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Abstract

We find the number of compositions over finite abelian groups under two types of
restriction: (i) each part belongs to a given subset and (ii) small runs of consecutive
parts must have given properties. Waring’s problem over finite fields can be converted
to type (i) compositions, whereas Carlitz and “locally Mullen” compositions can be
formulated as type (ii) compositions. We use the multisection formula to translate
the problem from integers to group elements, the transfer matrix method to do exact
counting, and finally the Perron-Frobenius theorem to derive asymptotics. We also
exhibit bijections involving certain restricted classes of compositions.

Keywords: Integer composition, finite abelian group, transfer matrix, enumeration.

Mathematics Subject Classifications: 05A15, 05A16

1 Introduction

Let n and m be positive integers. A composition of n is a sequence of positive integers
whose sum is n. An m-composition is a composition consisting of m terms, also called parts.
It is well known that there is a bijection between m-compositions of n and (m− 1)-subsets
of {1, 2, . . . , n− 1} and thus there are

(
n−1
m−1

)
m-compositions of n and 2n−1 compositions

of n. A weak composition is the same as a composition except terms equal to 0 are allowed.
Using substitution of variables, we can easily see that the number of weak m-compositions
of n is equal to the number of m-compositions of n+m, which is

(
n+m−1
m−1

)
=
(
n+m−1

n

)
.
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†This work is supported in part by NSERC.
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Problems on or related to compositions have been studied over algebraic structures
beyond the integers. Let Fq be a finite field of q elements and let F∗q = Fq \ {0}. Li and
Wan [19, 20] estimated the number

N(m, s, S) = |{{x1, x2, . . . , xm} ⊆ S | x1 + x2 + · · ·+ xm = s}|

of m-subsets of S ⊆ Fq whose sum is s ∈ Fq. In particular, exact formulas are obtained in
cases where S = Fq or F∗q or Fq \ {0, 1}. A shorter proof was given by Kosters [18] using
character theory. Motivated by the study by Li and Wan and the study of polynomials of
prescribed ranges over finite fields [13, 24], Muratović and Wang proposed to study

c(m, s, S) = |{(x1, x2, . . . , xm) ∈ S × S × · · · × S | x1 + x2 + · · ·+ xm = s}| ,

that is, the number of ordered m-tuples whose sum is s and where each coordinate belongs
to S ⊆ Fq, as well as the number M(m, s, S) which counts the number of m-multisets over
S ⊆ Fq whose sum is s ∈ Fq. In particular, when S = F∗q, this essentially gives the concept
of compositions and partitions over a finite field, respectively.

A partition of s ∈ Fq into m parts is a multiset of m elements of F∗q whose sum is s.
The m nonzero elements are refered to as the parts of the partition. In [26], Muratović
and Wang obtain an exact formula for M(m, s,F∗q), the number of partitions of an element
s into m parts over finite field Fq.

A composition of s ∈ Fq with m parts is a solution (x1, x2, . . . , xm) to the equation

s = x1 + x2 + · · ·+ xm, (1)

with each xi ∈ F∗q. Similarly, a weak composition of w ∈ Fq with m parts is a solution
(x1, x2, . . . , xm) to Equation (1) with each xi ∈ Fq. We denote the number of compositions
of s having m parts by c(m, s,F∗q). The number of weak compositions of s with m parts is
denoted by c(m, s,Fq). A formula for c(m, s,Fp) can be found in [6, p. 295]. A general
formula for c(m, s,F∗q) for arbitrary q and nonzero s can be obtained using a remark on
the normalized Jacobi sum of the trivial character given in [11] (see Remark 1 on page
144). A recurrence relation for c(m, s,Fq) is given in [25].

Counting compositions over finite fields where parts are restricted to a subset is
conceptually related to Waring’s problem and solutions to diagonal equations. In number
theory, Waring’s problem asks whether each natural number k has an associated positive
integer m such that every natural number is the sum of at most m natural numbers to
the power of k. The problem was originally posed in 1770 and answered in the affirmative
for integers by Hilbert in 1909. Since then, there has been a good deal of research on
estimating the Waring’s number g(k) for every k, which denotes the minimum number m
of kth powers of naturals needed to represent all positive integers.

Over finite prime fields Fp, Waring’s number g(k, p) is the smallest number m such
that for all a ∈ Fp, the equation

xk1 + xk2 + · · ·+ xkm ≡ a (mod p)
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has a solution in integers xi (see for example [10]). Waring’s problem over finite fields is to
estimate g(k, p) and, when possible, evaluate it. This is equivalent to finding the smallest
number m such that

x1 + x2 + · · ·+ xm ≡ a (mod p)

has a solution such that xi ∈ S where S denotes the subset of Fp consisting of all kth

powers in Fp. Essentially we need to find the number of solutions (x1, x2, . . . , xm) in
S × S × . . .× S and pick the minimum m so that this number is always positive for any
a ∈ Fp. However, this is a computationally difficult task in general.

There is also extensive study on the number of solutions to “diagonal” equations of
the type

a1x
d1
1 + · · ·+ amx

dm
m = a, (2)

where a1, . . . , am ∈ F∗p, a ∈ Fp and d1, . . . , dn are positive integers. The pioneering work
has been done by Weil [34], who expressed the number of solutions in terms of Jacobi
sums. Explicit formulas for the number of solutions for certain choices of a1, . . . , am, a,
and exponents d1, . . . , dm can be deduced from Weil’s expression; one may consult [1, 2, 8,
29, 30, 35] and the references therein for details. For diagonal equations, the problem can
be again viewed as a composition problem over Fp, such that each part is restricted to lie
in a coset of a multiplicative subgroup.

Using the fact that the additive group (Fq,+) is isomorphic to the additive group
(Frp,+), we obtain that the numbers of partitions and compositions of elements over Frp are
the same as the numbers of partitions and compositions of corresponding elements over Fq.
More generally, the number of partitions over an arbitrary finite abelian group is given
in [26]. However, problems of enumerating compositions over an arbitrary finite abelian
group are largely open. We note that there have been some studies on compositions over
integer tuples [21, 23], which are also called matrix compositions.

In the present work, we consider two general problems on restricted compositions
over finite abelian groups. Let Zk denote the additive cyclic group {0, 1, 2, . . . , k − 1}
and Z∗k := {1, 2, . . . , k − 1}. Since a finite abelian group G is isomorphic to a direct sum⊕r

t=1 Zkt , in the following we use G to denote such a direct sum. Sometimes it is convenient
to add (tuples of) elements of Zk as integers, so when performing group addition in G we
explicitly speak of modular addition. In the rest of the paper, we also assume |G| > 2,
and consequently kt > 2 for each 1 6 t 6 r. We also use 0 to denote the zero element of
G and adopt the notation G∗ := G \ {0}.

Definition 1 (Compositions over a finite abelian group). An m-composition of s ∈ G
over G is a solution to x1 + · · · + xm = s, where each xi = (xi,1, . . . , xi,r) is a nonzero
element of G and addition is taken component-wise and modulo kt for 1 6 t 6 r. If we
allow 0 as a value for the xi, then we speak of weak compositions over G.

Firstly we are interested in finding the number of m-compositions over G such that
for 1 6 j 6 m, part xj is restricted to an abitrary subset Sj ⊆ G. Our contribution is
Theorem 2, where we obtain an asymptotic formula for the number of such m-compositions
as m→∞.
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Secondly, we enumerate m-compositions over a finite abelian group G such that any d
consecutive parts satisfy certain conditions for a given positive integer d. These are called
locally restricted compositions. Bender and Canfield [3] studied integer compositions
under general local restrictions. For example, Carlitz compositions are those in which
adjacent parts are distinct. In a private communication, G. L. Mullen [22] suggested the
following problem: Let p be a prime, and let d and m be positive integers with d 6 m.
Let N

(d)
m denote the number of solutions to the congruence x1 + · · · + xm ≡ 1 (mod p)

where each subsum
∑
xj of at most d parts is nonzero (modulo p). Find N

(d)
m when

d > 2. Motivated by Mullen’s problem, we consider a related problem which falls within
the locally-restricted framework. Namely, we estimate the number of solutions to the
congruence x1 + · · ·+ xm ≡ 1 (mod p) where each subsum

∑i+d−1
j=i xj (1 6 i 6 m− d+ 1)

of at most d consecutive parts is nonzero. We call these compositions locally d-Mullen
compositions. Generating functions for general locally restricted compositions over finite
abelian groups are given in Proposition 18. Under moderate conditions, the asymptotic
number of locally restricted compositions is given in Theorem 7. As consequences, we
obtain asymptotics for a few concrete composition problems including locally d-Mullen
compositions (see Corollary 8, Corollary 9, and Theorem 24).

We present these main results in Section 2. Some auxiliary propositions are discussed
in Section 3 and the proofs of the main results are given in Section 4. In Section 5 we
present bijections which help illuminate locally d-Mullen compositions. Finally we give
conclusions in Section 6.

2 Main results

Recall that G denotes the set of integer tuples in the direct sum
⊕r

t=1 Zkt . In the following
we denote the order of G by |G| :=

∏r
t=1 kt.

Theorem 2 (Subset restriction). For each j ∈ {1, 2, . . .}, let Sj be the Cartesian product∏r
t=1 St,j where St,j is a given subset of Zkt. Let c(s;S1, . . . , Sm) be the number of m-

compositions of s over G such that the jth part lies in Sj, for each j ∈ {1, . . . ,m}. Assume
that for 1 6 t 6 r and j > 1 we have

gcd{a− b : a, b ∈ St,j} = 1.

Then, as m→∞,

c(s;S1, . . . , Sm) =
1

|G|

(
m∏
j=1

|Sj|

)
(1 +O(θm)),

where 0 < θ < 1 is a constant independent of m.

Let Seqm(G) := {(x1,x2, . . . ,xm) : xj ∈ G} = Gm denote the class of all possible weak
m-compositions over G. The size of a composition, denoted |(x1,x2, . . . ,xm)|, is defined to
be the sum

∑m
j=1 xj , using component-wise integer addition. Let Seq(G) = ∪m>0Seqm(G).
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A subclass A ⊆ Seq(G) is called locally restricted if any d consecutive parts satisfy certain
restrictions for a given positive integer d. General locally restricted integer compositions
were first studied in [3] using local restriction functions. They can also be defined using
local restriction digraphs. For the purpose of this paper, we use the following definition,
which is essentially from [4].

Definition 3 (Locally restricted compositions associated with a digraph). Let σ be a
positive integer. We use ε to denote the empty composition, and we use εs to denote a
distinguished copy of ε. Let T = Seq0(G) ∪ · · · ∪ Seqσ−1(G), and let R be a nonempty
subset of Seqσ(G). Let D be a digraph with vertex set V (D) = {εs} ∪̇ R ∪̇ T . Assume D
satisfies the following conditions.

1. There is at least one arc from εs to R and at least one arc from R to T .

2. There are no arcs (including loops) between vertices in {εs} ∪̇ T .

3. The sub-digraph DR of D induced by R is strongly connected and contains at least
two vertices.

The vertices in R are called recurrent vertices. LetW denote the set of directed walks from
εs to T , and let Seq(G;D) denote the class of compositions obtained by concatenating
vertices in W . Then Seq(G;D) is called the class of locally restricted compositions over G
associated with D. We call σ the span of Seq(G;D).

Informally, we are defining Seq(G;D) by specifying two sets R and T of “building
block” compositions, and saying how they may be combined sequentially to form the
compositions of interest: Two blocks are allowed to be joined if there is an arc between
them in D. The structure of the graph implies that sequences of vertices forming a walk
from εs to T are made up of one or more elements of R followed by one element of T .
Defining combinatorial objects by walks in graphs is a standard technique; see e.g. [28,
Sec. 4.7].

Example 4 (Nonzero adjacent sum over Zk). Take compositions over Zk such that the
sum of two adjacent parts is nonzero, modulo k. We can represent these compositions
using a local restriction digraph as follows. In the digraph D, set R = Z∗k ⊂ Seq1(Zk),
and T = Seq0(Zk) = {ε}. Include an arc from u to v in R if and only if u+ v 6≡ 0 (mod
k). In this case, we have locally restricted compositions over Zk with span σ = 1. The
digraph for weak compositions is defined similarly with R = Zk = Seq1(Zk).

Example 5 (Carlitz compositions over Zk). Recall that Carlitz compositions are those
where adjacent parts are distinct. A corresponding local restriction digraph D has vertex
sets R = Z∗k ⊂ Seq1(Zk) (or R = Zk = Seq1(Zk) for weak compositions), T = {ε}, and
there is an arc from any vertex in R to any different vertex in R. In this case, we have
locally restricted compositions over Zk with span σ = 1.
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We note that it is possible for two different digraphs D1 and D2 to define equal families
Seq(G;D1) and Seq(G;D2) of compositions over G. For example, Carlitz compositions
can also be defined using a digraph with span σ = 2 such that each recurrent vertex is a
pair of distinct nonzero elements of G.

Example 6 (Locally Mullen compositions). Recall that locally d-Mullen compositions
over G are those such that the sum of at most d consecutive terms is nonzero in G.
Example 4 gives locally 2-Mullen compositions. A digraph D with span 3 for locally
3-Mullen compositions can be defined as follows. Let R be the set of locally 3-Mullen
compositions with 3 parts over G. We join εs to every vertex in R, and join a vertex
u ∈ R to a vertex v ∈ R ∪ T if the concatenation uv is a locally 3-Mullen composition.

Theorem 7 (Local restriction). Consider a class Seq(G;D) of locally restricted composi-
tions with span σ. Suppose the following are satisfied.

1. The greatest common divisor of the lengths of all directed cycles in DR is equal to 1.

2. For each 1 6 t 6 r, there is a positive integer `, two recurrent vertices u and v, and
a nonempty set WR of directed walks in DR of length ` from u to v such that the
following hold.

(a) For each walk W = uu1 . . .u`−1v in WR and each i 6= t, we have ui,j = φi,j,
where ui,j denotes the ith coordinate of the size vector |uj| and φi,j is fixed over
all walks in WR.

(b) We have gcd{m − n : m,n ∈ N} = 1, where N = {n : n = ut,1 + · · · +
ut,`−1 for some walk uu1 . . .u`−1v ∈ WR}.

Let m = aσ + b for some integers a, b with a > 1 and 0 6 b < σ, and let cm(s, D) be the
number of m-compositions of s in Seq(G;D). Fix b but allow a to vary. Suppose further
that there is at least one arc from R to Seqb(G). Then there are constants A > 0, B > 1
and 0 < θ < 1 (that is, independent of m but perhaps depending on b) such that

cm(s, D) = A ·Bm (1 +O (θm)) , m = aσ + b, m→∞.

Remark. Assumption 2 in Theorem 2 is a technical condition which allows our proofs to
work. It might be possible to relax this technical assumption.

Corollary 8. Assume the notation and conditions of Theorem 2. Let H be the outdegree
of εs. Suppose further that there are constants J and K such that

1. every recurrent vertex has outdegree K in DR, and

2. every recurrent vertex is joined to J vertices in Seqb(G).

Then Theorem 7 holds with

A =
H J

|G|K1+b/σ
, B = K1/σ. (3)
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In the following we adopt the notation xk = x(x− 1) · · · (x− k + 1).

Corollary 9. Let cm(s) be the number of m-compositions of s for each of the following
classes of compositions over G. Then

cm(s) = A ·Bm (1 +O (θm)) , m→∞,

where A,B are given below.

1. For weak compositions such that there is no repeated part among any d+1 consecutive
parts and |G| > d+ 2,

A =
1

|G|
|G|d(|G| − d)−d, B = |G| − d.

2. For compositions such that there is no repeated part among any d+ 1 consecutive
parts and |G| > d+ 3,

A =
1

|G|
(|G| − 1)d(|G| − 1− d)−d, B = |G| − 1− d.

3. For weak compositions such that there is no repeated part among any d+1 consecutive
parts and the first d parts are nonzero, and |G| > d+ 2,

A =
1

|G|
(|G| − 1)d(|G| − d)−d, B = |G| − d.

4. For weak compositions such that the sum of any d consecutive parts is nonzero and
|G| > 3, d > 2,

A = |G|d−2(|G| − 1)1−d, B = |G| − 1.

5. For compositions over Fq such that the product of any d consecutive parts is not
equal to 1 and q > 4, d > 2,

A =
1

q
(q − 1)d−1(q − 2)1−d, B = q − 2.

Next we give an example to which Corollary 8 does not apply.

Example 10. Consider the class of compositions over G such that the sum of any three
consecutive parts is nonzero. A corresponding restriction digraph D is defined as follows.
The set R consists of all ordered triples of nonzero elements of G whose sum is nonzero.
We note that the sum of two consecutive parts might be zero. The vertex εs is joined to
every vertex in R, and every recurrent vertex is joined to the vertex ε in T . A recurrent
vertex u is joined to a vertex v ∈ R ∪ Seq1(G

∗) ∪ Seq2(G
∗) if the sum of any three

consecutive parts in the concatenation uv is nonzero. To compute the outdegree of each
recurrent vertex, we need to distinguish two cases.
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Case 1: the recurrent vertex u := (u1, u2, u3) where u1, u2, u3 6= 0 and u2 + u3 = 0. Such
a vertex is joined to a recurrent vertex v := (v1, v2, v3) if v1, v2, v3 6= 0, u3 + v1 + v2 6= 0
and v1 + v2 + v3 6= 0. The outdegree of u in R is equal to

|{(v1,−v1, v3) : v1, v3 6= 0}|
+ |{(v1, v2, v3) : v1 6= 0; v2 6= −v1,−v1 − u3,0; v3 6= −v1 − v2,0}|

= (|G| − 1)2 + (|G| − 1)(|G| − 3)(|G| − 2).

The outdegree of u in Seq1(G) is clearly equal to |G| − 1. The outdegree of u in Seq2(G)
is equal to

|{(−u3, v2) : v2 6= 0}|+ |{(v1, v2) : v1 6= −u3,0; v2 6= −v1 − u3,0, }|
=(|G| − 1) + (|G| − 2)2.

Case 2: the recurrent vertex u := (u1, u2, u3) where u1, u2, u3 6= 0 and u2 + u3 6= 0. The
outdegree of u in R is equal to

|{(v1,−v1, v3) : v1 6= −u2 − u3,0; v3 6= 0}|
+ |{(v1, v2, v3) : v1 6= −u2 − u3,0; v2 6= −v1,−v1 − u3,0; v3 6= −v1 − v2,0}|

= (|G| − 2)(|G| − 1) + (|G| − 2)(|G| − 3)(|G| − 2).

The outdegree of u in Seq1(G) is clearly equal to |G| − 2. The outdegree of u in Seq2(G)
is equal to

|{(−u3, v2) : v2 6= 0}|+ |{(v1, v2) : v1 6= −u3,−u2 − u3,0; v2 6= −u3 − v1,0}|
=(|G| − 1) + (|G| − 3)(|G| − 2).

We show later that in fact Theorem 7 can still apply to this class.

3 Propositions

In this section we present results which are used to prove our main theorems.
The following multivariate “multisection formula” might be known (the univariate case

can be found in [15, Ex. 1.1.9]), but we are unable to find a reference. So we also include
a proof.

For two vectors z = (z1, z2, . . . , zr) and n = (n1, n2, . . . , nr), we use zn to denote the
product

∏r
j=1 z

nj

j . In the rest of the paper, we use the Iverson bracket [P ] which is equal
to 1 if the statement P is true and 0 otherwise. We also use ωk := exp(2πi/k) to denote
the kth primitive root of unity which has the property

k−1∑
j=0

ωsjk = k [s ≡ 0 (mod k)] .
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Proposition 11 (Multivariate multisection formula). Let A(z) =
∑

n anzn be a multi-
variate generating function, where the indeterminate is z := (z1, . . . , zr) and the sum is
over all n := (n1, . . . , nr). For any s = (s1, . . . , sr) ∈ G, we have

∑
n≡s (mod k)

anzn =

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)
A
(
z1ω

j1
k1
, . . . , zrω

jr
kr

)
,

where ωkt = exp(2πi/kt) is a primitive kt
th root of unity for 1 6 t 6 r.

Proof. We have

∑
j∈G

(
r∏
t=1

ω−jtstkt

)
A
(
z1ω

j1
k1
, . . . , zrω

jr
kr

)
=
∑
n

anzn

r∏
t=1

kt−1∑
jt=0

ω
jt(nt−st)
kt

=
∑
n

anzn

r∏
t=1

kt [nt ≡ st (mod kt)]

=
r∏
t=1

kt
∑
n

anzn [n ≡ s (mod k)] .

Corollary 12. In this corollary compositions may be weak. Fix some class A ⊆ Seq(G)
of restricted compositions over G. For s ∈ G, let

cm(s) = |{x : x = (x1,x2, . . . ,xm) ∈ A, |x| ≡ s (mod k)}| .

For n ∈ Zr>0, we define the integer composition counting sequence

ĉm(n) = |{x : x = (x1,x2, . . . ,xm) ∈ A, |x| = n}| ,

and the generating function Ĉm(z) =
∑

n ĉm(n)zn. Then

cm(s) =

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)
Ĉm
(
ωj1k1 , . . . , ω

jr
kr

)
.

Proof. Immediate from Proposition 11.

Example 13 (Unrestricted m-compositions over G). The corresponding generating
function for integer m-compositions is

Ĉm(z) =

(∑
j∈G

zj − 1

)m

=

(
r∏
t=1

kt−1∑
jt=0

zjtt − 1

)m

=

(
r∏
t=1

1− zktt
1− zt

− 1

)m

.

the electronic journal of combinatorics 25(2) (2018), #P2.19 9



It follows from Corollary 12 that the number of m-compositions of s over G is

cm(s) =

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)
Ĉm(ωj1k1 , . . . , ω

jr
kr

)

=

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)(
[j = 0]

r∏
t=1

kt − 1

)m

=
1

|G|

(
(|G| − 1)m + (−1)m

∑
j∈G∗

r∏
t=1

ω−jtstkt

)

=
1

|G|

(
(|G| − 1)m + (−1)m

(
r∏
t=1

kt−1∑
jt=0

ω−jtstkt
− 1

))

=
1

|G|
((|G| − 1)m + (−1)m ([s = 0] |G| − 1)) .

Thus

cm(s) =
1

|G|
((|G| − 1)m − (−1)m) , if s 6= 0,

cm(0) =
1

|G|
((|G| − 1)m + (−1)m (|G| − 1)) .

If r = 1, this is the result given in [25]. We also note that

cm(s) ∼ 1

|G|
(|G| − 1)m

for each s ∈ G as m→∞, which agrees with the result given by Theorem 1.

Example 14 (Unrestricted weak m-compositions over G). The corresponding generating
function for integer compositions is

Ĉm(z) =

(
r∏
t=1

1− zktt
1− zt

)m

.

Applying Corollary 12, we have

cm(s) =

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)(
r∏
t=1

1− ωjtktkt

1− ωjtkt

)m

=

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)(
[j = 0]

r∏
t=1

kt

)m

=

(
r∏
t=1

1

kt

)(
r∏
t=1

kt

)m

=

(
r∏
t=1

kt

)m−1

.
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This result can also be obtained by a direct counting argument: the first m− 1 parts can
be constructed in (

∏r
t=1 kt)

m−1
ways, and the last part is then uniquely determined by the

equation x1 + · · ·+ xm−1 + xm = s in G.

Example 15. Let cm be the number of solutions to Equation (2). Let yj = ajx
dj
j and

Sj = {ajx
dj
j : xj ∈ F∗p}. Then cm is the number of m-compositions y1, . . . , ym of a over Fp

such that yj ∈ Sj. We have

|Sj| = |{ajx
dj
j : xj ∈ Fp}| = |{x

dj
j : xj ∈ Fp}| =

p− 1

gcd(dj, p− 1)
.

Viewing elements of Sj, Sj − Sj as integers less than p, the condition

gcd{ajsdj − ajtdj : s, t ∈ F∗p} = 1,

is satisfied when Sj − Sj contains two relatively prime integers.

Definition 16 (Transfer matrix, weights, start and finish vectors). Let Seq(G;D) be a
class of locally restricted compositions from Definition 3. Fix an order on the vertices in
R. We define the transfer matrix T (z) as the square matrix whose rows and columns are
indexed by the vertices in R such that Tu,v(z) = z|v| if there is an arc from u to v, and
Tu,v(z) = 0 otherwise. We say that z|v| is the weight of an arc (u,v). The weight of a
directed walk in D is defined to be the product of the weights of the arcs of the walk. The
start vector α(z) is defined as the row vector whose jth entry is the weight of the arc from
εs to the jth recurrent vertex (this entry is zero if such an arc does not exist). For each
integer 0 6 b < σ, we define the finish vector βb(z) as the column vector whose jth entry
is the sum of weights of all arcs from the jth recurrent vertex to a vertex in Seqb(G).

Example 17 (Nonzero adjacent sum, continues Example 4). For weak compositions, the
transfer matrix T (z) has size k×k where Ti,j(z) = zj if i+j 6≡ 0 (mod k) and Ti,j(z) = 0 if
i+ j ≡ 0 (mod k). The start and finish vectors are, respectively, α(z) =

[
1 z · · · zk−1

]
and β0(z) =

[
1 1 · · · 1

]>
. For example, if k = 3, we have

T (z) =

 0 z z2

1 z 0
1 0 z2

 , α(z) =
[
1 z z2

]
, β0(z) =

[
1 1 1

]>
.

Now we are ready to use the transfer matrix to enumerate locally restricted compositions
in Seq(G;D).

Proposition 18. Let m,σ be positive integers and define integers a, b such that m = aσ+b
where 0 6 b < σ. Let s = (s1, . . . , sr) be a member of G (=

⊕r
j=1 Zkj), and let Seq(G;D)

be a class of locally restricted compositions with span σ. As in Theorem 7, we let cm(s, D)
denote the number of m-compositions of s in Seq(G;D). Let T (z),α(z),βb(z) be the
corresponding transfer matrix, start vector, and finish vector, and define

Ĉm(z) = α(z)T a−1(z)βb(z).
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Then we have

cm(s, D) =

(
r∏
t=1

1

kt

)∑
j∈G

(
r∏
t=1

ω−jtstkt

)
Ĉm
(
ωj1k1 , . . . , ω

jr
kr

)
.

Proof. We note that the (u,v) entry in T (z)a−1 is the sum of weights of all directed walks
of length a− 1 (that is, containing a vertices) in DR from vertex u to vertex v. Since each
vertex in DR is a sequence of parts from G of length σ, it follows from the definition of α
and βb that Ĉm(z) is the generating function of all directed walks from εs to T totaling
m = aσ + b parts. The result follows by applying Corollary 12.

Example 19 (Carlitz compositions over Zk, continues Example 5). For Carlitz weak
compositions, it is clear that every recurrent vertex has in-degree and out-degree equal
to k − 1 in DR. The transfer matrix T (z) is given by Ti,i(z) = 0 and Ti,j(z) = zj

if i 6= j. The start and finish vectors are, respectively, α(z) =
[
1 z · · · zk−1

]
and

β0(z) =
[
1 1 · · · 1

]>
. So the generating function Ĉm(z) from Proposition 18 for Carlitz

weak compositions is given by

Ĉm(z) =
[
1 z · · · zk−1

]
Tm−1(z)

[
1 1 · · · 1

]>
, m > 1.

For Carlitz compositions, the transfer matrix T (z) is obtained from the one above by
deleting row 1 and column 1. The start and finish vectors are, respectively, α(z) =[
z z2 · · · zk−1

]
and β0(z) =

[
1 1 · · · 1

]>
. This gives

Ĉm(z) =
[
z z2 · · · zk−1

]
Tm−1(z)

[
1 1 · · · 1

]>
, m > 1.

The following two propositions are used later to derive the asymptotic number of
compositions over G from their generating functions. Proposition 20 below shows that,
under an aperiodicity condition, a polynomial attains a unique maximum absolute value
on the unit disc at 1. Its proof can be found in [14, Lemma 1]. Proposition 21 is essentially
the Perron-Frobenius theorem and its proof can be found in [5].

Proposition 20. Let F (z) =
∑

j>0 fjz
j be a polynomial with nonnegative coefficients.

Define J = {j : fj > 0}. Suppose J is not empty and gcd{j − k : j, k ∈ J} = 1. Then
|F (z)| < F (1) for all |z| 6 1, z 6= 1.

Proposition 21. Let T (z) be a transfer matrix as in Definition 16, and let ρ(z) denote the
spectral radius of T (z). Suppose the greatest common divisor of all directed cycle lengths
of the digraph DR is equal to 1. Then we have the following.

1. The value ρ := ρ(1) is a simple eigenvalue of T (1) and the corresponding eigenspace
is spanned by a positive vector.

2. All other eigenvalues of T (1) are smaller, in modulus, than ρ.

3. Suppose |z| 6= 1, |zt| 6 1 for all t, and T (z) 6= T (1). Then ρ(z) < ρ.
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4 Proofs

Proof of Theorem 2. The generating function for integer compositions is

Ĉm(z) =
m∏
j=1

∑
n∈Sj

zn =
m∏
j=1

r∏
t=1

∑
nt∈St,j

znt
t .

We note Ĉm(1) =
∏m

j=1 |Sj|. It follows from Corollary 12 that

c(s;S1, . . . , Sm) =

(
r∏
t=1

1

kt

)∑
g∈G

(
r∏
t=1

ω−gtstkt

)
Ĉm(ωg1k1 , . . . , ω

gr
kr

)

=
1

|G|

(
m∏
j=1

|Sj|+
∑
g∈G∗

(
r∏
t=1

ω−gtstkt

)
Ĉm(ωg1k1 , . . . , ω

gr
kr

)

)
.

For a subset A of Zkt , define P (z;A) =
∑

a∈A z
a. Let I := {A ⊆ Zkt : |P (z;A)| <

|A| when |z| = 1 and z 6= 1} and define

θ = max

{ |P (ωgtkt ;A)|
|A|

: 1 6 gt 6 kt − 1, 1 6 t 6 r, A ∈ I
}
.

Then 0 6 θ < 1. It follows from Proposition 20 that St,j ∈ I and consequently |P (z;St,j)| <
θ|St,j|. Let g ∈ G satisfy gt∗ > 0 for some 1 6 t∗ 6 r. It follows that

|Ĉm(ωg1k1 , . . . , ω
gr
kr

)| =

 m∏
j=1

∣∣∣∣∣∣
∑

a∈St∗,j

ωagt∗kt∗

∣∣∣∣∣∣
 r∏

t=1,t6=t∗

m∏
j=1

∣∣∣∣∣∣
∑
nt∈St,j

ωntgt
kt

∣∣∣∣∣∣


=

(
m∏
j=1

∣∣∣Pt∗,j(ωgt∗kt∗ )∣∣∣
)(

r∏
t=1,t 6=t∗

m∏
j=1

∣∣Pt,j(ωgtkt)∣∣
)

<

(
m∏
j=1

θ|St∗,j|

)(
r∏

t=1,t 6=t∗

m∏
j=1

|St,j|

)

= θm
r∏
t=1

m∏
j=1

|St,j|

= θm
r∏
t=1

|St|.

Now Theorem 1 follows immediately.

Proof of Theorem 7. As in Proposition 21, let T (z) be the transfer matrix of Seq(G;D)
and define ρ(z) to be the absolute value of the dominant eigenvalue of T (z). We abbreviate
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ρ(1) simply as ρ. Define

θ1 = max

{
|λ|
ρ

: λ is any eigenvalue of T (1) other than ρ

}
,

θ2 = max

{
ρ(ωj1k1 , . . . , ω

jr
kr

)

ρ
: 0 6 jt 6 kt − 1, 1 6 t 6 r, j 6= 0

}
.

It follows from item 2 of Proposition 21 that 0 6 θ1 < 1. Recall that the (u,v)-entry of
T `(z), denoted by

(
T `(z)

)
u,v

, is equal to the sum of the weights of all directed walks from

vertex u to vertex v of length `. Let j = (j1, . . . , jr) satisfy 0 6 ji 6 ki − 1 and jt 6= 0 for
some 1 6 t 6 r. LetWR be the set of directed walks given in condition 2. Dividing the set
of all directed walks of length ` from u to v into WR and its complement W̄R, we obtain∣∣∣(T `(ωj1k1 , . . . , ωjrkr))u,v∣∣∣

6

∣∣∣∣∣ ∑
W∈WR

r∏
i=1

ω
ji(vi+

∑`−1
h=1 ui,h)

ki

∣∣∣∣∣+

∣∣∣∣∣∣
∑

W∈W̄R

r∏
i=1

ω
ji(vi+

∑`−1
h=1 ui,h)

ki

∣∣∣∣∣∣
6

∣∣∣∣∣
r∏

i=1,i 6=t

ω
ji(vi+

∑`−1
h=1 φi,h)

ki

∣∣∣∣∣ ∣∣ωjtvtkt

∣∣ ∣∣∣∣∣ ∑
W∈WR

ω
jt

∑`−1
j=1 ut,j

kt

∣∣∣∣∣+
∑

W∈W̄R

1

6

∣∣∣∣∣ ∑
W∈WR

ω
jt

∑`−1
h=1 ut,h

kt

∣∣∣∣∣+
∑

W∈W̄R

1.

Applying condition 2 and Proposition 20, we obtain∣∣∣∣∣ ∑
W∈WR

ω
jt

∑`−1
h=1 ut,h

kt

∣∣∣∣∣ < ∑
W∈WR

1.

It follows that ∣∣∣(T `(ωj1k1 , . . . , ωjrkr))u,v∣∣∣ < ∑
W∈WR

1 +
∑

W∈W̄R

1 =
(
T `(1)

)
u,v

.

Applying item 3 of Proposition 21 to the matrix T `
(
(ωj1k1 , . . . , ω

jr
kr

)
)
, we obtain

ρ(T (ωj1k1 , . . . , ω
jr
kr

))` < ρ(T (1))`,

and hence 0 6 θ2 < 1.
Using the Jordan normal form of T (z), it is easy to see that, for each z = (ωj1k1 , . . . , ω

jr
kr

)

with (j1, . . . , jr) 6= (0, . . . , 0), all entries of T a−1(z) are of the order O
(
aNρaθa2

)
, where

N is the size of T (z). Since N is fixed (i.e., independent of m or a), it follows that, for
(j1, . . . , jr) 6= (0, . . . , 0),

Ĉm(ωj1k1 , . . . , ω
jr
kr

) = α(ωj1k1 , . . . , ω
jr
kr

)T a−1(ωj1k1 , . . . , ω
jr
kr

)βb(ω
j1
k1
, . . . , ωjrkr) = O

(
aNθa2

)
ρa.
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Next we estimate Ĉm(1). By Proposition 4(1), ρ is a simple eigenvalue of T (1) (and
T>(1)), so we may write the Jordan normal form of T (1) in the following block form

T (1) = [g L]

[
ρ 0
0 Λ

] [
h
H

]
such that g is a positive eigenvector of T (1) corresponding to ρ, h> is a positive eigenvector
of T>(1) corresponding to ρ, the matrix Λ corresponds to other eigenvalues of T (1) which

are all smaller, in absolute value, than ρ, and the matrix

[
h
H

]
is the inverse of [g L].

Since all entries of Λa−1 are of the order O
(
aNρaθa1

)
, it follows that

Ĉm(1) = α(1)T a−1(1)βb(1)

= (α(1) · g)(h · βb(1))ρa−1 +α(1)LΛa−1Hβb(1)

= (α(1) · g)(h · βb(1))ρa−1 +O
(
aNρaθa1

)
.

Since there is at least one arc from εs to R and at least one arc from R to Seqb(G), both
α(1) and βb(1) are non-negative vectors with at least one positive entry. Consequently
both α(1) · g and h · βb(1)) are positive. Now Theorem 2 follows from Proposition 18

with θ being any constant satisfying max{θ1/σ
1 , θ

1/σ
2 } < θ < 1, and

A =
1

|G|
(α(1) · g)(h · βb(1))ρ−1−b/σ, B = ρ1/σ.

Example 22 (Continues Example 10). We again consider the class of compositions over
G such that the sum of any three consecutive parts is nonzero. To make matrices as
convenient as possible, we use a span of σ = 2. We specialize to the case G = Zk, where
k > 4. An argument similar to that used below in the proof of Corollary 2 Part 4 shows
that DR is strongly connected. The first condition of Theorem 7 is satisfied by the loop at
the vertex (1, 1). The second condition is satisfied by setting WR to contain the walks
(1, 1), (1, k−1), (2, 1), (k−1, 1), (k−1, k−1) and (1, 1), (1, k−1), (2, 2), (k−1, 1), (k−1, k−1).

We further specialize, taking k = 4, and in this case, with the help of the Com-
puter Algebra System MAPLE, we can apply Proposition 2 to derive an exact for-
mula as well as a simple approximation formula for cm(s). The elements of R are
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3). Using this ordering, we get

α(z) =
[
z2 z3 z4 z3 z4 z5 z4 z5 z6

]
β0(z) =

[
1 1 1 1 1 1 1 1 1

]>
β1(z) =

[
z + z3 z2 + z3 z + z2 + z3 z2 + z3 z + z2 + z3 z + z2 z + z2 + z3 z + z2 z + z3

]>
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T (z) =



z2 0 z4 0 0 0 z4 z5 z6

0 0 0 z3 z4 z5 z4 z5 0
z2 z3 z4 z3 z4 0 z4 0 z6

0 0 0 0 z4 z5 z4 z5 z6

0 z3 z4 z3 z4 z5 z4 z5 0
z2 z3 z4 z3 z4 0 0 0 0
z2 0 z4 0 z4 z5 z4 z5 z6

0 z3 z4 z3 z4 z5 0 0 0
z2 z3 z4 0 0 0 z4 0 z6


Using MAPLE, we find that the four matrices T (1), T (−1), T (i), T (−i) are all diagonl-

izable and

Ĉm(1) =
3

2
(1 +

√
2)m +

3

2
(1−

√
2)m,

Ĉm(−1) = Ĉm(i) = Ĉm(−i)

= (−1)mf(r1)r
m/2
1 + f(r2)r

m/2
2 + (−1)mf(r3)r

m/2
3 + 2<

(
f(r4)r

m/2
4

)
,

where

f(r) =
r3 − 5r2 + 6r − 1

r(4r4 − 11r3 − 13r2 − 19r + 17)
,

r1
.
= 3.848862156, r2

.
= 0.4736256091, r3

.
= 0.3639455409, and r4

.
= −0.8432166528 +

0.892341334i are eigenvalues of T (−1), T (i), T (−i) satisfying

r5 − 3r4 − 3r3 − 2r2 + 4r − 1 = 0.

It follows from Proposition 2 that

cm(0) =
3

8
(1 +

√
2)m +

3

8
(1−

√
2)m +

3

4
(−1)mf(r1)r

m/2
1 +

3

4
f(r2)r

m/2
2

+
3

4
(−1)mf(r3)r

m/2
3 +

3

2
<
(
f(r4)r

m/2
4

)
=

3

8
(1 +

√
2)m +

3

4
(−1)mf(r1)r

m/2
1 +

3

2
<
(
f(r4)r

m/2
4

)
+O

(
r
m/2
2

)
,

cm(1) = cm(2) = cm(3)

=
3

8
(1 +

√
2)m +

3

8
(1−

√
2)m − 1

4
(−1)mf(r1)r

m/2
1 − 1

4
f(r2)r

m/2
2

− 1

4
(−1)mf(r3)r

m/2
3 − 1

2
<
(
f(r4)r

m/2
4

)
=

3

8
(1 +

√
2)m − 1

4
(−1)mf(r1)r

m/2
1 − 1

2
<
(
f(r4)r

m/2
4

)
+O

(
r
m/2
2

)
.

Table 1 shows numerical values for relevant sequences, where

am(0) =
3

8
(1 +

√
2)m +

3

4
(−1)mf(r1)r

m/2
1 +

3

2
<
(
f(r2)r

m/2
2

)
is evaluated up to one decimal place.
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m cm(1) cm(0) am(0)
2 2 3 2.7
3 7 0 -0.1
4 10 21 20.8
5 35 18 17.9
6 64 105 104.9
7 199 120 119.9
8 396 543 542.9
9 1119 822 821.9
10 2376 2961 2960.9
11 6373 5238 5237.9
12 14142 16377 16376.9
13 36589 32196 32195.9
14 83532 92133 92132.9
15 211075 194196 194195.9
16 491110 524241 524240.9
17 1221885 1156908 1156908.0
18 2878806 3006279 3006279.0
19 7089517 6839406 6839406.0
20 16841988 17332647 17332647.0
21 41196941 40234356 40234356.0

Table 1: Values of cm(1), cm(0) and am(0) from Example 10.

Proof of Corollary 8. We first note that the matrix T (1) is a 0-1 matrix. Condition 1
implies that each row of T (1) contains exactly K 1’s. Hence the dominant eigenvalue of

T (1) is ρ = K and
[
1 1 · · · 1

]>
is a corresponding eigenvector. Conditions 2 and 3

imply that α(1) contains exactly H 1’s and βb(1) = J
[
1 1 · · · 1

]>
. Since βb(1) is an

eigenvector of T (1) corresponding to the dominant eigenvalue ρ, Ĉm(1) can be evaluated
exactly without using the Jordan normal form. And we have

Ĉm(1) = α(1)T a−1(1)βb(1) = α(1)Ka−1J
[
1 1 · · · 1

]>
= H · J ·Ka−1,

where we used the fact H = α(1)
[
1 1 · · · 1

]>
. This establishes (3).

Proof of Corollary 9. We first define the digraph D for each class and compute the values
of H, J and K. For Part 1, we let R be the set of all (d+ 1)-tuples of distinct elements of
G. Hence σ = d + 1 and |R| = |G|d+1. The vertex εs is joined to all recurrent vertices
and so H = |G|d+1. A recurrent vertex u = (u1, u2, . . . , ud+1) is joined to a recurrent
vertex v = (v1, v2, . . . , vd+1) if vj is different from v1, . . . , vj−1, uj+1, . . . , ud+1 for each
1 6 j 6 d+ 1. Hence u is joined to K = (|G| − d)d+1 recurrent vertices. Similarly u ∈ R
is joined to a vertex v = (v1, v2, . . . , vb) if vj is different from v1, . . . , vj−1, uj+1, . . . , ud+1

for each 1 6 j 6 b. Hence J = (|G| − d)b.
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For Part 2, we let R be the set of all (d+ 1)-tuples of distinct elements of G∗. So the
remaining argument is exactly the same as for Part 1 with G being replaced by G∗.

For Part 3, the corresponding digraph D is defined as in Part 1 except that there is an
arc from εs to a vertex v ∈ R only if the first d parts of v are all nonzero. Thus we have
σ = d+ 1, J = (|G| − d)b, K = (|G| − d)d+1, and H = (|G| − 1)d(|G| − d).

For Part 4, we let R = {(u1, . . . , ud) : uj ∈ G,
∑d

j=1 uj 6= 0}. So we have σ = d. We
note that for every choice of (u1, . . . , ud−1), there are |G| − 1 choices of ud such that the
total sum is nonzero (we need the assumption d > 2 here). Hence |R| = (|G| − 1)|G|d−1.
The vertex εs is joined to all recurrent vertices and so H = (|G| − 1)|G|d−1. A recurrent
vertex u = (u1, u2, . . . , ud) is joined to a vertex v = (v1, v2, . . . , vk) ∈ R ∪ Seqb(G) if
v1 + · · ·+ vj + uj+1 + · · ·+ ud is not zero for each 1 6 j 6 k. Hence K = (|G| − 1)d and
J = (|G| − 1)b.

For Part 5, we take R to be the set of all d-tuples x1, . . . , xd of nonzero elements of Fq
such that xd 6= (x1 · · ·xd−1)

−1. If q = pn, each field element is represented as an n-tuple
over Zp. This gives σ = d and H = |R| = (q− 1)d−1(q− 2). We have K = (q− 2)d since to
join x1, . . . , xd to y1, . . . , yd, each yi is constrained to be nonzero and not the multiplicative
inverse of the previous d− 1 parts. Similarly, J = (q − 2)b.

Next we verify that the digraph DR is strongly connected by showing that there is a
directed walk from any recurrent vertex to any other recurrent vertex.

For Part 1, Let b = (b1, b2, . . . , bd+1) and a = (a1, a2, . . . , ad+1) be any two distinct
recurrent vertices. Let j be the smallest integer such that aj+1 6= bj+1. Thus we can
write a = (b1, . . . , bj, aj+1, . . . , ad+1), where 0 6 j 6 d and aj+1 6= bj+1. We use induction
on d − j to show that there is a directed walk from b to a. The basis case j = d is
obvious since b is joined to a. Now we move to the inductive step by finding a recurrent
vertex (b1, . . . , bj, bj+1, xj+2, . . . , xd+1) which is joined to a. If bj+1 /∈ {aj+2, . . . , ad+1},
then (b1, . . . , bj, bj+1, aj+2, . . . , ad+1) is joined to a. If bj+1 = ak for some k ∈ {j +
2, . . . , d + 1}, then for any y /∈ {b1, . . . , bj+1, aj+1, . . . , ad+1}, it is easy to check that
(b1, . . . , bj, bj+1, aj+2, . . . , ak−1, y, ak+1, . . . , ad+1) is joined to a.

The argument for Parts 2 and 3 is similar to above.
For Part 4, we show that there is a directed walk from a recurrent vertex b =

(b1, b2, . . . , bd) to another recurrent vertex a = (b1, . . . , bj, aj+1, . . . , ad) using induction on
d− j as for Part 1. When j = d− 1, it is clear that b is joined to a. For the inductive
step, let y ∈ G satisfy

y + (b1 + · · ·+ bj+1 + aj+3 + · · ·+ ad) 6= 0,

y + (b1 + · · ·+ bj + aj+1 + aj+3 + · · ·+ ad) 6= 0.

Then it is easy to check that (b1, . . . , bj, bj+1, y, aj+3, . . . , ad) is joined to a.
The argument for Part 5 is similar to that for Part 4.

Finally we verify the two conditions in Theorem 7 for the five classes of compositions.
The verification proceeds as follows. For each 1 6 t 6 r, we find two distinct recurrent
vertices u = (u1, u2, . . . , uσ) and v = (v1, v2, . . . , vσ) such that u is joined to itself and to
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s
m

1 2 3 4 5 6 7 8 9 10

0 0 0 12 24 48 204 624 1680 5196 16008
1 1 3 6 21 69 192 573 1767 5262 15681

Table 2: Counts of locally 2-Mullen compositions over Z5.

s
m

2 3 4 5 6 7 8 9 10

0 4 24 88 320 1248 5120 20728 82284 326296
1 6 18 72 320 1284 5120 20232 81738 329064
2 4 18 88 320 1236 5120 20728 81738 326296
3 6 24 72 320 1392 5120 20232 82284 329064
4 4 18 88 320 1236 5120 20728 81738 326296
5 6 18 72 320 1284 5120 20232 81738 329064

Table 3: Counts of 2-Carlitz weak compositions over Z6.

v, v is joined to itself, and |v| − |u| = et where et is the tth unit vector of dimension r.
Hence condition 1 is satisfied because of the loop at u, and WR = {uuv,uvv} is a set of
directed walks of length 2 from u to v which satisfies condition 2.

For Part 1, we choose d distinct elements u1, . . . , ud from G \ {0, et} and let u =
(u1, . . . , ud,0) and v = (u1, . . . , ud, et). It is easy to see that there are (|G| − 2)d > 0
choices of u1, . . . , ud.

For Part 2, we distinguish two cases. If r = 1, then G = Zk for some k > d+ 3. In this
case we simply let u = (3, 4, . . . , d+ 2, 1) and v = (3, 4, . . . , d+ 2, 2). If r > 2, we let t and
t′ be two distinct integers in {1, 2, . . . , r}. We then choose d distinct elements u1, . . . , ud
from G \ {0, et′ , et′ + et} and let u = (u1, . . . , ud, et′) and v = (u1, . . . , ud, et′ + et). It is
clear that there are (|G| − 3)d > 0 choices of u1, . . . , ud.

For Part 3, we may use the same u and v as in Part 1.
For Part 4, again we discuss two cases. The case G = Zk is treated as in Part 2. If

r > 2, we let t and t′ be two distinct integers in {1, 2, . . . , r}, and choose d− 1 elements
u1, . . . , ud−1 from G such that u1 + . . .+ ud−1 + et′ 6= 0 and u1 + . . .+ ud−1 + et′ + et 6= 0.
We then let u := (u1, . . . , ud−1, et′),v := (u1, . . . , ud−1, et′ + et). There are (|G| − 2)|G|d−2

choices of u1, . . . , ud−1.
Part 5 is handled in a similar manner to Part 4.

5 Bijections and exact values

Here we first provide numerical values for the number of locally Mullen compositions
and Carlitz compositions. Table 2 shows initial values of cm(s) for locally 2-Mullen
compositions; Table 3 is similar for 2-Carlitz weak compositions; and Table 4 is similar for
2-Carlitz compositions.
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s
m

2 3 4 5 6 7 8 9 10

0 4 12 32 80 280 812 2572 6644 23460
1 4 6 34 82 284 748 2498 7372 21522
2 2 12 32 80 274 866 2266 7484 21642
3 4 12 16 136 224 820 2480 7384 21432
4 2 12 32 80 274 866 2266 7484 21642
5 4 6 34 82 284 748 2498 7372 21522

Table 4: Counts of 2-Carlitz compositions over Z6.

Next we give bijections between different families of compositions. The following
observation establishes a connection between Carlitz compositions and locally d-Mullen
compositions.

Proposition 23. For each m-composition u = u1, u2, . . . , um over G, let v = φ(u) be an
m-composition defined by vj = u1 + . . . + uj, 1 6 j 6 m. Then φ is a bijection between
locally d-Mullen m-compositions and d-Carlitz weak m-compositions over G such that the
first d parts are nonzero.

Proof. It follows from the definition of the mapping φ that vi+j = vi + (ui+1 + . . .+ ui+j).
It is clear that vi 6= vi+j if and only if ui+1 + . . .+ ui+j 6= 0. It is important to note that
vk might be zero when k > d, however vk 6= 0 when 1 6 k 6 d when u is locally d-Mullen.
Also u and v generally do not have the same sum.

Using Corollary 2 Part 3 and the above proposition, we immediately obtain the
following.

Theorem 24. Let G be a finite abelian group, and d be a positive integer such that
|G| > d+ 1. Let cm(s) be the number of locally d-Mullen m-compositions of s ∈ G. Then
there is a positive constant θ < 1 such that

cm(s) =
1

|G|
(|G| − 1)d (|G| − d)m−d (1 +O(θm)) , as m→∞.

Proposition 25. 1. Let A be a family of compositions over a finite abelian group G.
Suppose A is closed under multiplication, that is, if x := (x1, . . . , xm) belongs to A
then ax := (ax1, . . . , axm) also belongs to A for every a ∈ G∗. Let cm(s;A) be the
number of m-compositions of s in A. If s ∈ G∗ has a multiplicative inverse s−1 in
G∗, then cm(s;A) = cm(1;A).

2 Let cm(s) be the number of locally d-Mullen m-compositions of s ∈ G. Then cm(s) =
cm(1) for every s ∈ G∗.

Proof. 1. It is clear that x 7→ s−1x is a bijection between compositions of s and composi-
tions of 1 in A.
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2. The claim follows from Part 1 if s−1 exists. For general s ∈ G∗, let π be a permutation
of G such that π(s) = 1 and π(0) = 0. Then it is easy to verify that φπφ−1 is a bijection
from locally d-Mullen m-compositions of s to those of 1.

Remark. The above proposition implies that the number of Carlitz m-compositions
of s over a finite field is equal to that of 1 when s 6= 0. And the same is true for Carlitz
weak compositions.

6 Conclusion

The structure of finite abelian groups naturally leads us to use Corollary 12 to go from
a generating function for restricted integer compositions to the number of restricted
compositions over group elements. Assuming some aperiodicity conditions, asymptotic
analysis of this expression gives us the dominant term, as the number of parts goes to
infinity. Exact counts are available as well, by taking powers of the transfer matrix. A
couple of potential extensions to this work are apparent. It would be interesting to get
analogous asymptotic counting results for non-abelian groups. A similar level of generality
is unlikely but one could be curious about what techniques are necessary to generalize
at least somewhat beyond the restriction of commutativity. It may also be interesting to
consider further types of restriction such as pattern avoidance.
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