s) \equiv_8 \begin{cases}
1 - 4Z(\alpha) - 2\chi(\alpha \equiv_2 1) + 4\alpha, & s = 2\alpha, \\
1 - 4Z(\alpha) - 2\chi(\alpha \equiv_2 1), & s = 2\alpha + 1.
\end{cases}
\]

\[
M(4s + 1) \equiv_8 \begin{cases}
1 - 4Z(\alpha) - 2\chi(\alpha \equiv_2 1) + 4\alpha, & s = 2\alpha, \\
1 - 4Z(\alpha) - 2\chi(\alpha \equiv_2 1) + 4, & s = 2\alpha + 1.
\end{cases}
\]
Here \(\chi(S) \) equals 1 if the statement \(S \) is true and equals 0 if otherwise, \(\|\alpha\| \) is the sum of the digits of \([\alpha]_2\), and \(Z(\alpha) \) is the number of zero runs of \(\alpha \) as described later in Proposition 11.

Our approach is along the line of [21], by using the following recursive formula:

\[
C_{n+1} = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{2i} 2^{n-2i} C_i.
\]

This formula can be easily proved by using Zeilberger’s creative telescoping method [22], or by two different combinatorial interpretations of \(C_n \) (see [21]). By combining the above formula with (1), we derive the following recursive formulas for \(M(\cdot) \).

\[
M(2k + 2) - M(2k) \equiv_8 (-1)^k M(k) + f(k),
\]
\[
f(k) = 4 \left(\binom{k+1}{2} - (-1)^k k \right) M(k-1) - 4 \binom{k}{2} M(k-2);\]
\[
M(2k + 1) \equiv_8 (2k + 1) M(2k) + g(k),
\]
\[
g(k) = -2 \left(\binom{2k+1}{2} \right) M(2k-1) + 4 \binom{2k+1}{3} M(2k-2).
\]

By using these recursive formulas, we give a simple way to compute the congruences of \(M(n) \) modulo 2, 4, 8.

The paper is organized as follow. In Section 2, we derive the recurrence formulas of \(M_n \), which are the starting point of our approach. We also introduce basic tools for further calculations. In Section 3, we compute the congruence classes of Motzkin numbers modulo 2 and 4. Finally, we compute the congruence classes of Motzkin numbers modulo 8 in Section 4.

2 Weighted Motzkin paths and the recursion

Let \(F(x; u) = \sum_{n \geq 0} M_u(n) x^n \) be the unique power series defined by the functional equation

\[
F(x; u) = \frac{1}{1 - ux - x^2 F(x; u)}.
\]
Then $F(x; u)$ is the generating function of weighted Motzkin paths (see, e.g. [19]). That is, $M_u(n)$ counts weighted lattice paths from $(0, 0)$ to $(n, 0)$ that never go below the horizontal axis and use only steps $U = (1, 1)$ $H = (1, 0)$, or $D = (1, -1)$ and weights $1, u, 1$ respectively.

The well-known Motzkin number $M(n)$ is our $M_1(n)$, and the Catalan number C_n is our $M_0(2n)$. We also have $C_{n+1} = M_2(n)$, which is written as

$$M_0(2n) = M_2(n - 1), \quad \text{for } n \geq 1. \quad (4)$$

Lemma 4. For any constants u and v, we have

$$M_{u+v}(n) = \sum_{i=0}^{n} \binom{n}{i} v^i M_u(n - i), \quad (5)$$

$$M_u(2k + 1) = \sum_{i=1}^{n} \binom{2k + 1}{i} (-2)^{i-1} u^i M_u(2k + 1 - i). \quad (6)$$

Proof. Equation (5) is routine. For (6), we need the easy fact $M_{-u}(n) = (-1)^n M_u(n)$. By setting $v = -2u$ in (5), we obtain

$$M_{-u}(n) = M_u(n) + \sum_{i=1}^{n} \binom{n}{i} (-2u)^i M_u(n - i).$$

Thus for $n = 2k + 1$, we obtain

$$M_u(2k + 1) = \sum_{i=1}^{n} \binom{2k + 1}{i} (-2)^{i-1} u^i M_u(2k + 1 - i).$$

This is equation (6).

Theorem 5. We have the recursion (2) and (3) with initial condition $M(0) = 1$.

Proof. Setting $u = 1$ in (6) and simplifying gives

$$M(2k + 1) \equiv_8 (2k + 1)M(2k) - 2 \left(\frac{2k + 1}{2}\right) M(2k - 1) + 4 \left(\frac{2k + 1}{3}\right) M(2k - 2).$$

This is (3). Note that no recursion for $M(2k)$ can be obtained in this way.

For (2), we start with

$$M(2k) = \sum_{i=0}^{k} \binom{2k}{2i} C_{k-i}$$

$$= \sum_{i=0}^{k} \sum_{j=0}^{i} 2^{2j} \binom{k}{2j} \binom{k-2j}{i-j} C_{k-i},$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.54

4
which can be easily proved using Zeilberger’s creative telescoping method [22]. When reduced to modulo 8, this gives

\[M(2k) \equiv 8 \sum_{i=0}^{k} \binom{k}{i} C_{k-i} + 4 \binom{k}{2} \sum_{i=1}^{k-1} \binom{k-2}{i-1} C_{k-i} \]

\[\equiv 8 \left(1 + \sum_{i=0}^{k-1} \left(\sum_{j=1}^{i} \binom{k-j}{i-j+1} \right) M_2(k-i-1) + 4 \binom{k}{2} \sum_{i'=0}^{k-2} \binom{k-2}{i'} M_2(k-2-i') \right) \]

\[\equiv 8 \left(1 + \sum_{j=1}^{k-1} \sum_{i=j}^{k-1} \binom{k-j}{i-j+1} M_2((k-j)-(i-j+1)) + 4 \binom{k}{2} M_3(k-2) \right) \]

\[\equiv 8 \left(1 + \sum_{j=1}^{k-1} M_3(k-j) + 4 \binom{k}{2} M_3(k-2) \right). \]

(We remark that the computation modulo 2^r when r \geq 4 becomes complicated.) Thus,

\[M(2k+2) - M(2k) \equiv 8 M_3(k) + 4 \binom{k+1}{2} M_3(k-1) - 4 \binom{k}{2} M_3(k-2) \]

\[\equiv 8 M_{-1}(k) + 4 \binom{k}{1} M_{-1}(k-1) + 4 \binom{k+1}{2} M(k-1) - 4 \binom{k}{2} M(k-2) \]

\[\equiv 8 (-1)^k M(k) + 4 \left(\binom{k+1}{2} - (-1)^k \right) M(k-1) - 4 \binom{k}{2} M(k-2). \]

This is just equation (2). \qed

We derive explicit formulas of \(M(n) \mod 2^r \) successively for \(r = 1, 2, 3 \). The idea is based on the fact that

\[2^{r-r'} M(n) \mod 2^r = 2^{r-r'} (M(n) \mod 2^r), \quad \text{for } r' < r. \]

This fact will be frequently used without mentioning.

Lemma 6. We keep the notations from Theorem 5. Assume that we have obtained explicit formulas for \(M(n) \mod 2^{r-1} \). Then there are explicit formulas for \(f(k) \) and \(g(k) \). Moreover, the recursion is reduced as follows.

\[M(2k+1) \equiv 8 (2k+1) M(2k) + g(k), \quad (7) \]

\[M(4s) \equiv 2^{r} M(0) + \sum_{j=2}^{2s-1} f(j) - \sum_{j=1}^{s-1} (2j M(2j) + g(j)), \quad (8) \]

\[M(4s+2) \equiv 2^{r} M(2\beta-2) + \sum_{i=0}^{a} \left(M(\beta 2^{i+2} - 4) + f(\beta 2^{i+1} - 2) \right), \quad (9) \]

where in (9), \(s + 1 = \beta 2^a \) for some odd number \(\beta \) and \(a \geq 0 \).
Proof. By (7), we can eliminate those $M(2k + 1)$ so that our formulas only involve $f(k), g(k)$ and $M(2k)$. We have to split by cases $k = 2s$ and $k = 2s + 1$ in (2):

\[
M(4s + 4) - M(4s + 2) \equiv 2r - M(2s + 1) + f(2s + 1)
\]
\[
\equiv 2r - (2s + 1)M(2s) - g(s) + f(2s + 1),
\]
\[
M(4s + 2) - M(4s) \equiv 2r - M(2s) + f(2s) \equiv 2r - M(2s) + f(2s).
\]

Taking the sum of the above two equations gives the following recursion:

\[
M(4s + 4) - M(4s) \equiv 2r - 2sM(2s) - g(s) + f(2s) + f(2s + 1).
\]

(Note that we have explicit formulas of $-2sM(2s) \mod 2^r$ by the induction hypothesis.) This is equivalent to (8).

Next for $M(4s + 2)$ we rewrite as follows:

\[
M(4(s + 1) - 2) - M(4s) \equiv 2r - M(2(s + 1) - 2) + f(2s).
\]

If $s = \beta 2^a - 1$ with β odd and $a \geq 0$, then the above equation can be rewritten as

\[
M(\beta 2^{a+2} - 2) - M(\beta 2^{a+1} - 2) \equiv 2r - M(\beta 2^{a+2} - 4) + f(\beta 2^{a+1} - 2).
\]

This is equivalent to (9).

We remark that (8') and (9') are easier to use than (8) and (9).

3 Motzkin numbers modulo 2, 4

Recall that $\omega_2(n) = a$ if $n = (2\alpha + 1)2^a$. Note that $\omega_2(0)$ is not defined. The following properties are easy to check and will be frequently used without mentioning.

Lemma 7. For nonnegative integer α we have

\[
\omega_2(2\alpha + 1) = 0, \quad \omega_2(2\alpha) = \omega_2(\alpha) + 1, \quad \alpha \omega_2(\alpha) \equiv 2 \ 0;
\]
\[
\omega_2(\alpha!) = \sum_{i=1}^{\alpha} \omega_2(i), \quad \omega_2((2\alpha + 1)!) = \omega_2((2\alpha)!)) = \omega_2(\alpha!) + \alpha.
\]

Proof. The first, second and fourth formulas follow easily by definition. The third formula follows from the first two formulas by discussing the parity of α. Finally,

\[
\omega_2((2\alpha + 1)!) = \omega_2((2\alpha)!) = \omega_2((2\alpha)!!)) = \omega_2(\alpha!) + \alpha,
\]

where in the second equality, we removed all the odd factors to get $(2\alpha)!! = 2^a\alpha!$. \qed
3.1 Motzkin numbers modulo 2

Proposition 8. We have

\[M(2k + 1) \equiv_2 M(2k) \equiv_2 \omega_2(2k + 2). \]

In particular \(M(4s) \equiv_2 M(4s + 1) \equiv_2 1. \)

Proof. We apply Theorem 5 and Lemma 6 and follow the notations there. Clearly, we have \(f(k) \equiv_2 0 \) and \(g(k) \equiv_2 0. \) Thus we have

\[M(4s) \equiv_2 M(0) = 1 = \omega_2(4s + 2), \]
\[M(4s + 2) \equiv_2 M(2\beta - 2) + \sum_{i=0}^{\alpha} \left(M(2\beta^i - 4) \right) = a + 2 = \omega_2(4s + 4), \]

where in the second equation, \(s + 1 = \beta 2^a \) for some odd number \(\beta \) and \(a \geq 0. \) The proposition then follows. \(\square \)

3.2 Motzkin numbers modulo 4

Lemma 9. We have the following characterization of Motzkin numbers modulo 4.

\[M(4s) \equiv_4 1 + 2\omega_2(s!) \equiv_4 1 + 2L(s) + 2s, \]
\[M(4s + 1) \equiv_4 M(4s), \]
\[M(4s + 2) \equiv_4 \begin{cases} 2\alpha + 2, & s = (2\alpha + 1)2^{2\alpha} - 1, a \geq 0, \\ 2\alpha + 2L(\alpha) + 3, & s = (2\alpha + 1)2^{2\alpha+1} - 1, a \geq 0. \end{cases} \]
\[M(4s + 3) \equiv_4 -M(4s + 2) + 2, \]

where \(L(r) = \sum_{i=1}^{r-1} M(2i). \)

Consequently, \(M(n) \equiv_4 0 \) if and only if \(n = (4i + 1)4^{i+1} - 1 \) or \(n = (4i + 3)4^{i+1} - 2 \) for some nonnegative integers \(i \) and \(j. \) That is, Conjecture 1 holds true.

Proof. We first show that the second part follows from the first part. Clearly, \(M(n) \equiv_4 0 \) if and only if either i) \(M(n) = M(4r + 2) \equiv_4 2\alpha + 2 \equiv_4 0 \) for \(r = (2\alpha + 1)4^a - 1. \) Hence, \(\alpha = 2i + 1 \) for some \(i \) and \(n = (4i + 3)4^{i+1} - 2; \) Or ii) \(M(n) = M(4r + 3) \equiv_4 -M(4r + 2) + 2 \equiv_4 2\alpha \equiv_4 0 \) for \(r = (2\alpha + 1)4^a - 1. \) Hence, \(\alpha = 2i \) for some \(i \) and \(n = (4i + 1)4^{i+1} - 1. \)

Now we prove the first part by Theorem 5 and Lemma 6. First, we have

\[f(k) \equiv_4 0 \quad \text{and} \quad g(k) \equiv_4 -2k(2k + 1)M(2k - 1) \equiv_4 2k\omega_2(2k) \equiv_4 2k, \]

where we have used Proposition 8. Thus, the recurrence reduces to

\[M(2k + 2) \equiv_4 M(2k) + (-1)^k M(k), \] (10)
\[M(2k + 1) \equiv_4 (2k + 1)M(2k) + 2k. \] (11)
Clearly, the odd case reduces to the even case by (11).

For $M(4s)$ we have

$$M(4s + 4) - M(4s) \equiv_4 -M(2s + 1) + M(2s) \equiv_4 -2sM(2s) - 2s$$

$$\equiv_4 2\chi(s = 2\alpha + 1)(1 + \omega_2(\alpha + 1) + 1) \equiv_4 2\omega_2(s + 1),$$

which is equivalent to $M(4s) \equiv_4 1 + 2\omega_2(s!) \equiv_4 1 + 2L(s) + 2s$.

For $M(4s + 2)$, we write $s = \beta 2^a - 1$ for a unique odd number β. We have

$$M(4s + 2) \equiv_4 M(2\beta - 2) + \sum_{i=0}^{a} M(\beta 2^{i+2} - 4)$$

$$\equiv_4 M(2\beta - 2) + \sum_{i=0}^{a} (1 + 2L(\beta 2^i - 1) + 2(\beta 2^i - 1))$$

$$\equiv_4 \chi(\beta = 2\alpha + 1)1 + 2L(\alpha) + 2\alpha - (a + 1) + \sum_{i=0}^{a} (2i + 2L(\alpha) + 2^{i+1})$$

$$\equiv_4 2(a + 2)L(\alpha) + 2\alpha - a + a(a + 1) + 2$$

$$\equiv_4 2(a + 2)L(\alpha) + 2\alpha + a^2 - 2$$

$$\equiv_4 \begin{cases} 2\alpha + 2, & a \text{ is even,} \\ 2\alpha + 2L(\alpha) + 3, & a \text{ is odd.} \end{cases}$$

This completes the proof. \square

Indeed since $L(s)$ appears in computations modulo 8, we summarize its properties as follows.

Lemma 10. Let $L(s) = \sum_{i=0}^{s-1} M(2i)$, with $L(0) = 0$. Then

$$L(2s) \equiv_2 L(s), \quad L(2s + 1) \equiv_2 1 + L(s), \quad L(s) = h_2(s!) + s,$$

$$L(2s) \equiv_4 1 - (-1)^s + L(s), \quad L(2s + 1) \equiv_4 1 - L(s).$$

Proof. The modulo 2 result is obvious since $L(s) \equiv_2 \sum_{i=0}^{s-1} \omega_2(2i + 2) = \omega_2(s!) + s$.

For the modulo 4 result, we have, by definition,

$$L(2s) \equiv_4 \sum_{i=0}^{2s-1} M(2i) = \sum_{i=0}^{s-1} (M(4i + 2) + M(4i))$$

(by (10)) $\equiv_4 \sum_{i=0}^{s-1} (2M(4i) + M(2i))$

$$\equiv_4 \sum_{i=0}^{s-1} (2 + M(2i))$$

$$\equiv_4 2s + L(s)$$
\[\equiv_4 1 - (-1)^s + L(s). \]

By the above formula and Lemma 9, we have

\[L(2s + 1) = L(2s) + M(4s) = 2s + L(s) + 1 + 2s = 1 - L(s). \]

This completes the proof. \(\Box \)

Let \([n]_2 = n_kn_{k-1} \cdots n_1n_0\) be the binary expansion of \(n \geq 1\). Then \(n = n_k2^k + \cdots + n_1 \cdot 2 + n_0\). Denote by \(\|n\| = n_k + \cdots + n_1 + n_0\), the sum of the binary digits of \(n\). A 0-run of \([n]_2\) is a maximal 0-subword \(n_in_{i+1} \cdots n_j\) for some \(0 \leq i < j \leq k\), such that \(n_{j+1} = 1\) and \(n_{i-1} \neq 0\) (including the case \(i = 0\)). Denote by \(Z(n)\) the number of 0-runs of \([n]_2\).

We have the following explicit result.

Proposition 11. We have

\[L(n) \equiv_2 \|n\|, \quad \text{and} \quad L(n) \equiv_4 2Z(n) + \chi(\|n\| \equiv_2 1). \]

Proof. The modulo 2 case is straightforward by Lemma 10.

For the modulo 4 case, we proceed by induction on \(n\). The proposition clearly holds for the base case \(n = 1\). Assume it holds for all numbers smaller than \(n\). We show that it holds for \(n\) by considering the following two cases.

Case 1: If \(n = 2s + 1\), then \([n]_2\) is obtained from \([s]_2\) by adding a 1 at the end. By Lemma 10 and the induction hypothesis for \(s\), we have

\[L(2s + 1) \equiv_4 1 - L(s) \equiv_4 1 - 2Z(s) - \chi(\|s\| \equiv_2 1) \equiv_4 2Z(s) + 1 - \chi(\|s\| \equiv_2 1), \]

which clearly equals to \(2Z(n) + \chi(\|n\| \equiv_2 1)\).

Case 2: If \(n = 2s\), then \([n]_2\) is obtained from \([s]_2\) by adding a 0 at the end. i) If \(s\) is odd, then by Lemma 10 and the induction hypothesis for \(s\), we have

\[L(2s) \equiv_4 1 - (-1)^s + L(s) = 2 + L(s) = 2(Z(s) + 1) + \chi(\|s\| \equiv_2 1), \]

which clearly equals to \(2Z(n) + \chi(\|n\| \equiv_2 1)\). ii) Similarly, if \(s\) is even, then

\[L(2s) \equiv_4 1 - (-1)^s + L(s) = L(s) = 2Z(s) + \chi(\|s\| \equiv_2 1). \]

This also equals to \(2Z(n) + \chi(\|n\| \equiv_2 1)\). \(\Box \)

We remark that the sequence \(L(n) \mod 2\) turns out to be the Thue-Morse sequence. See [1] for a survey on the Thue-Morse sequence.
4 Motzkin numbers modulo 8

Lemma 12. The recursion from Theorem 5 reduces modulo 8 to

\[M(2k + 2) - M(2k) \equiv_8 (-1)^k M(k) + f(k), \quad \text{where} \quad f(k) = 4\chi(k \equiv_4 3)\omega_2((k + 1)/2), \]

\[M(2k + 1) \equiv_8 (2k + 1)M(2k) + g(k), \]

where \(g(k) = \chi(k = 2\alpha + 1)(4\alpha - 2M(4\alpha)). \)

Proof. By Theorem 5, we have

\[f(k) \equiv_8 4\left(\binom{k + 1}{2} - (-1)^k k\right)M(k - 1) - 4\binom{k}{2} M(k - 2). \]

i) When \(k = 2\alpha \), we have

\[f(2\alpha) \equiv_8 4(\alpha - 2\alpha)M(2\alpha - 1) - 4\alpha M(2\alpha - 2) \equiv_8 4\alpha \omega_2(2\alpha) \equiv_8 0. \]

ii) When \(k = 2\alpha + 1 \), we have

\[f(2\alpha + 1) \equiv_8 4(\alpha + 1 + 2\alpha + 1)M(2\alpha) - 4\alpha M(2\alpha - 1) \equiv_8 4\alpha \omega_2(2\alpha + 2) - 4\alpha \omega_2(2\alpha) \equiv_8 4\chi(\alpha \equiv_2 1)\omega_2(\alpha + 1) \equiv_8 4\chi(k \equiv_4 3)\omega_2((k + 1)/2). \]

We also have

\[g(k) \equiv_8 -2\binom{2k + 1}{2} M(2k - 1) + 4\binom{2k + 1}{3} M(2k - 2). \]

i) When \(k = 2\alpha \), we have

\[g(2\alpha) \equiv_8 -4\alpha M(4\alpha - 1) \equiv_8 4\alpha \omega_2(4\alpha) \equiv_8 0. \]

ii) When \(k = 2\alpha + 1 \), we have

\[g(2\alpha + 1) \equiv_8 -2(2\alpha + 3)M(4\alpha + 1) + 4M(4\alpha) \equiv_8 4\alpha M(4\alpha) - 2M(4\alpha) \equiv_8 4\alpha - 2M(4\alpha). \]

This completes the proof.

Now we are ready to prove Theorem 3, which, by Proposition 11, can be restated as Propositions 13 and 14 blow.

Proposition 13. We have

\[M(4s) \equiv_8 \begin{cases} 1 - 2L(\alpha) + 4\alpha, & s = 2\alpha, \\ 1 - 2L(\alpha), & s = 2\alpha + 1. \end{cases} \]
Proof. We apply Lemmas 6 and 12 to obtain
\[M(4s + 4) - M(4s) \equiv_{8} f(2s) + f(2s + 1) - 2sM(2s) - g(s) \]
\[\equiv_{8} -2sM(2s) + \chi(s = 2\alpha + 1)(4\omega_2(2\alpha + 2) - 4\alpha + 2M(4\alpha)). \]
i) When \(s = 2\alpha \), we have
\[M(4s + 4) - M(4s) \equiv_{8} -4\alpha M(4\alpha) \equiv_{8} 4\alpha \omega_2(4\alpha + 2) \equiv_{8} 4\alpha. \]
ii) When \(s = 2\alpha + 1 \), we have
\[M(4s + 4) - M(4s) \equiv_{8} -2M(4\alpha + 2) \equiv_{8} -2M(4\alpha + 1) \]
where the last step is easily checked by considering the parity of \(\alpha \).

Finally, let \(M'(4s) \) be defined by the right hand side of (12). Then \(M'(0) = 1 \) and
\[M'(8\alpha + 4) - M'(8\alpha) \equiv_{8} 4\alpha, \]
\[M'(8\alpha + 8) - M'(8\alpha + 4) \equiv_{8} 1 - 2L(\alpha + 1) + 4(\alpha + 1) - 1 + 2L(\alpha) \]
\[\equiv_{8} 4(\alpha + 1) - 2M(2\alpha). \]
Thus \(M(4s) = M'(4s) \) and the proposition follows.

The next results relies on Proposition 13.

Proposition 14. We have
\[
\begin{align*}
M(4s + 1) &\equiv_{8} \begin{cases}
1 - 2L(\alpha) + 4\alpha, & s = 2\alpha, \\
1 - 2L(\alpha) + 4, & s = 2\alpha + 1.
\end{cases} \\
M(4s + 2) &\equiv_{8} \begin{cases}
4, & s = (4\alpha + 3)2^{2j} - 1, \\
2 - 4L(\alpha), & s = (4\alpha + 1)2^{2j} - 1, \\
-1 + 2L(\alpha), & s = (4\alpha + 3)2^{2j+1} - 1, \\
3 + 2L(\alpha) + 4\alpha, & s = (4\alpha + 1)2^{2j+1} - 1.
\end{cases} \\
M(4s + 3) &\equiv_{8} \begin{cases}
-2 + 4L(\alpha), & s = (4\alpha + 3)2^{2j} - 1, \\
4, & s = (4\alpha + 1)2^{2j} - 1, \\
-1 + 2L(\alpha), & s = (4\alpha + 3)2^{2j+1} - 1, \\
-1 + 2L(\alpha) + 4\alpha, & s = (4\alpha + 1)2^{2j+1} - 1.
\end{cases}
\end{align*}
\]

Proof. By Lemma 12, the odd case is reduced to the even case.
For \(M(4s + 1) \), we have
\[M(4s + 1) \equiv_{8} (4s + 1)M(4s) \]
\[\equiv_{8} 4s + M(4s). \]
\begin{align*}
\begin{cases}
1 - 2L(\alpha) + 4\alpha, & s = 2\alpha, \\
1 - 2L(\alpha) + 4, & s = 2\alpha + 1.
\end{cases}
\end{align*}

For \(M(4s + 2) \), let \(\beta \) be odd. We simplify (9') using Lemma 12 and (12).

\[M(\beta 2^{a+2} - 2) - M(\beta 2^{a+1} - 2) \equiv_8 M((2\alpha + 1)2^{a+2} - 4) + f((2\alpha + 1)2^{a+1} - 2) \]
\[\equiv_8 \begin{cases}
1 - 2L((\beta - 1)/2) + 2(\beta - 1) & a = 0, \\
1 - 2L(\beta 2^{a-1} - 1) & a > 0.
\end{cases} \tag{13}
\]

Lemma 10 gives \(L(2s + 1) + L(s) \equiv_4 1 \). Thus we have

\[M(\beta 2^{a+3} - 2) - M(\beta 2^{a+1} - 2) \equiv_8 2 - 2 \left(L(\beta 2^{a-1} - 1) + L(\beta 2^a - 1) \right) \equiv_8 0, \quad a > 0. \]

This reduces \(M(\beta 2^{a+1} - 2) \) to the \(a = 0 \) and \(a = 1 \) case.

Moreover, setting \(a = 1 \) in (13) gives

\[M(8\beta - 2) \equiv_8 M(4\beta - 2) + 1 - 2L(\beta - 1); \]

Setting \(a = 0 \) in (13) gives

\[M(4\beta - 2) \equiv_8 M(2\beta - 2) + 1 - 2L((\beta - 1)/2) + 2(\beta - 1). \]

i) When \(\beta = 4\alpha + 1 \), we have

\[M((4\alpha + 1)2^{2a+2} - 2) \equiv_8 M(4(4\alpha + 1) - 2) \equiv_8 M(8\alpha) + 1 - 2L(2\alpha) \]
\[\equiv_8 1 - 2L(\alpha) + 4\alpha + 1 - 2(2\alpha + L(\alpha)) \]
\[\equiv_8 2 - 4L(\alpha). \]

Consequently,

\[M((4\alpha + 1)2^{2a+3} - 2) \equiv_8 M(8(4\alpha + 1) - 2) \equiv_8 2 - 4L(\alpha) + 1 - 2L(4\alpha) \]
\[\equiv_8 3 - 4L(\alpha) - 2(4\alpha + 2\alpha + L(\alpha)) \]
\[\equiv_8 3 + 2L(\alpha) + 4\alpha. \]

ii) When \(\beta = 4\alpha + 3 \), we obtain

\[M((4\alpha + 3)2^{2a+2} - 2) \equiv_8 M(4(4\alpha + 3) - 2) \equiv_8 M(8\alpha + 4) + 1 - 2L(2\alpha + 1) + 4(2\alpha + 1) \]
\[= 1 - 2L(\alpha) + 1 - 2(1 - L(\alpha)) + 4 \]
\[= 4. \]

Consequently,

\[M((4\alpha + 3)2^{2a+3} - 2) \equiv_8 M(8(4\alpha + 3) - 2) \equiv_8 4 + 1 - 2L(4\alpha + 2) \]
\[\equiv_8 5 - 2(4\alpha + 2) + L(2\alpha + 1) \]
\[\equiv_8 1 - 2(1 - L(\alpha)) \]
Finally, we compute $M(4s + 3)$. By Lemma 12, we have

$$M(4s + 3) \equiv_8 (4s + 3)M(4s + 2) + g(2s + 1)$$

$$\equiv_8 -M(4s + 2) + 4s - 2M(4s)$$

$$\equiv_8 -M(4s + 2) + 4s - 2(1 + 2s + 2L(s))$$

$$\equiv_8 -M(4s + 2) - 2 - 4L(s).$$

i) When $\beta = 4\alpha + 1$, we obtain

$$M((4\alpha + 1)2^{2a+2} - 1) \equiv_8 -M((4\alpha + 1)2^{2a+2} - 2) - 2 - 4L((4\alpha + 1)2^{2a} - 1)$$

$$\equiv_8 -2 + 4L(\alpha) - 2 - 4L(\alpha)$$

$$\equiv_8 4.$$

In the same way,

$$M((4\alpha + 1)2^{2a+3} - 1) \equiv_8 -M((4\alpha + 1)2^{2a+3} - 2) - 2 - 4L((4\alpha + 1)2^{2a+1} - 1)$$

$$\equiv_8 -3 - 2L(\alpha) - 4\alpha - 2 - 4L(\alpha) + 4$$

$$\equiv_8 -1 + 4\alpha + 2L(\alpha).$$

ii) When $\beta = 4\alpha + 3$, we have

$$M((4\alpha + 3)2^{2a+2} - 1) \equiv_8 -M((4\alpha + 3)2^{2a+2} - 2) - 2 - 4L((4\alpha + 3)2^{2a} - 1)$$

$$\equiv_8 -4 - 2 - 4L(\alpha) + 4$$

$$\equiv_8 -2 + 4L(\alpha).$$

In the same way,

$$M((4\alpha + 3)2^{2a+3} - 1) \equiv_8 -M((4\alpha + 3)2^{2a+3} - 2) - 2 - 4L((4\alpha + 3)2^{2a+1} - 1)$$

$$\equiv_8 1 - 2L(\alpha) - 2 - 4L(\alpha)$$

$$\equiv_8 -1 + 2L(\alpha).$$

\[\square\]

References

