Piercing axis-parallel boxes

Maria Chudnovsky*
Department of Mathematics
Princeton University
Princeton, NJ, U.S.A.
mchudnov@math.princeton.edu

Sophie Spirkl
Department of Mathematics
Princeton University
Princeton, NJ, U.S.A.
sspirkl@math.princeton.edu

Shira Zerbib
Department of Mathematics
University of Michigan
Ann Arbor, MI, U.S.A
zerbib@umich.edu

Submitted: May 20, 2017; Accepted: Mar 5, 2018; Published: Mar 29, 2018
Mathematics Subject Classifications: 05B40, 52C17, 52C15

Abstract

Let \(\mathcal{F} \) be a finite family of axis-parallel boxes in \(\mathbb{R}^d \) such that \(\mathcal{F} \) contains no \(k + 1 \) pairwise disjoint boxes. We prove that if \(\mathcal{F} \) contains a subfamily \(\mathcal{M} \) of \(k \) pairwise disjoint boxes with the property that for every \(F \in \mathcal{F} \) and \(M \in \mathcal{M} \) with \(F \cap M \neq \emptyset \), either \(F \) contains a corner of \(M \) or \(M \) contains \(2^{d-1} \) corners of \(F \), then \(\mathcal{F} \) can be pierced by \(O(k) \) points. One consequence of this result is that if \(d = 2 \) and the ratio between any of the side lengths of any box is bounded by a constant, then \(\mathcal{F} \) can be pierced by \(O(k) \) points. We further show that if for each two intersecting boxes in \(\mathcal{F} \) a corner of one is contained in the other, then \(\mathcal{F} \) can be pierced by at most \(O(k \log \log(k)) \) points, and in the special case where \(\mathcal{F} \) contains only cubes this bound improves to \(O(k) \).

1 Introduction

A matching in a hypergraph \(H = (V, E) \) on vertex set \(V \) and edge set \(E \) is a subset of disjoint edges in \(E \), and a cover of \(H \) is a subset of \(V \) that intersects all edges in \(E \). The matching number \(\nu(H) \) of \(H \) is the maximal size of a matching in \(H \), and the covering number \(\tau(H) \) of \(H \) is the minimal size of a cover. The fractional relaxations of these numbers are denoted as usual by \(\nu^*(H) \) and \(\tau^*(H) \). By LP duality we have that \(\nu^*(H) = \tau^*(H) \).

*Supported by NSF grant DMS-1550991 and US Army Research Office Grant W911NF-16-1-0404.
Let \mathcal{F} be a finite family of axis-parallel boxes in \mathbb{R}^d. We identify \mathcal{F} with the hypergraph with vertex set \mathbb{R}^d and edge set \mathcal{F}. Thus a matching in \mathcal{F} is a subfamily of pairwise disjoint boxes (also called an independent set in the literature) and a cover in \mathcal{F} is a set of points in \mathbb{R}^d intersecting every box in \mathcal{F} (also called a hitting set).

An old result due to Gallai is the following (see e.g. [8]):

Theorem 1 (Gallai). If \mathcal{F} is a family of intervals in \mathbb{R} (i.e., a family of boxes in \mathbb{R}) then $\tau(\mathcal{F}) = \nu(\mathcal{F})$.

For a family \mathcal{F} of axis-parallel boxes in \mathbb{R}^d with $\nu(\mathcal{F}) = 1$, Helly’s theorem [9] implies that $\tau(\mathcal{F}) = 1$.

Observation 2 (Helly [9]). Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^d with $\nu(\mathcal{F}) = 1$. Then $\tau(\mathcal{F}) = 1$.

A rectangle is an axis-parallel box in \mathbb{R}^2. In 1965, Wegner [14] conjectured that in a hypergraph of axis-parallel rectangles in \mathbb{R}^2, the ratio τ/ν is bounded by 2. Gáyárfás and Lehel conjectured in [7] that the same ratio is bounded by a constant. The best known lower bound, $\tau = [5\nu/3]$, is attained by a construction due to Fon-Der-Flaass and Kostochka in [6]. Károlyi [10] proved that in families of axis-parallel boxes in \mathbb{R}^d we have $\tau(\mathcal{F}) \leq \nu(\mathcal{F}) (1 + \log (\nu(\mathcal{F})))^{d-1}$, where $\log = \log_2$. Here is a short proof of Károlyi’s bound.

Theorem 3 (Károlyi [10]). If \mathcal{F} is a finite family of axis-parallel boxes in \mathbb{R}^d, then $\tau(\mathcal{F}) \leq \nu(\mathcal{F}) (1 + \log (\nu(\mathcal{F})))^{d-1}$.

Proof. We proceed by induction on d and $\nu(\mathcal{F})$. Note that if $\nu(\mathcal{F}) \in \{0, 1\}$ then the result holds for all d by Helly’s theorem [9]. Now let $d, n \in \mathbb{N}$. Let $F_d : \mathbb{R} \to \mathbb{R}$ be a function for which $\tau(\mathcal{T}) \leq F_d(\nu(\mathcal{T}))$ for every family \mathcal{T} of axis-parallel boxes in \mathbb{R}^d with $d' < d$, or with $d = d'$ and $\nu(\mathcal{T}) < n$.

Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^d with $\nu(\mathcal{F}) = n$. For $a \in \mathbb{R}$, let H_a be the hyperplane $\{x = (x_1, \ldots, x_d) : x_1 = a\}$. Write $L_a = \{x = (x_1, \ldots, x_d) : x_1 \leq a\}$, and let $\mathcal{F}_a = \{F \in \mathcal{F} : F \subseteq L_a\}$. Define $a^* = \min \{a : \nu(F_a) \geq \lfloor \nu/2 \rfloor\}$. The hyperplane H_{a^*} gives rise to a partition $\mathcal{F} = \bigcup_{i=1}^{\lfloor \nu/2 \rfloor} \mathcal{F}_i$, where $\mathcal{F}_1 = \{F \in \mathcal{F} : F \subseteq L_{a^*} \setminus H_{a^*}\}$, $\mathcal{F}_2 = \{F \in \mathcal{F} : F \cap H_{a^*} \neq \emptyset\}$, and $\mathcal{F}_3 = \mathcal{F} \setminus (\mathcal{F}_1 \cup \mathcal{F}_2)$. It follows from the choice of a^* that $\nu(\mathcal{F}_1) \leq [\nu(\mathcal{F})/2] - 1$, $\nu(\mathcal{F}_2) \leq \nu(\mathcal{F})$, and $\nu(\mathcal{F}_3) \leq [\nu(\mathcal{F})/2]$.

Therefore,

\[
F_d (\nu(\mathcal{F})) \leq \tau(\mathcal{F}_1) + \tau(\mathcal{F}_3) + \tau(\{F \cap H_{a^*} : F \in \mathcal{F}_2\})
\]

\[
\leq F_d (\nu(\mathcal{F}_1)) + F_d (\nu(\mathcal{F}_3)) + F_{d-1} (\nu(\mathcal{F}_2))
\]

\[
\leq F_d \left(\left\lfloor \frac{\nu(\mathcal{F})}{2} \right\rfloor - 1 \right) + F_d \left(\left\lfloor \frac{\nu(\mathcal{F})}{2} \right\rfloor \right) + F_{d-1} (\nu(\mathcal{F}))
\]

\[
\leq 2 \frac{\nu(\mathcal{F})}{2} \left(1 + \log \left(\frac{\nu(\mathcal{F})}{2} \right) \right)^{d-1} + \nu(\mathcal{F}) (1 + \log (\nu(\mathcal{F})))^{d-2}
\]

\[
\leq \nu(\mathcal{F}) (1 + \log (\nu(\mathcal{F})))^{d-1},
\]

implying the result. \qed
Note that for $\nu(\mathcal{F}) = 2$, we have that $\mathcal{F}_1 = \emptyset$, $\nu(\mathcal{F}_2) = 1$ and so $\tau(\mathcal{F}) \leq F_{d-1}(2) + 1$. Therefore, we have the following, which was also proved in [6].

Observation 4 (Fon-der-Flaass and Kostochka [6]). Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^d with $\nu(\mathcal{F}) = 2$. Then $\tau(\mathcal{F}) \leq d + 1$.

The bound from Theorem 3 was improved by Akopyan [2] to $\tau(\mathcal{F}) \leq (1.5 \log_3 2 + o(1))\nu(\mathcal{F}) (\log_2 (\nu(\mathcal{F})))^{d-1}$.

A corner of a box F in \mathbb{R}^d is a zero-dimensional face of F. We say that two boxes in \mathbb{R}^d intersect at a corner if one of them contains a corner of the other.

A family \mathcal{F} of connected subsets of \mathbb{R}^2 is a family of pseudo-disks, if for every pair of distinct subsets in \mathcal{F}, their boundaries intersect in at most two points. In [4], Chan and Har-Peled proved that families of pseudo-disks in \mathbb{R}^2 satisfy $\tau = O(\nu)$. It is easy to check that if \mathcal{F} is a family of axis-parallel rectangles in \mathbb{R}^2 in which every two intersecting rectangles intersect at a corner, then \mathcal{F} is a family of pseudo-disks. Thus we have:

Theorem 5 (Chan and Har-Peled [4]). There exists a constant c such that for every family \mathcal{F} of axis-parallel rectangles in \mathbb{R}^2 in which every two intersecting rectangles intersect at a corner, we have that $\tau(\mathcal{F}) \leq c\nu(\mathcal{F})$.

Here we prove a few different generalizations of this theorem. In Theorem 6 we prove the bound $\tau(\mathcal{F}) \leq c\nu(\mathcal{F}) \log \log(\nu(\mathcal{F}))$ for families \mathcal{F} of axis-parallel boxes in \mathbb{R}^d in which every two intersecting boxes intersect at a corner, and in Theorem 7 we prove $\tau(\mathcal{F}) \leq c\nu(\mathcal{F})$ for families \mathcal{F} of axis-parallel cubes in \mathbb{R}^d, where in both cases c is a constant depending only on the dimension d. We further prove in Theorem 8 that in families \mathcal{F} of axis-parallel boxes in \mathbb{R}^d satisfying certain assumptions on their pairwise intersections, the bound on the covering number improves to $\tau(\mathcal{F}) \leq c\nu(\mathcal{F})$. For $d = 2$, these assumptions are equivalent to the assumption that there is a maximum matching \mathcal{M} in \mathcal{F} such that every intersection between a box in \mathcal{M} and a box in $\mathcal{F}\setminus\mathcal{M}$ occurs at a corner. We use this result to prove our Theorem 10, asserting that for every r, if \mathcal{F} is a family of axis-parallel rectangles in \mathbb{R}^2 with the property that the ratio between the side lengths of every rectangle in \mathcal{F} is bounded by r, then $\tau(\mathcal{F}) \leq c\nu(\mathcal{F})$ for some constant c depending only on r.

Let us now describe our results in more detail. First, for general dimension d we have the following.

Theorem 6. There exists a constant c depending only on d, such that for every family \mathcal{F} of axis-parallel boxes in \mathbb{R}^d in which every two intersecting boxes intersect at a corner we have $\tau(\mathcal{F}) \leq c\nu(\mathcal{F}) \log \log(\nu(\mathcal{F}))$.

For the proof, we first prove the bound $\tau^*(\mathcal{F}) \leq 2^d \nu(\mathcal{F})$ on the fractional covering number of \mathcal{F}, and then use Theorem 11 below for the bound $\tau(\mathcal{F}) = O(\tau^*(\mathcal{F}) \log \log(\tau^*(\mathcal{F})))$.

An axis-parallel box is a **cube** if all its side lengths are equal. Note that if \mathcal{F} consists of axis-parallel cubes in \mathbb{R}^d, then every intersection in \mathcal{F} occurs at a corner. Moreover, for axis-parallel cubes we have $\tau(\mathcal{F}) = O(\tau^*(\mathcal{F}))$ by Theorem 11, and thus we conclude the following.
Theorem 7. If F is a family of axis-parallel cubes in \mathbb{R}^d, then $\tau(F) \leq c\nu(F)$ for some constant c depending only on d.

To get a constant bound on the ratio τ/ν in families of axis-parallel boxes in \mathbb{R}^d which are not necessarily cubes, we make a more restrictive assumption on the intersections in F.

Theorem 8. Let F be a family of axis-parallel boxes in \mathbb{R}^d. Suppose that there exists a maximum matching M in F such that for every $F \in F$ and $M \in M$, at least one of the following holds:

1. F contains a corner of M;
2. $F \cap M = \emptyset$; or
3. M contains 2^{d-1} corners of F.

Then $\tau(F) \leq (2^d + (4 + d)d)\nu(F)$.

For $d = 2$, this theorem implies the following corollary.

Corollary 9. Let F be a family of axis-parallel rectangles in \mathbb{R}^2. Suppose that there exists a maximum matching M in F such that for every $F \in F$ and $M \in M$, if F and M intersect then they intersect at a corner. Then $\tau(F) \leq 16\nu(F)$.

Note that Corollary 9 is slightly stronger than Theorem 5. Here we only need that the intersections with rectangles in some fixed maximum matching M occur at corners, but we do not restrict the intersections of two rectangles $F, F' \notin M$.

Given a constant $r > 0$, we say that a family F of axis-parallel boxes in \mathbb{R}^d has an r-bounded aspect ratio if every box $F \in F$ has $l_i(F)/l_j(F) \leq r$ for all $i, j \in \{1, \ldots, d\}$, where $l_i(F)$ is the length of the orthogonal projection of F onto the ith coordinate.

For families of rectangles with bounded aspect ratio we prove the following.

Theorem 10. Let F be a family of axis-parallel rectangles in \mathbb{R}^2 that has an r-bounded aspect ratio. Then $\tau(F) \leq (14 + 2r^2)\nu(F)$.

A result similar to Theorem 10 was announced in [1], but to the best of our knowledge the proof was not published.

An application of Theorem 10 is the existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$ for axis-parallel rectangles in \mathbb{R}^2 with bounded aspect ratio. More precisely, let P be a set of n points in \mathbb{R}^d and let F be a family of sets in \mathbb{R}^d, each containing at least εn points of P. A weak ε-net for F is a cover of F, and a strong ε-net for F is a cover of F with points of P. The existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$ for pseudo-disks in \mathbb{R}^2 was proved by Pyrga and Ray in [12]. Aronov, Ezra and Sharir in [3] showed the existence of strong ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ for axis-parallel boxes in \mathbb{R}^2 and \mathbb{R}^3, and the existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ for all d was then proved by Ezra in [5]. Ezra also showed that for axis-parallel cubes in \mathbb{R}^d there exists an ε-net of size $O\left(\frac{1}{\varepsilon^2}\right)$. These results imply the following.
Theorem 11 (Aronov, Ezra and Sharir [3]; Ezra [5]). If \mathcal{F} is a family of axis-parallel boxes in \mathbb{R}^d then $\tau(\mathcal{F}) \leq cr^*\mathcal{F} \log \log (r^*\mathcal{F})$ for some constant c depending only on d. If \mathcal{F} consists of cubes, then this bound improves to $\tau(\mathcal{F}) \leq cr^*\mathcal{F}$.

An example where the smallest strong ε-net for axis-parallel rectangles in \mathbb{R}^2 is of size $\Omega \left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon} \right)$ was constructed by Pach and Tardos in [11]. The question of whether weak ε-nets of size $O\left(\frac{1}{\varepsilon} \right)$ for axis-parallel rectangles in \mathbb{R}^2 exist was raised both in [3] and in [11].

Theorem 10 implies a positive answer for the family of axis-parallel rectangles in \mathbb{R}^2 satisfying the r-bounded aspect ratio property:

Corollary 12. For every fixed constant r, there exists a weak ε-net of size $O(\frac{1}{\varepsilon})$ for the family \mathcal{F} of axis-parallel rectangles in \mathbb{R}^2 with aspect ratio bounded by r.

Proof. Given a set P of n points, there cannot be $\frac{1}{\varepsilon} + 1$ pairwise disjoint rectangles in \mathcal{F}, each containing at least εn points of P. Therefore $\nu(\mathcal{F}) \leq \frac{1}{\varepsilon}$. Theorem 10 implies that there is a cover of \mathcal{F} of size $O(\frac{1}{\varepsilon})$.

This paper is organized as follows. In Section 2 we prove Theorem 6. Section 3 contains definitions and tools. Theorem 8 is then proved in Section 4 and Theorem 10 is proved in Section 5.

2 Proofs of Theorems 6 and 7

Let \mathcal{F} be a finite family of axis-parallel boxes in \mathbb{R}^d, such that every intersection in \mathcal{F} occurs at a corner. By performing small perturbations on the boxes, we may assume that no two corners of boxes of \mathcal{F} coincide.

Proposition 13. We have $\tau^*\mathcal{F} \leq 2^d \nu(\mathcal{F})$.

Proof. We let $\nu(\mathcal{F}) = k$. Since an optimal fractional matching is an optimum solution to a linear program with integer coefficients, and by [13, Theorem 10.1], there exists an optimum fractional matching $g : \mathcal{F} \rightarrow \mathbb{Q}^+$ for \mathcal{F}. By choosing a common denominator r, we may assume that $g(F) = \frac{k_F}{r}$ for some $k_F \in \mathbb{N}$ for all $F \in \mathcal{F}$. We now let \mathcal{F}' be the family of boxes that contains k_F copies of each box $F \in \mathcal{F}$. Let n be the number of boxes in \mathcal{F}'. It follows that $\tau^*(\mathcal{F}) = \nu(\mathcal{F}) = \frac{n}{r}$, and thus our aim is to show that $\frac{n}{r} \leq 2^d k$.

For $x \in \mathbb{R}^d$, we let \mathcal{F}_x be the set of $F \in \mathcal{F}$ containing x. Since g is a fractional matching, it follows that $\sum_{F \in \mathcal{F}_x} g(F) \leq 1$. Thus, the number of boxes in \mathcal{F}' that intersect x is at most $\sum_{F \in \mathcal{F}_x} k_F \leq r$.

Since a matching of \mathcal{F}' cannot contain two copies of the same box in \mathcal{F}, it follows that $\nu(\mathcal{F}') \leq \nu(\mathcal{F})$. Since $\nu(\mathcal{F}') \leq k$, it follows from Turán’s theorem that there are at least $(n-k)/(2k)$ unordered intersecting pairs of boxes \mathcal{F}'. Each such unordered pair contributes at least two pairs of the form (x, F), where x is a corner of a box $F' \in \mathcal{F}'$, F is box in \mathcal{F}' different from F', and x pierces F. Therefore, since there are altogether $2^d n$ corners of boxes in \mathcal{F}', there must exist a corner x of a box $F \in \mathcal{F}'$ that pierces at least $(n-k)/(2k)$ boxes in \mathcal{F}', all different from F. Together with F, x intersects at least $n/2^d k$ boxes of \mathcal{F}', implying that $n/2^d k \leq r$. Thus $\frac{n}{r} \leq 2^d k$, as desired.

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.70

5
Combining this bound with Theorem 11, we obtain the proofs of Theorems 6 and 7.

3 Definitions and tools

Let R be an axis-parallel box in \mathbb{R}^d with $R = [x_1, y_1] \times \cdots \times [x_d, y_d]$. For $i \in \{1, \ldots, d\}$, let $p_i(R) = [x_i, y_i]$ denote the orthogonal projection of R onto the i-th coordinate. Two intervals $[a, b], [c, d] \subseteq \mathbb{R}$, are incomparable if $[a, b] \not\subseteq [c, d]$ and $[c, d] \not\subseteq [a, b]$. We say that $[a, b] < [c, d]$ if $b < c$. For two axis-parallel boxes Q and R we say that $Q \prec_i R$ if $p_i(Q) < p_i(R)$.

Observation 14. Let Q, R be disjoint axis-parallel boxes in \mathbb{R}^d. Then there exists $i \in \{1, \ldots, d\}$ such that $Q \prec_i R$ or $R \prec_i Q$.

Lemma 15. Let Q, R be axis-parallel boxes in \mathbb{R}^d such that Q contains a corner of R but R does not contain a corner of Q. Then, for all $i \in \{1, \ldots, d\}$, either $p_i(R)$ and $p_i(Q)$ are incomparable, or $p_i(R) \subseteq p_i(Q)$, and there exists $i \in \{1, \ldots, d\}$ such that $p_i(R) \not\subseteq p_i(Q)$.

Moreover, if $R \not\subseteq Q$, then there exists $j \in \{1, \ldots, d\} \setminus \{i\}$ such that $p_i(R)$ and $p_j(Q)$ are incomparable.

Proof. Let $x = (x_1, \ldots, x_d)$ be a corner of R contained in Q. By symmetry, we may assume that $x_i = \max(p_i(R))$ for all $i \in \{1, \ldots, d\}$. Since $x_i \in p_i(Q)$ for all $i \in \{1, \ldots, d\}$, it follows that $\max(p_i(Q)) \geq \max(p_i(R))$ for all $i \in \{1, \ldots, d\}$. If $\min(p_i(Q)) < \min(p_i(R))$, then $p_i(R) \subseteq p_i(Q)$; otherwise, $p_i(Q)$ and $p_i(R)$ are incomparable. If $p_i(Q)$ and $p_i(R)$ are incomparable for all $i \in \{1, \ldots, d\}$, then $y = (y_1, \ldots, y_d)$ with $y_i = \min(p_i(Q))$ is a corner of Q and since $\min(p_i(Q)) > \min(p_i(R))$, it follows that $y \in R$, a contradiction. It follows that there exists an $i \in \{1, \ldots, d\}$ such that $p_i(R) \not\subseteq p_i(Q)$.

If $p_i(R) \not\subseteq p_i(Q)$ for all $i \in \{1, \ldots, d\}$, then $R \subseteq Q$; this implies the result. \square

Observation 16. Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^d. Let \mathcal{F}' arise from \mathcal{F} by removing every box in \mathcal{F} that contains another box in \mathcal{F}. Then $\nu(\mathcal{F}) = \nu(\mathcal{F}')$ and $\tau(\mathcal{F}) = \tau(\mathcal{F}')$.

Proof. Since $\mathcal{F}' \subseteq \mathcal{F}$, it follows that $\nu(\mathcal{F}') \leq \nu(\mathcal{F})$ and $\tau(\mathcal{F}') \leq \tau(\mathcal{F})$. Let \mathcal{M} be a matching in \mathcal{F} of size $\nu(\mathcal{F})$. Let \mathcal{M}' arise from \mathcal{M} by replacing each box R in $\mathcal{M} \setminus \mathcal{F}'$ with a box in \mathcal{F}' contained in R. Then \mathcal{M}' is a matching in \mathcal{F}', and so $\nu(\mathcal{F}') = \nu(\mathcal{F})$. Moreover, let P be a cover of \mathcal{F}'. Since every box in \mathcal{F} contains a box in \mathcal{F}' (possibly itself) which, in turn, contains a point in P, we deduce that P is a cover of \mathcal{F}. It follows that $\tau(\mathcal{F}') = \tau(\mathcal{F})$. \square

A family \mathcal{F} of axis-parallel boxes is *clean* if no box in \mathcal{F} contains another box in \mathcal{F}. By Observation 16, we may restrict ourselves to clean families of boxes.
4 Proof of Theorem 8

Throughout this section, let \mathcal{F} be a clean family of axis-parallel boxes in \mathbb{R}^d, and let \mathcal{M} be a matching of maximum size in \mathcal{F}. We let $\mathcal{F}(\mathcal{M})$ denote the subfamily of \mathcal{F} consisting of those boxes R in \mathcal{F} for which for every $M \in \mathcal{M}$, either M is disjoint from R or M contains at least 2^{d-1} corners of R. Our goal is to bound $\tau(\mathcal{F}(\mathcal{M}))$.

Lemma 17. Let $R \in \mathcal{F}(\mathcal{M})$. Then R intersects at least one and at most two boxes in \mathcal{M}. If R intersects two boxes $M_1, M_2 \in \mathcal{M}$, then there exists $j \in \{1, \ldots, d\}$ such that $M_1 \prec_j M_2$ or $M_2 \prec_j M_1$, and for all $i \in \{1, \ldots, d\} \setminus \{j\}$, we have that $p_i(R) \subseteq p_i(M_1)$ and $p_i(R) \subseteq p_i(M_2)$.

Proof. If R is disjoint from every box in \mathcal{M}, then $\mathcal{M} \cup \{R\}$ is a larger matching, a contradiction. So R intersects at least one box in \mathcal{M}. Let M_1 be in \mathcal{M} such that $R \cap M_1 \neq \emptyset$. We claim that there exists $j \in \{1, \ldots, d\}$ such that M_1 contains precisely the set of corners of R with the same jth coordinate.

By Lemma 15, there exists $j \in \{1, \ldots, d\}$ such that $p_j(R) = [a, b]$ and $p_j(M_1)$ are incomparable. By symmetry, we may assume that $a \in p_j(M_1)$, $b \notin p_j(M_1)$. This proves that M_1 contains all 2^{d-1} corners of R with a as their jth coordinate, and our claim follows.

Consequently, $p_i(R) \subseteq p_i(M_1)$ for all $i \in \{1, \ldots, d\} \setminus \{j\}$. Since R has exactly 2^d corners, and members of \mathcal{M} are disjoint, it follows that there exist at most two boxes in \mathcal{M} that intersect R. If M_1 is the only one such box, then the result follows. Let $M_2 \in \mathcal{M} \setminus \{M_1\}$ such that $R \cap M_1 \neq \emptyset$. By our claim, it follows that M_2 contains 2^{d-1} corners of R; and since M_1 is disjoint from M_2, it follows that M_2 contains precisely those corners of R with jth coordinate equal to b. Therefore, $p_i(R) \subseteq p_i(M_2)$ for all $i \in \{1, \ldots, d\} \setminus \{j\}$. We conclude that $p_i(M_2)$ is not disjoint from $p_i(M_1)$ for all $i \in \{1, \ldots, d\} \setminus \{j\}$, and since M_1, M_2 are disjoint, it follows from Observation 14 that either $M_1 \prec_j M_2$ or $M_2 \prec_j M_1$. \qed

For $i \in \{1, \ldots, d\}$, we define a directed graph G_i as follows. We let $V(G_i) = \mathcal{M}$, and for $M_1, M_2 \in \mathcal{M}$ we let $M_1 M_2 \in E(G_i)$ if and only if $M_1 \prec_i M_2$ and there exists $R \in \mathcal{F}(\mathcal{M})$ such that $R \cap M_1 \neq \emptyset$ and $R \cap M_2 \neq \emptyset$. In this case, we say that R witnesses the edge $M_1 M_2$. For $i \in \{1, \ldots, d\}$, we say that R is i-pendant at $M_1 \in \mathcal{M}$ if M_1 is the only box of \mathcal{M} intersecting R and $p_i(R)$ and $p_i(M_1)$ are incomparable. Note that by Lemma 17, every box R in $\mathcal{F}(\mathcal{M})$ satisfies exactly one of the following: R witnesses an edge in exactly one of the graphs G_i, $i \in \{1, \ldots, d\}$; or R is i-pendant for exactly one $i \in \{1, \ldots, d\}$.

Lemma 18. Let $i \in \{1, \ldots, d\}$. Let $Q, R \in \mathcal{F}(\mathcal{M})$ be such that Q witnesses an edge $M_1 M_2$ in G_i, and R witnesses an edge $M_3 M_4$ in G_i. If Q and R intersect, then either $M_1 = M_4$, or $M_2 = M_3$, or $M_1 M_2 = M_3 M_4$.

Proof. By symmetry, we may assume that $i = 1$. Let $p_1(M_1) = [x_1, y_1]$ and $p_1(M_2) = [x_2, y_2]$. It follows that $p_1(Q) \subseteq [x_1, y_2]$. Let $a = (a_1, a_2, \ldots, a_d) \in Q \cap R$. It follows that $a_j \in p_j(Q) \subseteq p_j(M_1) \cap p_j(M_2)$ and $a_j \in p_j(R) \subseteq p_j(M_3) \cap p_j(M_4)$ for all $j \in \{2, \ldots, d\}$.
If $M_1 \in \{M_3, M_4\}$ and $M_2 \in \{M_3, M_4\}$, then $M_1 M_2 = M_3 M_4$, and the result follows. Therefore, we may assume that this does not happen. By symmetry, we may assume that M_1 is distinct from M_3 and M_4. (If M_2 is distinct from M_3 and M_4, and M_1 is not, then we reflect the family of boxes along the origin; this switches the roles of M_1 and M_2, and of M_3 and M_4.)

It follows that $a \notin M_1$, for otherwise R intersects three distinct members of \mathcal{M}, contrary to Lemma 17. Since R is disjoint from M_1, it follows that either $M_1 \prec_1 R$ or $R \prec_1 M_1$. But $p_1(Q) \subseteq [x_1, y_2]$, and since $Q \cap R \neq \emptyset$, it follows that $M_1 \prec_1 R$ (see Figure 1).
Since $M_3 \neq M_1$ and $p_j(M_3) \cap p_j(M_1) \ni a_j$ for all $j \in \{2, \ldots, d\}$, it follows that either $M_1 \prec_1 M_3$ or $M_1 \prec_1 M_3$. Since $M_1 \prec_1 R$ and $R \cap M_3 \neq \emptyset$, it follows that $M_1 \prec_1 M_3$.

Suppose that $a \in M_3$. Then $Q \cap M_3 \neq \emptyset$, and since $M_1 \prec_1 M_3$, we have that $M_3 = M_2$ as desired.

Therefore, we may assume that $a \notin M_3$, and thus $p_1(M_1) \prec p_1(M_3) \prec [a_1, a_1]$. Since $[y_1, a_1] \subseteq p_1(Q)$, it follows that $p_1(M_3) \cap p_1(Q) \neq \emptyset$. But $p_j(M_3) \cap p_j(Q) \ni a_j$ for all $j \in \{2, \ldots, d\}$, and hence $Q \cap M_3 \neq \emptyset$. But then $M_3 \in \{M_1, M_2\}$, and thus $M_3 = M_2$.

This concludes the proof.

The following is a well-known fact about directed graphs; we include a proof for completeness.

Lemma 19. Let G be a directed graph. Then there exists an edge set $E \subseteq E(G)$ with $|E| \geq |E(G)|/4$ such that for every vertex $v \in V(G)$, either E contains no incoming edge at v, or E contains no outgoing edge at v.

Proof. For $A, B \subseteq V(G)$, let $E(A, B)$ denote the set of edges of G with head in A and tail in B.

Let $X_0 = Y_0 = \emptyset$, $V(G) = \{v_1, \ldots, v_n\}$. For $i = 1, \ldots, n$ we will construct X_i, Y_i such that $X_i \cup Y_i = \{v_1, \ldots, v_i\}$, $X_i \cap Y_i = \emptyset$ and $|E(X_i, Y_i)| + |E(Y_i, X_i)| \geq |E(G|(X_i \cup Y_i))|/2$, where $G|(X_i \cup Y_i)$ denotes the induced subgraph of G on vertex set $X_i \cup Y_i$. This holds for X_0, Y_0. Suppose that we have constructed X_{i-1}, Y_{i-1} for some $i \in \{1, \ldots, n\}$. If $|E(X_{i-1}, \{v_i\})| + |E(\{v_i\}, X_{i-1})| \geq |E(Y_{i-1}, \{v_i\})| + |E(\{v_i\}, Y_{i-1})|$, we let $X_i = X_{i-1}, Y_i = Y_{i-1} \cup \{v_i\}$; otherwise, let $X_i = X_{i-1} \cup \{v_i\}, Y_i = Y_{i-1}$. It follows that X_i, Y_i still have the desired properties. Thus, $|E(X_n, Y_n)| + |E(Y_n, X_n)| \geq |E(G)|/2$. By symmetry, we may assume that $|E(X_n, Y_n)| \geq |E(G)|/4$. But then $E(X_n, Y_n)$ is the desired set E; it contains only incoming edges at vertices in X_n, and only outgoing edges at vertices in Y_n. This concludes the proof.

Theorem 20. For $i \in \{1, \ldots, d\}$, $|E(G_i)| \leq 4\nu(F)$.

Proof. Let $E \subseteq E(G_i)$ as in Lemma 19. For each edge in E, we pick one box witnessing this edge; let F' denote the family of these boxes. We claim that F' is a matching. Indeed, suppose not, and let $Q, R \in F'$ be distinct and intersecting. Let Q witness M_1M_2 and R witness M_3M_4. By Lemma 18, it follows that either $M_1M_2 = M_3M_4$ (impossible since we picked exactly one witness per edge) or $M_1 = M_4$ (impossible because E does not contain both an incoming and an outgoing edge at $M_1 = M_4$) or $M_2 = M_3$ (impossible because E does not contain both an incoming and an outgoing edge at $M_2 = M_3$). This is a contradiction, and our claim follows. Now we have $\nu(F) \geq |F'| = |E| \geq |E(G_i)|/4$, which implies the result.

A matching M of a clean family F of boxes is extremal if for every $M \in M$ and $R \in F \setminus M$, either $(M \setminus \{M\}) \cup \{R\}$ is not a matching or there exists an $i \in \{1, \ldots, d\}$ such that $\max(p_i(R)) \geq \max(p_i(M))$. Every family F of axis parallel boxes has an extremal maximum matching. For example, the maximum matching M minimizing $\sum_{M \in M} \sum_{i=1}^d \max(p_i(M))$ is extremal.
Theorem 21. For \(i \in \{1, \ldots, d\} \), let \(F_i \) denote the set of boxes in \(F(M) \) that either are i-pendant or witness an edge in \(G_1 \). Then \(\tau(F_i) \leq (4 + d)\nu(F) \). If \(M \) is extremal, then \(\tau(F_i) \leq (3 + d)\nu(F) \).

Proof. By symmetry, it is enough to prove the theorem for \(i = 1 \). For \(M \in M \), let \(F_M \) denote the set of boxes in \(F_i \) that either are 1-pendant at \(M \), or witness an edge \(MM' \) of \(G_1 \). It follows that \(\bigcup_{M \in M} F_M = F_i \). For \(M \in M \), let \(d^+(M) \) denote the out-degree of \(M \) in \(G_1 \). We will prove that \(\tau(F_M) \leq d^+(M) + d \) for all \(M \in M \).

We fix a box \(M \in M \). Let \(A \) denote the set of boxes that are 1-pendant at \(M \). Suppose that \(A \) contains two disjoint boxes \(M_1, M_2 \). Then \((M \setminus \{M\}) \cup \{M_1, M_2\} \) is a larger matching than \(M \), a contradiction. So every two boxes in \(A \) pairwise intersect. By Observation 2, it follows that \(\tau(A) = 1 \).

Let \(B = F_M \setminus A \), i.e. \(B \) is the set of boxes in \(F_i \) that witness an outgoing edge \(MM' \) at \(M \). For every edge \(MM' \in E(G_1) \), we let \(B(M') \) denote the set of boxes in \(F_i \) that witness the edge \(MM' \).

Suppose that there is an edge \(MM' \in E(G_1) \) such that the set \(B(M') \) satisfies \(\nu(B(M')) \geq 3 \). Then \(M \) is not a maximum matching, since removing \(M \) and \(M' \) from \(M \) and adding \(\nu(B(M')) \) disjoint rectangles in \(B(M') \) yields a larger matching. Moreover, for distinct \(M', M'' \in M \), every box in \(B(M') \) is disjoint from every box in \(B(M'') \) by Lemma 18. Thus, if there exist \(M', M'' \) such that \(\nu(B(M')) = \nu(B(M'')) = 2 \) and \(M' \neq M'' \), then removing \(M, M' \) and \(M'' \) and adding two disjoint rectangles from each of \(B(M') \) and \(B(M'') \) yields a bigger matching, a contradiction.

Let \(p_1(M) = [a, b] \). Two boxes in \(B(M') \) intersect if and only if their intersections with the hyperplane \(H = \{(x_1, \ldots, x_d) : x_1 = b\} \) intersect. If \(\nu(B(M')) = 1 \), then \(\tau(B(M')) = 1 \) by Observation 2. If \(\nu(B(M')) = 2 \), then \(\nu(\{F \cap H : F \in B(M')\}) = 2 \) and so

\[
\tau(B(M')) = \tau(\{F \cap H : F \in B(M')\}) \leq d
\]

by Observation 4.

Therefore,

\[
\tau(B) \leq \sum_{M' : MM' \in E(G_1)} \tau(B(M')) \leq d^+(M) - 1 + d,
\]

and since \(\tau(A) \leq 1 \), it follows that \(\tau(F_M) \leq d^+(M) + d \) as claimed (see Figure 2).

Summing over all rectangles in \(M \), we obtain

\[
\tau(F_i) \leq \sum_{M \in M} \tau(F_M) \leq \sum_{M \in M} (d^+(M) + d) = d|V(G_1)| + |E(G_1)| \leq d|M| + 4|M| = (4 + d)\nu(F),
\]

where we used Theorem 20 for the inequality \(|E(G_1)| \leq 4|M| \).

If \(M \) is extremal, then every 1-pendant box at \(M \) also intersects \(H \). Let \(M' \) be such that \(\nu(B(M')) \) is maximum. It follows that \(\nu(A \cup B(M')) \leq 2 \) and thus \(\tau(A \cup B(M')) \leq d \), implying \(\tau(F_M) \leq d^+(M) + d - 1 \). This concludes the proof of the second part of the theorem.

\[\square \]

The Electronic Journal of Combinatorics 25(1) (2018), #P1.70
Figure 2: Proof that $\tau(F_M) \leq d^+(M) = d$ for $d = 2$; here $d^+(M) = 3$. The red boxes in A satisfy $\tau(A) = \nu(A) = 1$, since M is the only box in M they intersect. There is only one M', namely $M' = M'_1$, such that $\nu(B(M')) > 1$; since all those boxes intersect the line $x = b$, $\tau(B(M')) \leq d = 2$. For all of the $d^+(M) - 1$ boxes M' such that $M' \neq M'_1$, $\tau(B(M')) = \nu(B(M')) = 1$. So $\tau(F_M) \leq 5$, as shown.

Theorem 22. Let $F' \subseteq F$ be the set of boxes $R \in F$ such that for each $M \in M$, either $M \cap R = \emptyset$, or M contains 2^{d-1} corners of R, or R contains a corner of M. Then $\tau(F') \leq (2^d + (4 + d)d)\nu(F)$. If M is extremal, then $\tau(F') \leq (2^d + (3 + d)d)\nu(F)$.

Proof. We proved in Theorem 21 that $\tau(F_i) \leq (4 + d)\nu(F)$ for $i = 1, \ldots, d$. Let $F'' = F' \setminus F(M)$. Then F'' consists of boxes R such that R contains a corner of some box
Let P be the set of all corners of boxes in \mathcal{M}. It follows that P covers \mathcal{F}'', and so $\tau(\mathcal{F}'') \leq 2^d \nu(\mathcal{F})$. Since $\mathcal{F}' = \mathcal{F}'' \cup \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_d$, it follows that $\tau(\mathcal{F}') \leq (2^d + (4 + d)d) \nu(\mathcal{F})$. If \mathcal{M} is extremal, the same argument yields that $\tau(\mathcal{F}') \leq (2^d + (3 + d)d) \nu(\mathcal{F})$, since $\tau(\mathcal{F}_i) \leq (3 + d) \nu(\mathcal{F})$ for $i = 1, \ldots, d$ by Theorem 21.

We are now ready to prove our main theorems.

Proof of Theorem 8. Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^d, and let \mathcal{M} be a maximum matching in \mathcal{F} such that for every $F \in \mathcal{F}$ and $M \in \mathcal{M}$, either $F \cap M = \emptyset$, or F contains a corner of M, or M contains 2^{d-1} corners of F. It follows that $\mathcal{F} = \mathcal{F}'$ in Theorem 22, and therefore, $\tau(\mathcal{F}) \leq (2^d + (4 + d)d) \nu(\mathcal{F})$.

5 Proof of Theorem 10

Let \mathcal{M} be a maximum matching in \mathcal{F}, and let \mathcal{M} be extremal. Observe that each rectangle $R \in \mathcal{F}$ satisfies one of the following:

- R contains a corner of some $M \in \mathcal{M}$;
- some $M \in \mathcal{M}$ contains two corners of R; or
- there exists $M \in \mathcal{M}$ such that $M \cap R \neq \emptyset$, and $p_i(R) \supseteq p_i(M)$ for some $i \in \{1, 2\}$.

By Theorem 22, $14 \nu(\mathcal{F})$ points suffice to cover every rectangle satisfying at least one of the first two conditions. Now, due to the r-bounded aspect ratio, for each $M \in \mathcal{M}$ and for each $i \in \{1, 2\}$, at most r^2 disjoint rectangles $R \in \mathcal{F}$ can satisfy the third condition for M and i. Thus the family of projections of the rectangles satisfying the third condition for M and i onto the $(3-i)$th coordinate have a matching number at most r^2. Since all these rectangles intersect the boundary of M twice, by Theorem 1, we need at most r^2 additional points to cover them for each $i \in \{1, 2\}$. We conclude that $\tau(\mathcal{F}) \leq (14 + 2r^2) \nu(\mathcal{F})$.

Acknowledgments

We are thankful to Paul Seymour for many helpful discussions.

References

