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Abstract

A pair (A,B) of families of subsets of an n-element set is called cancellative if
whenever A,A′ ∈ A and B ∈ B satisfy A∪B = A′∪B, then A = A′, and whenever
A ∈ A and B,B′ ∈ B satisfy A∪B = A∪B′, then B = B′. It is known that there
exist cancellative pairs with |A||B| about 2.25n, whereas the best known upper
bound on this quantity is 2.3264n. In this paper we improve this upper bound
to 2.2682n. Our result also improves the best known upper bound for Simonyi’s
sandglass conjecture for set systems.

Mathematics Subject Classifications: 05D05

1 Introduction

The notion of a cancellative pair was introduced by Holzman and Körner [4]. We say that
a pair (A,B) of families of subsets of an n-element set S is cancellative if

whenever A,A′ ∈ A and B ∈ B satisfy A ∪B = A′ ∪B then A = A′

and whenever A ∈ A and B,B′ ∈ B satisfy A ∪B = A ∪B′ then B = B′;
(1)

or, equivalently,

whenever A,A′ ∈ A and B ∈ B satisfy A \B = A′ \B then A = A′

and whenever A ∈ A and B,B′ ∈ B satisfy B \ A = B′ \ A then B = B′.
(2)

We will usually take S = [n] = {1, . . . , n} and will call a cancellative pair with A = B
a symmetric cancellative pair. Note that the assumption that (A,A) is a symmetric
cancellative pair is slightly stronger than the assumption that A is a cancellative family,
meaning no three distinct sets A,B,C ∈ A satisfy A ∪ B = A ∪ C [3]. We mention
that the concept of cancellative pairs corresponds to the information theoretic concept of

the electronic journal of combinatorics 25(2) (2018), #P2.13 1



uniquely decodable code pairs for the binary multiplying channel without feedback (see
e.g. Tolhuizen [8]).

In the case when n is a multiple of 3, we can obtain an example of a symmetric
cancellative pair the following way. Partition S into n/3 classes of size 3, and take A
(and B) to be the collection of subsets of S containing exactly one element from each
class. It is not hard to verify that we get a cancellative pair. Here we have |A||B| = 32n/3,
where 32/3 ≈ 2.08. In the symmetric case, Erdős and Katona [5] conjectured this to be
the maximal size for cancellative families. A counterexample was found by Shearer [6].
Tolhuizen [8] gave a beautiful construction to show that we can achieve (|A||B|)1/n →
9/4 = 2.25, even by symmetric pairs. This construction is (asymptotically) optimal in
the symmetric case by a result of Frankl and Füredi [3].

In the general (non-symmetric) case, the exact value of α = sup(|A||B|)1/n is not
known. The best known upper bound is due to Holzman and Körner [4], who showed
that |A||B| < θn where θ ≈ 2.3264. No lower bound better than Tolhuizen’s (symmetric)
2.25 is known. Our main aim in this paper is to improve the upper bound to 2.2682n.
Our proof requires some numerical calculations by a computer.

A related concept is that of a recovering pair. A pair (A,B) of collections of subsets
of an n-element set S is called recovering [1, 4] if for all A,A′ ∈ A and B,B′ ∈ B we
have

A \B = A′ \B′ =⇒ A = A′ and B \ A = B′ \ A′ =⇒ B = B′. (3)

So any recovering pair is cancellative (cf. (2)). Simonyi’s sandglass conjecture for set
systems [1] states that |A||B| 6 2n for a recovering pair. (The value of 2n may be
obtained by taking A = P(S1), B = P(S \ S1) for any S1 ⊆ S. There is a more general
sandglass conjecture for lattices, due to Ahlswede and Simonyi [1].) Our upper bound of
2.2682n is an improvement on the previously best known bounds of about 2.28n (Etkin
and Ordentlich [2], using the terminology of information theory, and Soltész [7]).

2 Proof of the upper bound

Let h(x) = −x log2 x − (1 − x) log2 (1− x) be the binary entropy function (with the
convention 0 log2 0 = 0). Define Ai = {A ∈ A | i /∈ A} and pi = |Ai|/|A|; qi is defined
similarly for B. We quote the following result of Holzman and Körner [4]. (We will ignore
the case when A or B is empty.)

Proposition 1 (Holzman and Körner [4]). For a cancellative pair (A,B), we have

log2 [|A||B|] 6
n∑
i=1

f(pi, qi) (4)

where f(p, q) = ph(q) + qh(p).
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The result above can be established by considering the entropies of each of the random
variables of the form ξB = A \ B, where B ∈ B is fixed and A ∈ A is chosen uniformly
at random (and doing the same with A, B interchanged). Holzman and Körner [4] used
(4) and induction to establish their upper bound of |A||B| < θn (θ ≈ 2.3264).

However, this argument can be improved. We call a cancellative pair k-uniform if
|A| = |B| = k for all A ∈ A, B ∈ B. As we will see, bounding |A||B| for k-uniform
families enables us to give bounds for general (non-uniform) pairs. For n/k small it is
easy to give efficient bounds, and for n/k large we will use that the growth speed of the
maximum of |A||B| (with k fixed, n increasing) can be bounded.

If (A,B) and (A′,B′) are cancellative pairs over disjoint ground sets S and S ′, define
their product (A′′,B′′) by

A′′ = {A ∪ A′ | A ∈ A, A′ ∈ A′}

B′′ = {B ∪B′ | B ∈ B, B′ ∈ B′}

giving a cancellative pair over S ∪ S ′ with |A′′||B′′| = |A||B||A′||B′|.
(Note that the cancellative pair in the Introduction is just the product of cancellative
pairs of the form n = 3, A = B = {{1}, {2}, {3}}.) Let c(n) be the maximum of |A||B|
for a cancellative pair over an n-element set, and let ck(n) be the maximum considering
only k-uniform pairs. Similarly to Soltész [7], we prove the following lemma.

Lemma 2. Let M be a fixed positive integer, and suppose that β > 0 is such that ck(n) 6
βn for all k divisible by M and for all n > k. Then c(n) 6 βn for all n.

Proof. Suppose the conditions above are satisfied but |A||B| = ωn for some ω > β. Take
the product of (A,B) with (a copy of) (B,A) to get a cancellative pair

(
A(1),B(1)

)
over

some set S with
∣∣A(1)

∣∣ =
∣∣B(1)

∣∣ = ω|S|/2 and A(1) and B(1) containing the same number of
sets of size t for any t. Also, we can take the product of

(
A(1),B(1)

)
with (copies of) itself

several times to get a pair with similar properties, so we may assume that |S| is large
enough so that ω|S|/(|S| + 1)2 > β|S|. Take k0 ∈ {0, 1, . . . , |S|} such that A(1),B(1) each
contain at least ω|S|/2/(|S|+ 1) sets of size k0, let

(
A(2),B(2)

)
contain only these k0-sets.

So
∣∣A(2)

∣∣ ∣∣B(2)

∣∣ > β|S| and
(
A(2),B(2)

)
is k0-uniform cancellative. Take the product of(

A(2),B(2)

)
with itself several times to obtain

(
AM

(2),B
M
(2)

)
, an (Mk0)-uniform cancellative

family contradicting our assumptions.

We also need a simple observation.

Lemma 3. If k and n > k are positive integers, then ck(n) 6 22(n−k). In particular,
ck(n) 6 2n for n 6 2k.

Proof. Given A ∈ A, all B ∈ B have to differ on the complement of A, hence |B| 6 2n−k.
Similarly |A| 6 2n−k.
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We note that we have equality for k 6 n 6 2k (i.e. ck(n) = 22(n−k)), even in the
symmetric case [3]. Also, we could deduce Lemma 3 from (4), observing that

∑
pi =∑

qi = n− k.

In order to state our key proposition, we need a definition. For γ, x > 2, consider the
following optimisation problem:

maximize
1

n

n∑
i=1

f(pi, qi)

subject to piqi 6 1/γ for i = 1, . . . , n
n∑
i=1

pi =
n∑
i=1

qi > n(1− 1/x)

0 6 pi, qi 6 1 for i = 1, . . . , n

n ∈ N

(5)

(Note that the positive integer n is not fixed.) We write ϕ(γ, x) for the solution (i.e. the
supremum) of (5).

Proposition 4. Suppose k is a positive integer, 2 6 λ such that λk is an integer, and
2 6 r1 6 γ. Suppose that ck(λk) 6 rλk1 and

r1 > 2ϕ(γ,λ). (6)

Then, for λk 6 n,
ck(n) 6 rλk1 γ

n−λk.

In particular, if µ > λ, µk is an integer and r2 = r
λ/µ
1 γ1−λ/µ, then ck(n) 6 rn2 for

λk 6 n 6 µk.

Proof. Notice that γ > r2 > r1. We know the given inequality holds for n = λk. Suppose
it is false for some n, λk + 1 6 n, n minimal.
Then ck(n)/ck(n− 1) > γ. So we must have piqi < 1/γ (or else |Ai||Bi| > ck(n− 1) and
(Ai,Bi) is cancellative over S \ {i}).
We also have

∑
pi =

∑
qi = n − k = n(1 − k/n) > n(1 − 1/λ). Hence

∑
f(pi, qi) 6

nϕ(γ, λ) (by the definition of ϕ). So then, by (4), we get

|A||B| 6 2nϕ(γ,λ) 6 rn1 6 rλk1 γ
n−λk,

contradiction.
For λk 6 n 6 µk, we have ck(n)1/n 6 (r1/γ)λk/nγ 6 (r1/γ)λ/µγ = r2.

Proposition 4 enables us to implement the following method. Let 2 = λ0 < λ1 < · · · <
λN , and let ρ0 = 2. Using a computer program, we find some ρ1 > ρ0, then ρ2 > ρ1, and so
on, finally ρN , such that the conditions of Proposition 4 hold for λ = λi, µ = λi+1, r1 = ρi,
r2 = ρi+1 and the corresponding value of γ (i = 0, 1, . . . , N − 1). So then ck(n) 6 ρnN for
n/k 6 λN . (Note that the values ρi, λi do not depend on k.)

To be able to apply this method, we make the following observations.
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1. If λi is rational for all i, then we are allowed to assume that λik is an integer (since
we may assume M divides k for any fixed M positive integer).

2. We do not need to consider n/k > 3.6. Indeed, for n/k > 3.6 we have pi+qi > 2(1−
1/3.6) = 13/9 for some i, so then piqi > 1·4/9 = 1/2.25. Hence ck(n) < 2.25ck(n−1),
as (Ai,Bi) is cancellative.

3. We need to find an upper bound on ϕ(γ, x). Details on how this is done are given
in the Appendix, however, we note the following simple result.
Let γ > 2.25, x > 2 and let (p0, q0) satisfy p0 + q0 = 2(1− 1/x) and p0q0 = 1/γ.
If 0 6 p0, q0 6 1, p0 6= q0, then ϕ(γ, x) = f(p0, q0).

Now we are ready to prove our result using the method described above. Choose,
for example, N = 100000 and λi = 2 + i(3.6 − 2)/N . Then find appropriate values of
ρ1, . . . , ρN using a computer program. Details about our implementation are given in the
Appendix. Our program gives ρN = 2.268166 . . . , whence ck(n) 6 2.2682n for all n (and
k a multiple of an appropriate M). By Lemma 2, we get our main result.

Theorem 5. For a cancellative pair (A,B) over an n-element set, we have |A||B| 6
2.2682n.

3 Remarks

Recovering pairs Since any recovering pair is also cancellative, the result above im-
mediately gives the following corollary.

Corollary 6. For a recovering pair (A,B) over an n-element set, we have |A||B| 6
2.2682n.

We remark that a bound stronger than 22k for k-uniform recovering pairs over a
2k-element set would give a stronger bound on the maximal value of |A||B| using the
argument above (we could choose ρ0 to be smaller). Note that the product of recovering
families is recovering [7], so our arguments would still be valid.

Uniform constructions We now discuss how our upper bound on ck(n) is related to
the best known k-uniform constructions as n/k varies. Tolhuizen [8] gave a family of
symmetric k-uniform pairs for all values of k and n having |A| > ν

(
n
k

)
2−k, where ν is a

constant. It follows that for n/k = x > 2, we have

ck(n)1/n > 22(h(1/x)−1/x)+o(1).

This construction is known to be asymptotically optimal in the symmetric k-uniform case
[3, 8]. (As pointed out after Lemma 3, the exact value of ck(n) is known for n/k 6 2.)

Figure 1 shows the upper bound we obtain by the argument above for ck(n)1/n, together
with the lower bound from Tolhuizen’s construction (n/k fixed, n large). We note that,
with a slight modification of Proposition 4, our upper bound could be decreased for
n/k large (instead of becoming constant at the maximum value). However, this would
not improve our constant of 2.2682, and it requires more care to find bounds for the
optimization problem (5) when γ is small.
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Figure 1: Graphical representation of the lower and upper bounds for uniform pairs.

The symmetric case In the case A = B, an argument similar to the one considered
above gives the best possible bound of 2.25n. In fact, our argument is equivalent to that
of Frankl and Füredi [3]. For convenience, we consider Gk(n), the largest possible size of
A if (A,A) is k-uniform cancellative. (So then ck(n) > Gk(n)2.) In this case, we have
pi = qi for each i. If Gk(n)/Gk(n − 1) = γ, then pi 6 1/γ for all i. But

∑
pi = n − k,

hence γ 6 n
n−k . As Gk(2k) 6 2k, induction gives (for n > 2k)

Gk(n) 6 2k
(
n

k

)/(
2k

k

)
This is exactly the formula obtained by Frankl and Füredi [3]. This is not surprising:
their argument is essentially the same, but instead of removing elements one-by-one (i.e.
inducting from n − 1 to n), they consider a random set of size 2k. (It is not hard to
deduce the bound (3/2)2n for symmetric pairs from here, noticing that subexponential
factors can be ignored by a product argument. The asymptotic optimality of Tolhuizen’s
construction for k-uniform symmetric cancellative pairs (n → ∞, n/k → x > 2) also
follows [8].)

The choice of N Increasing N over 100000 does not seem to change the first 5 digits
after the decimal point in our upper bound 2.268166 . . . , e.g. N = 5 · 106 gives about
2.268164. We mention that using N = 5 already improves the previously best known
upper bound for cancellative pairs (it gives about 2.3235n).
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Appendix

The appendix contains two main parts. In the first part, we give bounds for ϕ(γ, x). In
the second part, we briefly describe how we implement our argument using a computer
program.

Bounding the optimisation problem

Lemma 7. Suppose γ > 2.25 and κ > 0. Then the maximizer (p, q) of Lκ(p, q) =
f(p, q) + κ(p+ q) in the range 0 6 p, q 6 1, pq 6 1/γ satisfies pq = 1/γ.

Proof. Consider the maximizer. We may assume p 6 q. We show that if pq < 1/γ then
∂Lκ/∂p > 0. We have

∂Lκ/∂p = h(q) + qh′(p) + κ > h(q) + qh′(p).

If p < 1/2 then this is positive. If p > 1/2, then

∂Lκ/∂p > h

(
1

2.25p

)
+
h′(p)

2.25p

which is positive on [1/2, 2/3].

Lemma 8. Suppose κ > 0, γ > 2.25, x > 2 and assume that for 0 6 p, q 6 1, pq = 1/γ the
maximum of Lκ(p, q) = f(p, q)+κ(p+q) is ψ(γ, κ). Then ϕ(γ, x) 6 ψ(γ, κ)−2κ(1−1/x).

Proof. If (pi)
n
i=1, (qi)

n
i=1 satisfy the constraints of (5), then

1

n

n∑
i=1

f(pi, qi) 6
1

n

n∑
i=1

(f(pi, qi) + κ(pi + qi))−
1

n
κ · 2n(1− 1/x).

Using Lemma 7 and our assumptions above, the result follows.

Lemma 9. Suppose κ > 0, q = q(p) = 1/(γp), and (p0, q0) satisfy p0q0 = 1/γ, 0 6
p0, q0 6 1 and

κ =
p0q0
log 2

g(p0)− g(q0)

q0 − p0
where g(x) = log(1−x)

x
. Then Lκ(p, q(p)) is maximal at (p0, q0).

Proof. We may assume q > p. As dq/dp = −q/p, we have (see [4] for more details)

d

dp

[
f(p, q(p)) + κ(p+ q(p))

]
= q

[
1

p
log2 (1− p)− 1

q
log2 (1− q)

]
+ κ(1− q/p).

This has the same sign as
pq

log 2

g(p)− g(q)

q − p
− κ
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where g(x) = log(1−x)
x

. As pq is constant, it suffices to show that in the range 1
γ
6 p < 1√

γ
,

the function

σ(p) =
g(p)− g(q(p))

q(p)− p
is strictly decreasing. We have

σ′(p) =
(g′(p)− g′(q)(−q/p))(q − p)− (g(p)− g(q))(−q/p− 1)

(q − p)2
.

Since g′(x) = − 1
x(1−x) − g(x)/x, we obtain

p(q − p)2σ′(p) = (q − p)(pg′(p) + qg′(q)) + (p+ q)(g(p)− g(q))

= (q − p)
(
− 1

1− p
− g(p)− 1

1− q
− g(q)

)
+ (p+ q)(g(p)− g(q)) =

= −(q − p)
(

1

1− p
+

1

1− q

)
+ 2pg(p)− 2qg(q).

Using the substitutions 1− p = x, 1− q = y, a = x/y > 1, we get

p(q − p)2σ′(p) = −(x− y)

(
1

x
+

1

y

)
+ 2(log x− log y)

= −a+
1

a
+ 2 log a.

But this is negative for a > 1, since it is 0 at a = 1 and its derivative is

−1− 1

a2
+

2

a
= −(1− a)2

a2
.

So σ is strictly decreasing.

Lemma 10. Let γ > 2.25, x > 2 and let (p0, q0) satisfy p0 + q0 = 2(1 − 1/x) and
p0q0 = 1/γ.
If 0 6 p0, q0 6 1, p0 6= q0, then ϕ(γ, x) = f(p0, q0).

Proof. Choose

κ =
p0q0
log 2

g(p0)− g(q0)

q0 − p0
(this is positive, since g′(x) < 0, see [4].) By Lemma 9, ψ(γ, κ) = Lκ(p0, q0). By Lemma
8, ϕ(γ, x) 6 f(p0, q0). Equality can be achieved by choosing n = 2, p1 = q2 = p0,
p2 = q1 = q0.
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Implementation using a computer

The essence of our algorithm is the following. We choose λi (i = 0, . . . , N) to be equally
spaced between 2 and 3.6 and set ρ0 = 2. In the ith step, we find p0, q0 such that
0 6 p0, q0 6 1, p0 + q0 = 2(1 − 1/λi) and 2f(p0,q0) = ρi. Then we calculate γi = 1/(p0q0)

(so that ϕ(γ, λi) = f(p0, q0) by Lemma 10), and set ρi+1 = ρ
λi/λi+1

i γ
1−λi/λi+1

i . Initially
we have λ0 = 2, ρ0 = 2, γ0 = 4. As λi increases, we have that ρi increases and γi
decreases. The process stops when γi and ρi become equal. This happens at λi ≈ 3.12
with ρi ≈ γi ≈ 2.2682.

While doing the calculations, we check that Lemma 10 applies (e.g. γ > 2.25). Also,
we make some changes to the method described above to avoid rounding errors (e.g. we
require 2f(p0,q0) + δ 6 ρi for δ = 10−8).
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