A New Upper Bound for Cancellative Pairs

Barnabás Janzer
Trinity College, University of Cambridge
Cambridge CB2 1TQ, United Kingdom
bkj21@cam.ac.uk

Submitted: Aug 9, 2017; Accepted: Apr 9, 2018; Published: Apr 27, 2018
(c) The author. Released under the CC BY-ND license (International 4.0).

Abstract

A pair $(\mathscr{A}, \mathscr{B})$ of families of subsets of an n-element set is called cancellative if whenever $A, A^{\prime} \in \mathscr{A}$ and $B \in \mathscr{B}$ satisfy $A \cup B=A^{\prime} \cup B$, then $A=A^{\prime}$, and whenever $A \in \mathscr{A}$ and $B, B^{\prime} \in \mathscr{B}$ satisfy $A \cup B=A \cup B^{\prime}$, then $B=B^{\prime}$. It is known that there exist cancellative pairs with $|\mathscr{A}||\mathscr{B}|$ about 2.25^{n}, whereas the best known upper bound on this quantity is 2.3264^{n}. In this paper we improve this upper bound to 2.2682^{n}. Our result also improves the best known upper bound for Simonyi's sandglass conjecture for set systems.

Mathematics Subject Classifications: 05D05

1 Introduction

The notion of a cancellative pair was introduced by Holzman and Körner [4]. We say that a pair $(\mathscr{A}, \mathscr{B})$ of families of subsets of an n-element set S is cancellative if

$$
\begin{align*}
& \text { whenever } A, A^{\prime} \in \mathscr{A} \text { and } B \in \mathscr{B} \text { satisfy } A \cup B=A^{\prime} \cup B \text { then } A=A^{\prime} \\
& \text { and whenever } A \in \mathscr{A} \text { and } B, B^{\prime} \in \mathscr{B} \text { satisfy } A \cup B=A \cup B^{\prime} \text { then } B=B^{\prime} ; \tag{1}
\end{align*}
$$

or, equivalently,

> whenever $A, A^{\prime} \in \mathscr{A}$ and $B \in \mathscr{B}$ satisfy $A \backslash B=A^{\prime} \backslash B$ then $A=A^{\prime}$ and whenever $A \in \mathscr{A}$ and $B, B^{\prime} \in \mathscr{B}$ satisfy $B \backslash A=B^{\prime} \backslash A$ then $B=B^{\prime}$.

We will usually take $S=[n]=\{1, \ldots, n\}$ and will call a cancellative pair with $\mathscr{A}=\mathscr{B}$ a symmetric cancellative pair. Note that the assumption that $(\mathscr{A}, \mathscr{A})$ is a symmetric cancellative pair is slightly stronger than the assumption that \mathscr{A} is a cancellative family, meaning no three distinct sets $A, B, C \in \mathscr{A}$ satisfy $A \cup B=A \cup C$ [3]. We mention that the concept of cancellative pairs corresponds to the information theoretic concept of
uniquely decodable code pairs for the binary multiplying channel without feedback (see e.g. Tolhuizen [8]).

In the case when n is a multiple of 3 , we can obtain an example of a symmetric cancellative pair the following way. Partition S into $n / 3$ classes of size 3, and take \mathscr{A} (and \mathscr{B}) to be the collection of subsets of S containing exactly one element from each class. It is not hard to verify that we get a cancellative pair. Here we have $|\mathscr{A}||\mathscr{B}|=3^{2 n / 3}$, where $3^{2 / 3} \approx 2.08$. In the symmetric case, Erdős and Katona [5] conjectured this to be the maximal size for cancellative families. A counterexample was found by Shearer [6]. Tolhuizen [8] gave a beautiful construction to show that we can achieve $(|\mathscr{A}||\mathscr{B}|)^{1 / n} \rightarrow$ $9 / 4=2.25$, even by symmetric pairs. This construction is (asymptotically) optimal in the symmetric case by a result of Frankl and Füredi [3].

In the general (non-symmetric) case, the exact value of $\alpha=\sup (|\mathscr{A} \| \mathscr{B}|)^{1 / n}$ is not known. The best known upper bound is due to Holzman and Körner [4], who showed that $|\mathscr{A}||\mathscr{B}|<\theta^{n}$ where $\theta \approx 2.3264$. No lower bound better than Tolhuizen's (symmetric) 2.25 is known. Our main aim in this paper is to improve the upper bound to 2.2682^{n}. Our proof requires some numerical calculations by a computer.

A related concept is that of a recovering pair. A pair $(\mathscr{A}, \mathscr{B})$ of collections of subsets of an n-element set S is called recovering $[1,4]$ if for all $A, A^{\prime} \in \mathscr{A}$ and $B, B^{\prime} \in \mathscr{B}$ we have

$$
\begin{equation*}
A \backslash B=A^{\prime} \backslash B^{\prime} \Longrightarrow A=A^{\prime} \quad \text { and } \quad B \backslash A=B^{\prime} \backslash A^{\prime} \Longrightarrow B=B^{\prime} \tag{3}
\end{equation*}
$$

So any recovering pair is cancellative (cf. (2)). Simonyi's sandglass conjecture for set systems [1] states that $|\mathscr{A}||\mathscr{B}| \leqslant 2^{n}$ for a recovering pair. (The value of 2^{n} may be obtained by taking $\mathscr{A}=\mathscr{P}\left(S_{1}\right), \mathscr{B}=\mathscr{P}\left(S \backslash S_{1}\right)$ for any $S_{1} \subseteq S$. There is a more general sandglass conjecture for lattices, due to Ahlswede and Simonyi [1].) Our upper bound of 2.2682^{n} is an improvement on the previously best known bounds of about 2.28^{n} (Etkin and Ordentlich [2], using the terminology of information theory, and Soltész [7]).

2 Proof of the upper bound

Let $h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$ be the binary entropy function (with the convention $0 \log _{2} 0=0$). Define $\mathscr{A}_{i}=\{A \in \mathscr{A} \mid i \notin A\}$ and $p_{i}=\left|\mathscr{A}_{i}\right| /|\mathscr{A}| ; q_{i}$ is defined similarly for \mathscr{B}. We quote the following result of Holzman and Körner [4]. (We will ignore the case when \mathscr{A} or \mathscr{B} is empty.)

Proposition 1 (Holzman and Körner [4]). For a cancellative pair $(\mathscr{A}, \mathscr{B})$, we have

$$
\begin{equation*}
\log _{2}[|\mathscr{A} \| \mathscr{B}|] \leqslant \sum_{i=1}^{n} f\left(p_{i}, q_{i}\right) \tag{4}
\end{equation*}
$$

where $f(p, q)=p h(q)+q h(p)$.

The result above can be established by considering the entropies of each of the random variables of the form $\xi^{B}=A \backslash B$, where $B \in \mathscr{B}$ is fixed and $A \in \mathscr{A}$ is chosen uniformly at random (and doing the same with \mathscr{A}, \mathscr{B} interchanged). Holzman and Körner [4] used (4) and induction to establish their upper bound of $|\mathscr{A}||\mathscr{B}|<\theta^{n}(\theta \approx 2.3264)$.

However, this argument can be improved. We call a cancellative pair k-uniform if $|A|=|B|=k$ for all $A \in \mathscr{A}, B \in \mathscr{B}$. As we will see, bounding $|\mathcal{A}||\mathscr{B}|$ for k-uniform families enables us to give bounds for general (non-uniform) pairs. For n / k small it is easy to give efficient bounds, and for n / k large we will use that the growth speed of the maximum of $|\mathscr{A}||\mathscr{B}|$ (with k fixed, n increasing) can be bounded.

If $(\mathscr{A}, \mathscr{B})$ and $\left(\mathscr{A}^{\prime}, \mathscr{B}^{\prime}\right)$ are cancellative pairs over disjoint ground sets S and S^{\prime}, define their product $\left(\mathscr{A}^{\prime \prime}, \mathscr{B}^{\prime \prime}\right)$ by

$$
\begin{aligned}
\mathscr{A}^{\prime \prime} & =\left\{A \cup A^{\prime} \mid A \in \mathscr{A}, A^{\prime} \in \mathscr{A}^{\prime}\right\} \\
\mathscr{B}^{\prime \prime} & =\left\{B \cup B^{\prime} \mid B \in \mathscr{B}, B^{\prime} \in \mathscr{B}^{\prime}\right\}
\end{aligned}
$$

giving a cancellative pair over $S \cup S^{\prime}$ with $\left|\mathscr{A}^{\prime \prime}\right|\left|\mathscr{B}^{\prime \prime}\right|=|\mathscr{A}||\mathscr{B}|\left|\mathscr{A}^{\prime}\right|\left|\mathscr{B}^{\prime}\right|$.
(Note that the cancellative pair in the Introduction is just the product of cancellative pairs of the form $n=3, \mathscr{A}=\mathscr{B}=\{\{1\},\{2\},\{3\}\}$.) Let $c(n)$ be the maximum of $|\mathscr{A}||\mathscr{B}|$ for a cancellative pair over an n-element set, and let $c_{k}(n)$ be the maximum considering only k-uniform pairs. Similarly to Soltész [7], we prove the following lemma.

Lemma 2. Let M be a fixed positive integer, and suppose that $\beta>0$ is such that $c_{k}(n) \leqslant$ β^{n} for all k divisible by M and for all $n \geqslant k$. Then $c(n) \leqslant \beta^{n}$ for all n.

Proof. Suppose the conditions above are satisfied but $|\mathscr{A}||\mathscr{B}|=\omega^{n}$ for some $\omega>\beta$. Take the product of $(\mathscr{A}, \mathscr{B})$ with (a copy of) $(\mathscr{B}, \mathscr{A})$ to get a cancellative pair $\left(\mathscr{A}_{(1)}, \mathscr{B}_{(1)}\right)$ over some set S with $\left|\mathscr{A}_{(1)}\right|=\left|\mathscr{B}_{(1)}\right|=\omega^{|S| / 2}$ and $\mathscr{A}_{(1)}$ and $\mathscr{B}_{(1)}$ containing the same number of sets of size t for any t. Also, we can take the product of $\left(\mathscr{A}_{(1)}, \mathscr{B}_{(1)}\right)$ with (copies of) itself several times to get a pair with similar properties, so we may assume that $|S|$ is large enough so that $\omega^{|S|} /(|S|+1)^{2}>\beta^{|S|}$. Take $k_{0} \in\{0,1, \ldots,|S|\}$ such that $\mathscr{A}_{(1)}, \mathscr{B}_{(1)}$ each contain at least $\omega^{|S| / 2} /(|S|+1)$ sets of size k_{0}, let $\left(\mathscr{A}_{(2)}, \mathscr{B}_{(2)}\right)$ contain only these k_{0}-sets. So $\left|\mathscr{A}_{(2)}\right|\left|\mathscr{B}_{(2)}\right|>\beta^{|S|}$ and $\left(\mathscr{A}_{(2)}, \mathscr{B}_{(2)}\right)$ is k_{0}-uniform cancellative. Take the product of $\left(\mathscr{A}_{(2)}, \mathscr{B}_{(2)}\right)$ with itself several times to obtain $\left(\mathscr{A}_{(2)}^{M}, \mathscr{B}_{(2)}^{M}\right)$, an $\left(M k_{0}\right)$-uniform cancellative family contradicting our assumptions.

We also need a simple observation.
Lemma 3. If k and $n \geqslant k$ are positive integers, then $c_{k}(n) \leqslant 2^{2(n-k)}$. In particular, $c_{k}(n) \leqslant 2^{n}$ for $n \leqslant 2 k$.

Proof. Given $A \in \mathscr{A}$, all $B \in \mathscr{B}$ have to differ on the complement of A, hence $|\mathscr{B}| \leqslant 2^{n-k}$. Similarly $|\mathscr{A}| \leqslant 2^{n-k}$.

We note that we have equality for $k \leqslant n \leqslant 2 k$ (i.e. $c_{k}(n)=2^{2(n-k)}$), even in the symmetric case [3]. Also, we could deduce Lemma 3 from (4), observing that $\sum p_{i}=$ $\sum q_{i}=n-k$.

In order to state our key proposition, we need a definition. For $\gamma, x \geqslant 2$, consider the following optimisation problem:

$$
\begin{align*}
\operatorname{maximize} & \frac{1}{n} \sum_{i=1}^{n} f\left(p_{i}, q_{i}\right) \\
\text { subject to } & p_{i} q_{i} \leqslant 1 / \gamma \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i} \geqslant n(1-1 / x) \tag{5}\\
& 0 \leqslant p_{i}, q_{i} \leqslant 1 \quad \text { for } i=1, \ldots, n \\
& n \in \mathbb{N}
\end{align*}
$$

(Note that the positive integer n is not fixed.) We write $\varphi(\gamma, x)$ for the solution (i.e. the supremum) of (5).
Proposition 4. Suppose k is a positive integer, $2 \leqslant \lambda$ such that λk is an integer, and $2 \leqslant r_{1} \leqslant \gamma$. Suppose that $c_{k}(\lambda k) \leqslant r_{1}^{\lambda k}$ and

$$
\begin{equation*}
r_{1} \geqslant 2^{\varphi(\gamma, \lambda)} \tag{6}
\end{equation*}
$$

Then, for $\lambda k \leqslant n$,

$$
c_{k}(n) \leqslant r_{1}^{\lambda k} \gamma^{n-\lambda k}
$$

In particular, if $\mu>\lambda, \mu k$ is an integer and $r_{2}=r_{1}^{\lambda / \mu} \gamma^{1-\lambda / \mu}$, then $c_{k}(n) \leqslant r_{2}^{n}$ for $\lambda k \leqslant n \leqslant \mu k$.
Proof. Notice that $\gamma \geqslant r_{2} \geqslant r_{1}$. We know the given inequality holds for $n=\lambda k$. Suppose it is false for some $n, \lambda k+1 \leqslant n, n$ minimal.
Then $c_{k}(n) / c_{k}(n-1)>\gamma$. So we must have $p_{i} q_{i}<1 / \gamma$ (or else $\left|\mathscr{A}_{i}\right|\left|\mathscr{B}_{i}\right|>c_{k}(n-1)$ and $\left(\mathscr{A}_{i}, \mathscr{B}_{i}\right)$ is cancellative over $\left.S \backslash\{i\}\right)$.
We also have $\sum p_{i}=\sum q_{i}=n-k=n(1-k / n) \geqslant n(1-1 / \lambda)$. Hence $\sum f\left(p_{i}, q_{i}\right) \leqslant$ $n \varphi(\gamma, \lambda)$ (by the definition of φ). So then, by (4), we get

$$
|\mathscr{A}||\mathscr{B}| \leqslant 2^{n \varphi(\gamma, \lambda)} \leqslant r_{1}^{n} \leqslant r_{1}^{\lambda k} \gamma^{n-\lambda k}
$$

contradiction.
For $\lambda k \leqslant n \leqslant \mu k$, we have $c_{k}(n)^{1 / n} \leqslant\left(r_{1} / \gamma\right)^{\lambda k / n} \gamma \leqslant\left(r_{1} / \gamma\right)^{\lambda / \mu} \gamma=r_{2}$.
Proposition 4 enables us to implement the following method. Let $2=\lambda_{0}<\lambda_{1}<\cdots<$ λ_{N}, and let $\rho_{0}=2$. Using a computer program, we find some $\rho_{1} \geqslant \rho_{0}$, then $\rho_{2} \geqslant \rho_{1}$, and so on, finally ρ_{N}, such that the conditions of Proposition 4 hold for $\lambda=\lambda_{i}, \mu=\lambda_{i+1}, r_{1}=\rho_{i}$, $r_{2}=\rho_{i+1}$ and the corresponding value of $\gamma(i=0,1, \ldots, N-1)$. So then $c_{k}(n) \leqslant \rho_{N}^{n}$ for $n / k \leqslant \lambda_{N}$. (Note that the values ρ_{i}, λ_{i} do not depend on k.)

To be able to apply this method, we make the following observations.

1. If λ_{i} is rational for all i, then we are allowed to assume that $\lambda_{i} k$ is an integer (since we may assume M divides k for any fixed M positive integer).
2. We do not need to consider $n / k>3.6$. Indeed, for $n / k>3.6$ we have $p_{i}+q_{i}>2(1-$ $1 / 3.6)=13 / 9$ for some i, so then $p_{i} q_{i}>1 \cdot 4 / 9=1 / 2.25$. Hence $c_{k}(n)<2.25 c_{k}(n-1)$, as $\left(\mathscr{A}_{i}, \mathscr{B}_{i}\right)$ is cancellative.
3. We need to find an upper bound on $\varphi(\gamma, x)$. Details on how this is done are given in the Appendix, however, we note the following simple result.
Let $\gamma \geqslant 2.25, x \geqslant 2$ and let $\left(p_{0}, q_{0}\right)$ satisfy $p_{0}+q_{0}=2(1-1 / x)$ and $p_{0} q_{0}=1 / \gamma$. If $0 \leqslant p_{0}, q_{0} \leqslant 1, p_{0} \neq q_{0}$, then $\varphi(\gamma, x)=f\left(p_{0}, q_{0}\right)$.
Now we are ready to prove our result using the method described above. Choose, for example, $N=100000$ and $\lambda_{i}=2+i(3.6-2) / N$. Then find appropriate values of $\rho_{1}, \ldots, \rho_{N}$ using a computer program. Details about our implementation are given in the Appendix. Our program gives $\rho_{N}=2.268166 \ldots$, whence $c_{k}(n) \leqslant 2.2682^{n}$ for all n (and k a multiple of an appropriate M). By Lemma 2 , we get our main result.

Theorem 5. For a cancellative pair $(\mathscr{A}, \mathscr{B})$ over an n-element set, we have $|\mathscr{A}||\mathscr{B}| \leqslant$ 2.2682^{n}.

3 Remarks

Recovering pairs Since any recovering pair is also cancellative, the result above immediately gives the following corollary.
Corollary 6. For a recovering pair $(\mathscr{A}, \mathscr{B})$ over an n-element set, we have $|\mathscr{A}||\mathscr{B}| \leqslant$ 2.2682^{n}.

We remark that a bound stronger than $2^{2 k}$ for k-uniform recovering pairs over a $2 k$-element set would give a stronger bound on the maximal value of $|\mathscr{A} \| \mathscr{B}|$ using the argument above (we could choose ρ_{0} to be smaller). Note that the product of recovering families is recovering [7], so our arguments would still be valid.

Uniform constructions We now discuss how our upper bound on $c_{k}(n)$ is related to the best known k-uniform constructions as n / k varies. Tolhuizen [8] gave a family of symmetric k-uniform pairs for all values of k and n having $|\mathscr{A}| \geqslant \nu\binom{n}{k} 2^{-k}$, where ν is a constant. It follows that for $n / k=x>2$, we have

$$
c_{k}(n)^{1 / n} \geqslant 2^{2(h(1 / x)-1 / x)+o(1)} .
$$

This construction is known to be asymptotically optimal in the symmetric k-uniform case $[3,8]$. (As pointed out after Lemma 3, the exact value of $c_{k}(n)$ is known for $n / k \leqslant 2$.)

Figure 1 shows the upper bound we obtain by the argument above for $c_{k}(n)^{1 / n}$, together with the lower bound from Tolhuizen's construction (n / k fixed, n large). We note that, with a slight modification of Proposition 4, our upper bound could be decreased for n / k large (instead of becoming constant at the maximum value). However, this would not improve our constant of 2.2682 , and it requires more care to find bounds for the optimization problem (5) when γ is small.

Figure 1: Graphical representation of the lower and upper bounds for uniform pairs.

The symmetric case In the case $\mathscr{A}=\mathscr{B}$, an argument similar to the one considered above gives the best possible bound of 2.25^{n}. In fact, our argument is equivalent to that of Frankl and Füredi [3]. For convenience, we consider $G_{k}(n)$, the largest possible size of \mathscr{A} if $(\mathscr{A}, \mathscr{A})$ is k-uniform cancellative. (So then $c_{k}(n) \geqslant G_{k}(n)^{2}$.) In this case, we have $p_{i}=q_{i}$ for each i. If $G_{k}(n) / G_{k}(n-1)=\gamma$, then $p_{i} \leqslant 1 / \gamma$ for all i. But $\sum p_{i}=n-k$, hence $\gamma \leqslant \frac{n}{n-k}$. As $G_{k}(2 k) \leqslant 2^{k}$, induction gives (for $n \geqslant 2 k$)

$$
G_{k}(n) \leqslant 2^{k}\binom{n}{k} /\binom{2 k}{k}
$$

This is exactly the formula obtained by Frankl and Füredi [3]. This is not surprising: their argument is essentially the same, but instead of removing elements one-by-one (i.e. inducting from $n-1$ to n), they consider a random set of size $2 k$. (It is not hard to deduce the bound $(3 / 2)^{2 n}$ for symmetric pairs from here, noticing that subexponential factors can be ignored by a product argument. The asymptotic optimality of Tolhuizen's construction for k-uniform symmetric cancellative pairs ($n \rightarrow \infty, n / k \rightarrow x>2$) also follows [8].)

The choice of \boldsymbol{N} Increasing N over 100000 does not seem to change the first 5 digits after the decimal point in our upper bound $2.268166 \ldots$, e.g. $N=5 \cdot 10^{6}$ gives about 2.268164. We mention that using $N=5$ already improves the previously best known upper bound for cancellative pairs (it gives about 2.3235^{n}).

Appendix

The appendix contains two main parts. In the first part, we give bounds for $\varphi(\gamma, x)$. In the second part, we briefly describe how we implement our argument using a computer program.

Bounding the optimisation problem

Lemma 7. Suppose $\gamma \geqslant 2.25$ and $\kappa \geqslant 0$. Then the maximizer (p, q) of $L_{\kappa}(p, q)=$ $f(p, q)+\kappa(p+q)$ in the range $0 \leqslant p, q \leqslant 1, p q \leqslant 1 / \gamma$ satisfies $p q=1 / \gamma$.

Proof. Consider the maximizer. We may assume $p \leqslant q$. We show that if $p q<1 / \gamma$ then $\partial L_{\kappa} / \partial p>0$. We have

$$
\partial L_{\kappa} / \partial p=h(q)+q h^{\prime}(p)+\kappa \geqslant h(q)+q h^{\prime}(p) .
$$

If $p<1 / 2$ then this is positive. If $p \geqslant 1 / 2$, then

$$
\partial L_{\kappa} / \partial p \geqslant h\left(\frac{1}{2.25 p}\right)+\frac{h^{\prime}(p)}{2.25 p}
$$

which is positive on $[1 / 2,2 / 3]$.
Lemma 8. Suppose $\kappa \geqslant 0, \gamma \geqslant 2.25, x \geqslant 2$ and assume that for $0 \leqslant p, q \leqslant 1, p q=1 / \gamma$ the maximum of $L_{\kappa}(p, q)=f(p, q)+\kappa(p+q)$ is $\psi(\gamma, \kappa)$. Then $\varphi(\gamma, x) \leqslant \psi(\gamma, \kappa)-2 \kappa(1-1 / x)$.

Proof. If $\left(p_{i}\right)_{i=1}^{n},\left(q_{i}\right)_{i=1}^{n}$ satisfy the constraints of (5), then

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(p_{i}, q_{i}\right) \leqslant \frac{1}{n} \sum_{i=1}^{n}\left(f\left(p_{i}, q_{i}\right)+\kappa\left(p_{i}+q_{i}\right)\right)-\frac{1}{n} \kappa \cdot 2 n(1-1 / x) .
$$

Using Lemma 7 and our assumptions above, the result follows.
Lemma 9. Suppose $\kappa \geqslant 0, q=q(p)=1 /(\gamma p)$, and $\left(p_{0}, q_{0}\right)$ satisfy $p_{0} q_{0}=1 / \gamma, 0 \leqslant$ $p_{0}, q_{0} \leqslant 1$ and

$$
\kappa=\frac{p_{0} q_{0}}{\log 2} \frac{g\left(p_{0}\right)-g\left(q_{0}\right)}{q_{0}-p_{0}}
$$

where $g(x)=\frac{\log (1-x)}{x}$. Then $L_{\kappa}(p, q(p))$ is maximal at $\left(p_{0}, q_{0}\right)$.
Proof. We may assume $q>p$. As $d q / d p=-q / p$, we have (see [4] for more details)

$$
\frac{d}{d p}[f(p, q(p))+\kappa(p+q(p))]=q\left[\frac{1}{p} \log _{2}(1-p)-\frac{1}{q} \log _{2}(1-q)\right]+\kappa(1-q / p)
$$

This has the same sign as

$$
\frac{p q}{\log 2} \frac{g(p)-g(q)}{q-p}-\kappa
$$

where $g(x)=\frac{\log (1-x)}{x}$. As $p q$ is constant, it suffices to show that in the range $\frac{1}{\gamma} \leqslant p<\frac{1}{\sqrt{\gamma}}$, the function

$$
\sigma(p)=\frac{g(p)-g(q(p))}{q(p)-p}
$$

is strictly decreasing. We have

$$
\sigma^{\prime}(p)=\frac{\left(g^{\prime}(p)-g^{\prime}(q)(-q / p)\right)(q-p)-(g(p)-g(q))(-q / p-1)}{(q-p)^{2}}
$$

Since $g^{\prime}(x)=-\frac{1}{x(1-x)}-g(x) / x$, we obtain

$$
\begin{aligned}
p(q-p)^{2} \sigma^{\prime}(p) & =(q-p)\left(p g^{\prime}(p)+q g^{\prime}(q)\right)+(p+q)(g(p)-g(q)) \\
& =(q-p)\left(-\frac{1}{1-p}-g(p)-\frac{1}{1-q}-g(q)\right)+(p+q)(g(p)-g(q))= \\
& =-(q-p)\left(\frac{1}{1-p}+\frac{1}{1-q}\right)+2 p g(p)-2 q g(q) .
\end{aligned}
$$

Using the substitutions $1-p=x, 1-q=y, a=x / y>1$, we get

$$
\begin{aligned}
p(q-p)^{2} \sigma^{\prime}(p) & =-(x-y)\left(\frac{1}{x}+\frac{1}{y}\right)+2(\log x-\log y) \\
& =-a+\frac{1}{a}+2 \log a .
\end{aligned}
$$

But this is negative for $a>1$, since it is 0 at $a=1$ and its derivative is

$$
-1-\frac{1}{a^{2}}+\frac{2}{a}=-\frac{(1-a)^{2}}{a^{2}} .
$$

So σ is strictly decreasing.
Lemma 10. Let $\gamma \geqslant 2.25, x \geqslant 2$ and let $\left(p_{0}, q_{0}\right)$ satisfy $p_{0}+q_{0}=2(1-1 / x)$ and $p_{0} q_{0}=1 / \gamma$.
If $0 \leqslant p_{0}, q_{0} \leqslant 1, p_{0} \neq q_{0}$, then $\varphi(\gamma, x)=f\left(p_{0}, q_{0}\right)$.
Proof. Choose

$$
\kappa=\frac{p_{0} q_{0}}{\log 2} \frac{g\left(p_{0}\right)-g\left(q_{0}\right)}{q_{0}-p_{0}}
$$

(this is positive, since $g^{\prime}(x)<0$, see [4].) By Lemma $9, \psi(\gamma, \kappa)=L_{\kappa}\left(p_{0}, q_{0}\right)$. By Lemma $8, \varphi(\gamma, x) \leqslant f\left(p_{0}, q_{0}\right)$. Equality can be achieved by choosing $n=2, p_{1}=q_{2}=p_{0}$, $p_{2}=q_{1}=q_{0}$.

Implementation using a computer

The essence of our algorithm is the following. We choose $\lambda_{i}(i=0, \ldots, N)$ to be equally spaced between 2 and 3.6 and set $\rho_{0}=2$. In the $i^{\text {th }}$ step, we find p_{0}, q_{0} such that $0 \leqslant p_{0}, q_{0} \leqslant 1, p_{0}+q_{0}=2\left(1-1 / \lambda_{i}\right)$ and $2^{f\left(p_{0}, q_{0}\right)}=\rho_{i}$. Then we calculate $\gamma_{i}=1 /\left(p_{0} q_{0}\right)$ (so that $\varphi\left(\gamma, \lambda_{i}\right)=f\left(p_{0}, q_{0}\right)$ by Lemma 10), and set $\rho_{i+1}=\rho_{i}^{\lambda_{i} / \lambda_{i+1}} \gamma_{i}^{1-\lambda_{i} / \lambda_{i+1}}$. Initially we have $\lambda_{0}=2, \rho_{0}=2, \gamma_{0}=4$. As λ_{i} increases, we have that ρ_{i} increases and γ_{i} decreases. The process stops when γ_{i} and ρ_{i} become equal. This happens at $\lambda_{i} \approx 3.12$ with $\rho_{i} \approx \gamma_{i} \approx 2.2682$.

While doing the calculations, we check that Lemma 10 applies (e.g. $\gamma \geqslant 2.25$). Also, we make some changes to the method described above to avoid rounding errors (e.g. we require $2^{f\left(p_{0}, q_{0}\right)}+\delta \leqslant \rho_{i}$ for $\left.\delta=10^{-8}\right)$.

Acknowledgements

I would like to thank Imre Leader for suggesting this problem for investigation and for useful discussions throughout the research, which was supported by Trinity College, Cambridge.

References

[1] R. Ahlswede and G. Simonyi. On the optimal structure of recovering set pairs in lattices: the sandglass conjecture. Discrete Math., 128(1-3):389-394, 1994.
[2] R. H. Etkin and E. Ordentlich. Analysis of deterministic binary interference channels via a general outer bound. IEEE Trans. Inf. Theory, 57(5):2597-2604, 2011.
[3] P. Frankl and Z. Füredi. Union-free hypergraphs and probability theory. Eur. J. Combin., 5(2):127-131, 1984.
[4] R. Holzman and J. Körner. Cancellative pairs of families of sets. Eur. J. Combin., 16(3):263-266, 1995.
[5] G. O. H. Katona. Extremal problems for hypergraphs. Combinatorics, Math. Centre Tracts No. 56, 1974, pages 13-42, 1974.
[6] J. B. Shearer. A new construction for cancellative families of sets. Electron. J. Combin., 3(1):\#R15, 1996.
[7] D. Soltész. New bounds on Simonyi's conjecture. Eur. J. Combin., 70:251-267, 2018.
[8] L. M. Tolhuizen. New rate pairs in the zero-error capacity region of the binary multiplying channel without feedback. IEEE Trans. Inf. Theory, 46(3):1043-1046, 2000.

