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Abstract

The presented paper studies the flow number F (G, σ) of flow-admissible signed
graphs (G, σ) with two negative edges. We restrict our study to cubic graphs, be-
cause for each non-cubic signed graph (G, σ) there is a set of cubic graphs obtained
from (G, σ) such that the flow number of (G, σ) does not exceed the flow number of
any of the cubic graphs. We prove that F (G, σ) 6 6 if (G, σ) contains a bridge, and
F (G, σ) 6 7 in general. We prove better bounds, if there is a cubic graph (H,σH)
obtained from (G, σ) which satisfies some additional conditions. In particular, if H
is bipartite, then F (G, σ) 6 4 and the bound is tight. If H is 3-edge-colorable or
critical or if it has a sufficient cyclic edge-connectivity, then F (G, σ) 6 6. Further-
more, if Tutte’s 5-Flow Conjecture is true, then (G, σ) admits a nowhere-zero 6-flow
endowed with some strong properties.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In 1954 Tutte stated a conjecture that every bridgeless graph admits a nowhere-zero 5-
flow (5-flow conjecture, see [17]). Naturally, the concept of nowhere-zero flows has been
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extended in several ways. In this paper we study one generalization of them – nowhere-
zero integer flows on signed graphs. Signed graphs are graphs where each edge is either
positive or negative. It was conjectured by Bouchet [1] that signed graphs that admit a
nowhere-zero flow have a nowhere-zero 6-flow. Recently, it was announced by DeVos [2]
that such signed graphs admit a nowhere-zero 12-flow, which is the best current general
approach to Bouchet’s conjecture.

Bouchet’s conjecture has been confirmed for particular classes of graphs [9, 8, 12] and
also for signed graphs with restricted edge-connectivity (for example [10]). By Seymour
[13] it is also true for signed graphs with all edges positive, because they correspond to
the unsigned case. For more details on flows on signed graphs, consult [5].

In this paper we study signed graphs with two negative edges. It is the minimum
number of negative edges for which Bouchet’s conjecture is open, because signed graphs
with one negative edge are not flow-admissible. This class of signed graphs is further
interesting for its connection with Tutte’s 5-flow conjecture. Suppose there exists k such
that every signed graph with k negative edges admits a nowhere-zero 5-flow. Take any
bridgeless graph G and identify a vertex of all-positive G with a vertex of a flow-admissible
signed graph with k negative edges. The resulting signed graph is flow-admissible with k
negative edges. If it admits a nowhere-zero 5-flow, then G admits it as well. Therefore
the following holds.

Observation 1. If there exists k such that every flow-admissible signed graph with k
negative edges admits a nowhere-zero 5-flow, then Tutte’s conjecture is true.

Since for every k > 3 there is a flow-admissible signed graph with k negative edges
which does not admit a nowhere-zero 5-flow (see [12]), but there is no such example known
for k = 2, the class of signed graphs with two negative edges is of a great importance. In
the opposite direction we will prove that Tutte’s conjecture implies Bouchet’s conjecture
for signed graphs with two negative edges.

In the next section we introduce necessary notions and provide a couple of well-known
results on flows. In Section 3 we show how to deal with small edge-cuts, and finally, in
Sections 4-6 we prove results on flows for signed graphs with two negative edges.

2 Preliminaries

Graphs in this paper are allowed to have multiple edges and loops. A signed graph (G, σ)
consists of a graph G and a function σ : E(G) → {−1, 1}. The function σ is called a
signature. The set of edges with negative signature is denoted by Nσ. It is called the set
of negative edges, while E(G)−Nσ is called the set of positive edges. If all edges of (G, σ)
are positive, i. e. when Nσ = ∅, then (G, σ) will be denoted by (G, 1) and will be called
an all-positive signed graph.

Let e ∈ E(G) be an edge, which is incident with vertices u and v. We divide e into
two half-edges heu and hev, one incident with u and one incident with v. The set of the
half-edges of G is denoted by H(G). For each half-edge h ∈ H(G), the corresponding edge
in E(G) is denoted by eh. For a vertex v, H(v) denotes the set of half-edges incident with
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v. An orientation of (G, σ) is a function τ : H(G)→ {±1} such that τ(heu)τ(hev) = −σ(e),
for each edge e = uv. The function τ can be interpreted as an assignment of a direction
to each edge in the following way. A positive edge can be directed like or like

. A negative edge can be directed like (so-called extroverted edge) or like
(so-called introverted edge). In what follows we will often start with a particular

orientation, and then redirect some half-edges (change their direction to the opposite one)
in order to obtain a new orientation. Note that if we redirect one half-edge of an oriented
positive edge, we obtain an oriented negative edge. If we redirect both half-edges of an
oriented positive edge, we obtain a positive edge with the opposite orientation. This can
be viewed as redirection of a positive edge. It will be used when we study unsigned or
all-positive signed graphs. Half-edges incident with v that are oriented towards v (away
from v, respectively) will be called incoming half-edges (outgoing half-edges, respectively)
and will be denoted by δ−(v) (δ+(v), respectively). In case of positive edges we also use
e ∈ δ+(v) (e ∈ δ−(v)) if e is incident with v, and if there is no danger of confusion.

Let (G, σ) be a signed graph. A switching at v defines a signed graph (G, σ′) with
σ′(e) = −σ(e) if e is incident with v, and σ′(e) = σ(e) otherwise. We say that signed
graphs (G, σ) and (G, σ∗) are equivalent if they can be obtained from each other by a
sequence of switchings. We also say that σ and σ∗ are equivalent signatures of G. If
we consider a signed graph with an orientation τ , then switching at v is a change of the
orientations of the half-edges that are incident with v, i. e. on half-edges hev for every e
incident with v. If τ ∗ is the resulting orientation, then we say that τ and τ ∗ are equivalent
orientations.

Let A be an abelian group. An A-flow (τ, φ) on (G, σ) consists of an orientation τ and
an assignment φ : E(G) → A satisfying Kirchhoff’s law : for every vertex v the sum of
values on incoming half-edges equals the sum of values on outgoing half-edges. If φ(e) 6= 0
for every edge e, then we say that the A-flow is nowhere-zero. Let k be a positive integer.
A nowhere-zero Z-flow such that −k < φ(e) < k for every e ∈ E(G) is called a nowhere-
zero k-flow. A signed graph (G, σ) is flow-admissible if it admits a nowhere-zero k-flow
for some k. The flow number of a flow-admissible signed graph (G, σ) is

F ((G, σ)) = min{k : (G, σ) admits a nowhere-zero k-flow}.

This minimum always exists. We will abbreviate F ((G, σ)) to F (G, σ).
If (G, σ) admits a nowhere-zero A-flow (τ, φ) and (G, σ∗) is equivalent to (G, σ), then

there exists an equivalent orientation τ ∗ to τ such that (τ ∗, φ) is a nowhere-zero A-flow
on (G, σ∗). To find τ ∗ it is enough to switch at the vertices that are switched in order to
obtain σ∗ from σ. Thus, it is easy to see that F (G, σ) = F (G, σ∗).

We note that flows on signed graphs that are all-positive are equivalent to flows on
graphs: a nowhere-zero k-flow (A-flow, respectively) on a graph G can be defined as a
nowhere-zero k-flow (A-flow, respectively) on (G, 1). This allows us to state known results
for flows on graphs in terms of flows on signed graphs, and vice-versa. We will frequently
employ this fact and if there is no danger of confusion, we may use the term a nowhere-
zero k-flow on a graph G for referring to a nowhere-zero k-flow on the all-positive graph
(G, 1). While a graph is flow-admissible if and only if it contains no bridge, the definition
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of flow-admissibility for signed graphs is more complicated – it is closely related to the
concept of balanced and unbalanced circuits.

A circuit of (G, σ) is balanced if it contains an even number of negative edges; otherwise
it is unbalanced. Note that a circuit of (G, σ) does not change the parity of negative
edges after switching at any vertex of (G, σ). Thus, the set of unbalanced circuits is
invariant under switching. The signed graph (G, σ) is an unbalanced graph if it contains
an unbalanced circuit; otherwise (G, σ) is a balanced graph. It is well known (see e.g. [10])
that (G, σ) is balanced if and only if it is equivalent to (G, 1). A barbell of (G, σ) is the
union of two edge-disjoint unbalanced cycles C1, C2 and a path P satisfying one of the
following properties:

• C1 and C2 are vertex-disjoint, P is internally vertex-disjoint from C1∪C2 and shares
an endvertex with each Ci, or

• V (C1) ∩ V (C2) consists of a single vertex w, and P is the trivial path consisting
of w.

Balanced circuits and barbells are called signed circuits. They are crucial for flow-
admissibility of a signed graph.

Lemma 2 (Lemma 2.4 and Lemma 2.5 in [1]). Let (G, σ) be a signed graph. The following
statements are equivalent.

1. (G, σ) is not flow-admissible.

2. (G, σ) is equivalent to (G, σ′) with |Nσ′ | = 1 or G has a bridge b such that a com-
ponent of G− b is balanced.

3. (G, σ) has an edge that is contained neither in a balanced circuit nor in a barbell.

When a signed graph has a single negative edge, it is not flow-admissible by the
previous lemma. This can also be seen from the fact that the sum of the flow values
over all negative edges is 0 provided that the negative edges have the same direction.
Therefore, if a flow-admissible signed graph has two negative edges, which is the case
considered in this paper, and the negative edges have opposite orientations, then the flow
value on the negative edges is the same for any nowhere-zero k-flow.

Let (τ, φ) be a nowhere-zero k-flow on (G, σ). If we reverse the direction of an edge
e (or of the two half-edges of e, respectively) and replace φ(e) by −φ(e), then we obtain
another nowhere-zero k-flow (τ ∗, φ∗) on (G, σ). Hence, if (G, σ) is flow-admissible, then
it has always a nowhere-zero flow with all the flow values positive.

Let n > 1 and let P = u0e1u1 · · · enun be a path in G, where {u0, . . . , un} = V (P ),
{e1, . . . , en} = E(P ) and ei = ui−1ui for each i ∈ {1, . . . , n}. We say that P is a v-w-path
if v = u0 and w = un. Let σ be a signature of G and let (G, σ) be oriented. If P of G
does not contain any negative edge and heiui ∈ δ

−(ui), h
ei+1
ui ∈ δ+(ui) for i ∈ {1, . . . , n−1},

and he1u0 ∈ δ
+(u0), h

en
un ∈ δ

−(un), then P is a directed v-w-path. In case of a positive edge
e′ we also say that e′ is an oriented edge. We will frequently make use of the following
well-known lemma and observation.
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Lemma 3. Let G be a graph and (τ, φ) be a nowhere-zero Z-flow on (G, 1). If φ(e) > 0
for every e ∈ E(G), then for any two vertices u,v of G there exists a directed u-v-path.

Observation 4. Suppose that there exists a nowhere-zero k-flow (τ, φ) with φ(f) = t for
one direction of f . Let τopp be the orientation obtained from τ by reversing the direction
of each edge of G. Then (τopp, φ) is a nowhere-zero k-flow with φ(f) = t for the other
direction of f .

Flows on signed graphs were introduced by Bouchet [1], who stated the following
conjecture.

Conjecture 5 ([1]). Let (G, σ) be a signed graph. If (G, σ) is flow-admissible, then (G, σ)
admits a nowhere-zero 6-flow.

The 6-flow theorem of Seymour [13] proves Bouchet’s conjecture for all-positive signed
graphs.

Theorem 6 ([13]). If (G, 1) is flow-admissible, then (G, 1) admits a nowhere-zero 6-flow.

In this paper, we restrict our study to signed cubic graphs, because for each signed
non-cubic graph (G, σ) there is a set G(G, σ) of signed cubic graphs such that F (G, σ) 6
min{F (H, σH) : (H, σH) ∈ G(G, σ)}. The set G(G, σ) is obtained from (G, σ) by suppress-
ing the vertices of degree 2 and by blowing vertices of degree higher than 3 into a circuit.
More precisely, if v is a vertex of degree 2 in (G, σ) with u and w being its neighbours,
then a new signed graph is obtained by deleting v (together with uv and vw), and by
adding a new edge uw whose sign is σ(uv)·σ(vw). If v is a vertex of degree d = deg(v) > 4
with neighbours u1, . . . , ud, then a new signed graph is obtained by deleting v (together
with vu1, . . . vud), adding new vertices v1, . . . , vd that induce an all-positive circuit, and
adding new edges v1u1, . . . , vdud with σ(viui) = σ(vui) for i ∈ {1, . . . , d}. The distinct
members of G(G, σ) are obtained by repeating the above mentioned methods in distinct
order. Sometimes it is useful to apply the methods in such order that an additional
property (such as edge-connectivity) is preserved. Note that any member of G(G, σ) is
flow-admissible whenever (G, σ) is.

We finish this section by recalling a few standard graph definitions. A (proper) edge-
coloring of a graph G is an assigment of a color to every edge of G in such a way that
any two adjacent edges obtain different colors. We say that G is k-edge-colorable if there
exists an edge-coloring of G that uses at most k colors. The smallest number of colors
needed to edge-color G is the chromatic index of G. By Vizing’s theorem the chromatic
index of a cubic graph is either 3 or 4. Tutte [16, 17] proved that a cubic graph G is
3-edge-colorable if and only if G admits a nowhere-zero 4-flow, and that G is bipartite if
and only if G admits a nowhere-zero 3-flow. Bridgeless cubic graphs which do not have a
nowhere-zero 4-flow are called snarks. We say that a snark G is critical if G− e admits a
nowhere-zero 4-flow for every edge e. Critical snarks were studied for example in [6, 7, 14].
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3 Small edge-cuts

In Section 5 we will show that Bouchet’s conjecture holds for signed graphs with two
negative edges that contain bridges. In this section we will deal with 2-edge-cuts that do
not separate negative edges, and refer to them as non-separating 2-edge-cuts. An idea
to reduce non-separating cuts of size less than 3 appeared first in Bouchet’s work (see
Proposition 4.2. in [1]). However, his reduction uses contraction of a positive edge, which
cannot be used in our paper – contraction of an edge of a signed graph from a particular
class (e.g. bipartite) may result in a signed graph that does not belong to the same class.

Here, we introduce a reduction of 2-edge-cuts (different from the one introduced by
Bouchet [1]), which will be applied several times in the proofs of our main results.

Let X be an edge-cut of (G, σ), and let (W1,W2) be a partition of V (G) such that
w1w2 ∈ X if and only if w1 ∈ W1 and w2 ∈ W2. Switching at all vertices of W1 results in
a signed graph (G, σ′) such that σ(e) 6= σ′(e) if and only if e ∈ X. Thus, the following
three statements hold.

Lemma 7. Let (G, σ) be a signed graph and X ⊆ E(G) be an edge-cut of G. If X = Nσ,
then F (G, σ) = F (G, 1).

Lemma 8. Let (G, σ) be a signed graph such that all negative edges Nσ belong to an
(|Nσ|+ 1)-edge-cut. Then (G, σ) is not flow-admissible.

Corollary 9. Let (G, σ) be a signed graph such that |Nσ| = 2. If (G, σ) is flow-admissible,
then the two negative edges of (G, σ) do not belong to any 3-edge-cut.

2-edge-cuts

When we study (non-separating) 2-edge-cuts, we always assume that the 2-edge-cut is
a matching. Let X = {e1, e2} be a 2-edge-cut of (G, σ) such that (G − X, σ|G−X) has
precisely two components G−1 , G−2 , where G−2 is all-positive. Then X is called a non-
separating 2-edge-cut. Let e1 = u1u2 and e2 = v1v2, and ui, vi ∈ V (G−i ).

If X = Nσ, then F (G, σ) 6 6 by Lemma 7 and Theorem 6. For this reason we are
interested in non-separating 2-edge-cuts with at least one positive edge, say e2. A 2-edge-
cut reduction of (G, σ) with respect to the edge-cut X is a disjoint union of two signed
graphs (G1, σ1) and (G2, σ2), where (Gi, σi) is obtained from G−i by adding an edge fi
between ui and vi and setting σi(fi) = σ(ei). Note that (G2, σ2) is all-positive. We say
that (G, σ) is 2-edge-cut reducible and that (G1, σ1) and (G2, 1) are the resulting graphs
of the 2-edge-cut reduction of (G, σ) (with respect to the (non-separating) 2-edge-cut X).

In what follows, when we refer to a 2-edge-cut reduction of a signed graph, then we
always use the same notation as in the above definition.

Lemma 10. Let (G, σ) be a flow-admissible signed graph. If (G, σ) is 2-edge-cut reducible
with respect to a 2-edge-cut X, then the two resulting graphs are flow-admissible.

Proof. Let (G1, σ1) and (G2, 1) be the resulting signed graphs of the 2-edge-cut reduction
of (G, σ) with respect to X = {e1, e2}. We are going to prove that each edge of the
resulting graphs belongs to a signed circuit.
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Suppose first that e ∈ E(G) ∩ E(Gi), for i ∈ {1, 2}. Since (G, σ) is flow-admissible,
there exists a signed circuit C of (G, σ) containing e according to Lemma 2. If E(C) ⊆
E(Gi), then we are done. Otherwise, C contains at least one of {e1, e2}. Since (G2, 1) is
all-positive, C must contain both of {e1, e2}. Let P be a path of C that does not belong
to Gi (note that P is a path since edges of X are independent, and that {e1, e2} ⊆ E(P )).
Then C − P ∪ {fi} is a signed circuit of Gi containing e.

Note that any such circuit also contains an edge fi ∈ E(Gi)−E(G), so we are done if
there exists a signed circuit C of (G, σ) such that E(C) * E(Gi). But if there is no such
circuit of (G, σ), then ei is not contained in any signed circuit, which is a contradiction
with flow-admissibility of (G, σ).

Lemma 11. Let (G1, σ1) and (G2, σ2) be the resulting graphs of the 2-edge-cut reduction of
(G, σ) with respect to a 2-edge-cut {e1, e2}. Let k be a positive integer, and for i ∈ {1, 2},
let (Gi, σi) admit a nowhere-zero k-flow (τi, φi). If φ1(f1) = φ2(f2), then F (G, σ) 6 k.

Proof. Let τ be an orientation of the edges of (G, σ) such that τ(e) = τi(e) for every edge
e ∈ E(Gi) ∩ E(G). By Observation 4, we may assume that e1 ∈ δ+(u2) and e2 ∈ δ+(v1).
Now (τ, φ) with φ(e) = φi(e) for every e ∈ E(Gi) ∩E(G) and φ(e1) = φ(e2) = φ1(f1) is a
nowhere-zero k-flow on (G, σ).

For a signed graph (G, σ) with two negative edges we say that an all-positive 2-edge-
cut X separates the negative edges if the negative edges belong to different components
of G − X. We note that we will not use an equivalent of a 2-edge-cut reduction for 2-
edge-cuts that separate negative edges, because the resulting signed graphs may not be
flow-admissible.

4 Nowhere-zero 4-flows

The following lemma is due to Schönberger [11].

Lemma 12 ([11]). If G is a bridgeless cubic graph and e is an edge of G, then G has a
1-factor that contains e.

Lemma 13. Let G be a cubic bipartite graph, and let e, f ∈ E(G). If any 3-edge-cut
contains at most one edge of {e, f}, then there exists a 1-factor of G that contains both e
and f .

Proof. Let U and V be the partite sets of G. Let e = u1v1 and f = u2v2 be two edges of
G such that u1, u2 ∈ U and v1, v2 ∈ V . If e and f are adjacent, they belong to a (trivial)
3-edge-cut of G and there is nothing to prove. Hence, e and f are non-adjacent.

If e and f form a 2-edge-cut, then they must belong to the same color class of a
3-edge-coloring of G and hence, there is a 1-factor that contains e and f .

In what follows, we assume that {e, f} is not a 2-edge-cut. Let G′ be the graph that is
constructed from G−{e, f} by adding new edges e′ = u1u2 and f ′ = v1v2. It follows that
G′ is cubic and bridgeless (since e and f do not belong to any 3-edge-cut of G). Thus,
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by Lemma 12, there exists a 1-factor F ′ of G′ containing e′. We claim that F ′ contains
f ′. Suppose to the contrary that f ′ /∈ F ′. Then there exist u′1 and u′2 from U such that
v1u

′
1 and v2u

′
2 are in F ′. The graph G′ − {u1, u′1, u2, u′2, v1, v2} is bipartite with partite

sets of cardinality |U | − 4 and |V | − 2 = |U | − 2. Note that such a graph does not have
any 1-factor, which is a contradiction with the existence of F ′. Thus, f ′ must belong to
F ′. In that case F = F ′ ∪ {e, f} − {e′, f ′} is a 1-factor of G that contains e and f .

Lemma 14. Let (G, σ) be a signed cubic graph with Nσ = {n1, n2}. If G has a 3-
edge-coloring such that n1 and n2 belong to the same color class, then (G, σ) admits a
nowhere-zero 4-flow (τ, φ) such that φ(n1) = φ(n2) = 2.

Proof. Let c : E(G) → {c1, c2, c3} be a 3-edge-coloring such that c(n1) = c(n2) = c1. It
is easy to see that (G, 1) has a nowhere-zero 4-flow (τ, φ) such that φ(e) > 0 for every
e ∈ E(G) and φ(f) = 2 if f ∈ c−1(c1). Let n1 = u1u2 and n2 = v1v2, and let, without loss
of generality, n1 ∈ δ+(u1) and n2 ∈ δ+(v1).

If Nσ is a 2-edge-cut, then the statement follows from Lemma 7.
It remains to consider the case when Nσ is not a 2-edge-cut. Since c(n1) = c(n2), the

edges n1 and n2 do not belong to a 3-edge-cut by parity reasons. Hence, every edge-cut
that contains n1 and n2 has at least 4 edges. Note, that by Lemma 3, there is a directed
v2-u1-path P that contains neither n1 nor n2. Let τ ′ be the orientation of (G, σ) which
is obtained from τ by reversing the orientation of the half-edges hn1

u1
and hn2

v2
and of the

edges of P . Let φ′(x) = 4 − φ(x) if x ∈ E(P ), and φ′(x) = φ(x) otherwise. It is easy to
check that (τ ′, φ′) is the required nowhere-zero 4-flow on (G, σ).

Theorem 15. Let (G, σ) be a flow-admissible signed cubic graph with |Nσ| = 2. If G is
bipartite, then F (G, σ) 6 4.

Proof. Let Nσ = {n1, n2}. Since (G, σ) is flow-admissible, n1 and n2 do not belong to any
3-edge-cut by Corollary 9. Thus, by Lemma 13, G has a 1-factor containing n1 and n2.
By Lemma 14, F (G, σ) 6 4.

The bound given in Theorem 15 is tight. It is achieved for example on (K3,3, σ), where
the two negative edges form a matching (see [8]). It is not possible to extend the result of
Theorem 15 to cubic bipartite graphs with any number of negative edges. For example,
a circuit of length 6, where every second edge is doubled and one of the parallel edges is
negative for every pair of parallel edges while all the other edges are positive, has flow
number 6 (see [12]).

We would like to note that the choice of the flow value on negative edges is important.
The signed graph in Figure 1 (where the depicted values represent the signature) is an
example of a signed graph that does not admit a nowhere-zero 4-flow that assigns 1 to
negative edges even though it admits a nowhere-zero 4-flow according to Theorem 15. For
the proof, suppose to the contrary that (G, σ) admits a nowhere-zero 4-flow that assigns 1
to negative edges. Let all positive edges of (G, σ) be oriented from left to right and from
top to bottom with respect to the embedding depicted in Figure 1. Furthermore, let the
top negative edge be extroverted, and let the bottom one be introverted, both carrying
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the flow value 1. If the horizontal positive edges carry the flow values a, (−a − b) and
b (assigned from top to bottom), then due to the vertical edges, we have the following
constraints on values a and b: a 6= ±1 and b 6= ±1 (vertical edges would carry value 0),
a 6= ±3 and b 6= ±3 (vertical edges would carry value 4 or -4). Thus, |a| = |b| = 2,
resulting in the flow value 0 or ±4 on the middle horizontal positive edge, which carries
the flow value (−a− b) by Kirchhoff’s law. This is a contradiction.

�

�

�

�

�

�

�

��

��

Figure 1: A signed graph for which the choice of the flow value on negative edges is
important.

5 Nowhere-zero 6-flows

In this section we prove that Bouchet’s conjecture is true for signed graphs with two
negative edges where the underlying graph has additional properties. Our first result is
on signed graphs with bridges, for which we need some lemmas. Tutte [17] proved that
a graph has a nowhere-zero k-flow if and only if it has a nowhere-zero Zk-flow. This is
not true for general signed graphs, but in our paper we will apply the following theorem,
which is a straightforward corollary of Theorem 3.2 in [4]. Note that the following theorem
as well as the subsequent lemma deal with unsigned graphs, but they can be applied to
all-positive signed graphs too.

Theorem 16 ([4]). Let G be a 3-edge-connected graph, and let v ∈ V (G) be a vertex of
degree 3 incident with edges e1, e2, e3. Suppose that τ is an orientation of G such that
δ+(v) = {e1, e2}, and δ−(v) = {e3}. If a1, a2, a3 ∈ Z6 − {0} are such that a1 + a2 = a3,
then G admits a nowhere-zero Z6-flow (τ, φ) such that φ(ei) = ai, for i ∈ {1, 2, 3}.

Let τ be an orientation of a graph G and φ : E(G) → Zk (k > 2) be a flow on G.
We now calculate in Z. Let ζ(v) =

∑
e∈δ+(v) φ(e)−

∑
e∈δ−(v) φ(e) be the (integer) outflow
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of v and let Θ(G, (τ, φ)) =
∑

v∈V (G) |ζ(v)|. This notation is used in proof of the following

lemma, which is an extension of a classical result by Tutte [17].

Lemma 17. Let G be a graph, and let w be a vertex of G of degree 3 incident with
e1, e2, e3 ∈ E(G). Suppose that G admits a nowhere-zero Zk-flow (τ, φ) such that

(i) δ+(w) = {e1, e2} and δ−(w) = {e3},

(ii) φ(e1) = 1,

(iii) φ(e2) = a, for some a ∈ {1, . . . , k − 2}, and

(iv) φ(e3) = 1 + a.

Then G admits a nowhere-zero k-flow (τ, ψ) such that ψ(ei) = φ(ei), for i ∈ {1, 2, 3}.

Proof. Let G, w, e1, e2, e3, and (τ, φ) be as described in the lemma. Since (τ, φ) is a
nowhere-zero Zk-flow, ζ(v) is a multiple of k (including 0) for every v ∈ V (G). Further-
more,

∑
v∈V (G) ζ(v) = 0, because for every edge e of G, φ(e) contributes to the sum twice

(once for each end-vertex of e), but with different signs. If Θ(G, (τ, φ)) =
∑

v∈V (G) |ζ(v)| =
0, then (τ, φ) is a nowhere-zero k-flow, and we are done. Thus, we may assume that
Θ(G, (τ, φ)) 6= 0. This and Kirchhoff’s law extended to a set of vertices imply that there
exist vertices x, y connected by a directed path P such that ζ(x) > 0 and ζ(y) < 0. Let
τ ′ be the orientation of G obtained from τ by reversing the direction of the edges of P .
Let φ′(e) = k − φ(e) if e ∈ E(P ), and let φ′(e) = φ(e) otherwise. Then (τ ′, φ′) is a
nowhere-zero Zk-flow on G. Furthermore, Θ(G, (τ ′, φ′)) < Θ(G, (τ, φ)). Repeating this
procedure eventually gives a nowhere-zero k-flow (τ1, φ1) on G, and we may assume that
φ1(e) > 0 for all e ∈ E(G).

From the procedure follows that at least one of e1, e2 belongs to δ+(w). If δ+(w) =
{e1, e2}, then (τ2, φ2) := (τ1, φ1) is a nowhere-zero k-flow on G which coincides with (τ, φ)
on {e1, e2, e3}. It remains to consider that exactly one of e1, e2, say ej, belongs to δ−(w).
Note that in this case, e3 ∈ δ+(w), φ1(ej) = k − φ(ej), and φ1(e3) = k − φ(e3). Now, e3
is contained in a directed circuit C which also contains ej. Change the direction of the
edges of C to obtain τ2 and for e ∈ E(C) replace φ1(e) by k − φ1(e) to obtain φ2. Then
(τ2, φ2) is a nowhere-zero k-flow on G which coincides with (τ, φ) on {e1, e2, e3}.

As the last step we need to modify edges for which τ2 6= τ . Let ψ(e) = −φ2(e) (in
Z) for e ∈ E(G) with τ2(e) 6= τ(e), and let ψ(e) = φ2(e) otherwise. Then (τ, ψ) is the
required nowhere-zero k-flow of G.

Corollary 18. Let G be a cubic graph, f ∈ E(G) and t ∈ {1, . . . , 5}. If G is bridgeless,
then (G, 1) has a nowhere-zero 6-flow (τ, φ) such that φ(f) = t, for each possible direction
of f , and φ(e) > 0, for each e ∈ E(G).

Proof. By Theorem 6, (G, 1) admits a nowhere-zero 6-flow (or, equivalently, a nowhere-
zero Z6-flow). We need to show that we can choose the flow value on f . By Observation 4,
we only need to prove the statement for different values of t irrespective of the direction of
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f . Suppose the contrary, and let G be a counterexample with minimum number of edges.
If G is 3-edge-connected, we obtain a contradiction with Theorem 16 and Lemma 17.

Thus, we may assume that G has a 2-edge-cut X = {e1, e2}. Viewing G as (G, 1), we
may use the 2-edge-cut reduction with respect to X defined in Section 3. By Lemma 10,
the resulting graphs G1 and G2 are flow-admissible. Moreover, they are both smaller than
G, and therefore they admit a nowhere-zero 6-flow such that we can choose the flow value
on one edge.

If f /∈ X, then we first choose the requisite flow for Gi which contains f , and then we
choose the flow for G3−i in such a way that the flow values on f1 and f2 coincide (recall
that fi ∈ E(Gi) − E(G), for i ∈ {1, 2}). If f ∈ X, then we choose the flow on Gi in
such a way that fi receives the flow value t, for each i ∈ {1, 2}. By Lemma 11, G has the
required nowhere-zero 6-flow, which is a contradiction.

Theorem 19. Let (G, σ) be a flow-admissible signed cubic graph with two negative edges.
If (G, σ) contains a bridge, then (G, σ) admits a nowhere-zero 6-flow (τ, φ) with the flow
value 1 on the negative edges.

Proof. Let n1 and n2 be the two negative edges of (G, σ). Since (G, σ) is flow-admissible,
it follows that all bridges are positive edges according to Lemma 2.

We will prove the statement by induction on the order of the graph. If |V (G)| = 2,
then (G, σ) is the graph with one positive edge and a negative loop on each vertex. We will
call this graph the dumbbell graph. Clearly, (G, σ) has the desired nowhere-zero 6-flow;
indeed it has a nowhere-zero 3-flow.

Let B = {b1, . . . , bl} be the set of bridges of (G, σ), where l > 1, and let (Gi, σi) be
the l + 1 bridgeless components of (G − B, σ|G−B), for i ∈ {1, . . . , l + 1}. Since (G, σ)
is flow-admissible, each bridge must belong to a barbell with the property that each of
the negative edges belongs to one of the unbalanced circuits of the barbell. It follows
that b1, . . . , bl lie on a path, and that the two negative edges are contained in different
end-components, say n1 ∈ E(G1) and n2 ∈ E(Gl+1).

We claim that l = 1. Suppose to the contrary that l > 2. Let b1 = x1x2 and bl = xlxl+1,
where xi ∈ E(Gi). Reduce (G, σ) to two smaller graphs (H1, σH1) and (H2, σH2), where
(H1, σH1) is obtained from (G1, σ1) and (Gl, σl) by adding a positive edge x1xl+1, and
(H2, σH2) is the all-positive graph obtained from (G, σ) by removing V (G1) and V (Gl+1)
and adding a positive edge x2xl. By induction hypothesis, (H1, σH1) has a nowhere-zero
6-flow with the flow value 1 on the negative edges. Hence, x1xl+1 has the flow value 2.
By Theorem 6 and Corollary 18, (H2, σH2) has a nowhere-zero 6-flow with the flow value
2 on x2xl. According to Observation 4, the directions of x1xl+1 and x2xl can be chosen
appropriately so that these two nowhere-zero 6-flows combine to the desired nowhere-zero
6-flow on (G, σ).

Now let b = x1x2 be the only bridge of (G, σ) and let yi, zi ∈ V (Gi) be the neighbors
of xi in (Gi, σi) for i ∈ {1, 2}. It follows that either yi 6= zi, or yi = zi = xi. In the latter
case (Gi, σi) consists of one vertex with a negative loop. We say that (Gi, σi) is a negative
loop.
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Suppose first that neither (G1, σ1) nor (G2, σ2) is a negative loop. Reduce (G, σ) to
two graphs (H1, σH1) and (H2, σH2), where (Hi, σHi

) is obtained from (G, σ) by replacing
(Gi, σi) by a negative loop, for i ∈ {1, 2}. Now the result follows easily by induction and
a suitable combination of flows on (Hi, σHi

).
Now assume that one component is a negative loop, say (G2, σ2). The case when

(G1, σ1) is also a negative loop, is discussed above, hence we may assume that (G1, σ1) is
not a negative loop. We are going to define a nowhere-zero 6-flow on (G, σ) directly.

Let n1 = u1v1, and let G∗1 be the underlying graph obtained from the signed graph
(G1, σ1) by removing n1 and connecting u1, v1 and x1 to a new vertex w. We claim that
G∗1 is 3-edge-connected. It is easy to see that G∗1 is cubic, connected and that it does not
have a bridge, because it is obtained from a 2-edge-connected graph (G1, σ1) where the
deleted edge n1 is replaced by a path u1wv1. Suppose to the contrary that X ⊆ E(G∗1) is
a 2-edge-cut of G∗1. If u1, v1 and x1 belong to one component of G∗1−X, then X is a non-
separating 2-edge-cut of (G, σ). We may apply the 2-edge-cut reduction on (G, σ) with
respect to X, and use induction hypothesis and Corollary 18 to obtain a contradiction.
Therefore, there is one component of G∗1 − X containing exactly one of u1, v1 and x1.
But then X must contain exactly one edge incident to w, otherwise G∗1 contains a bridge.
Thus, G∗1 −w = G1 − n1 contains a bridge. This is possible if and only if n1 belongs to a
2-edge-cut of (G1, σ1), which is a non-separating 2-edge-cut of (G, σ), because it contains
n1. Similarly as above, we may use the 2-edge-cut reduction to obtain a contradiction.
We conclude that G∗1 is indeed 3-edge-connected.

By Theorem 16 and by Lemma 17, G∗1 admits a nowhere-zero 6-flow (τ ∗1 , φ
∗
1) such that

δ+(w) = {u1w, v1w}, δ−(w) = {x1w}, and φ∗1(u1w) = φ∗1(v1w) = 1, and φ∗1(x1w) = 2.
Let τ be an orientation of (G, σ) defined as follows: n1 is extroverted, n2 is introverted,
b1 ∈ δ+(x1), and τ(e) = τ ∗1 (e) for every edge e ∈ E(G) ∩ E(G∗1). Let φ be an assignment
of integer values to the oriented edges of (G, σ) defined as follows: φ(n1) = φ(n2) = 1,
φ(b1) = 2, and φ(e) = φ∗1(e), for every edge e ∈ E(G)∩E(G∗1). Then (τ, φ) is the required
nowhere-zero 6-flow of (G, σ).

Using the previous theorem, we are able to prove Theorem 6 as follows. Consider a
2-edge-connected graph G, and an arbitrary edge e = uv ∈ E(G). To obtain G′ from
G, remove e and add new edges uu′, vv′, lu′ and lv′ , where u′ and v′ are new vertices,
and lu′ and lv′ are loops incident with u′ and v′, respectively. Let σ′ be a signature on
G′ such that σ′(lu′) = σ′(lv′) = −1 and σ′(e) = 1, for every other edge e of E(G′). By
Theorem 19, (G′, σ′) admits an all-positive 6-flow with the flow value 1 on lu′ and lv′ , and
therefore, the flow value 2 on uu′ and vv′. It is easy to see that G admits a nowhere-zero
6-flow with the flow value 2 on e.

Note that Theorem 19 and Theorem 6 are not equivalent, because a stronger statement,
namely Theorem 16, is used in the proof of the former one.

In the following we focus on (G, σ) where G is 3-edge-colorable or a critical snark.
Recall that a snark G is critical if G− e admits a nowhere-zero 4-flow for every edge e.

Lemma 20. Let G be a cubic graph and e1, e2 ∈ E(G). If G is 3-edge-colorable, then
(G, 1) has a nowhere-zero 4-flow (τ, φ) such that φ(e) > 0 for every e ∈ E(G), and
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φ(e1) = φ(e2) = 1.

Proof. Let c : E(G) → {c1, c2, c3} be a 3-edge-coloring, and let c(e1) = c1 and c(e2) ∈
{c1, c2}. Let τ be an orientation of G, and let (τ, φ1) be a nowhere-zero 2-flow on c−1(c1)∪
c−1(c2) such that φ1(e2) = 1 and (τ, φ2) be a nowhere-zero 2-flow on c−1(c2)∪ c−1(c3) such
that φ2(e2) = 1 if c(e2) = c2.

In both cases for c(e2), φ is defined as 2 ·φ2−φ1. The desired flow on (G, σ) is obtained
from (τ, φ) by reversing the direction and the value of each edge with negative value.

Theorem 21. Let (G, σ) be a flow-admissible signed cubic graph with Nσ = {n1, n2}. If
G is 3-edge-colorable or a critical snark, then (G, σ) has a nowhere-zero 6-flow (τ, φ) such
that φ(n1) = φ(n2) = 1.

Proof. Suppose to the contrary that the statement is not true, and let (G, σ) be a minimal
counterexample. By Lemma 2, (G, σ) has no negative bridge. By Lemma 7 and Theo-
rem 6, (G, σ) has no 2-edge-cut containing both negative edges. If (G, σ) has a 2-edge-cut
containing exactly one negative edge, then deduce a contradiction with application of the
2-edge-cut reduction and Corollary 18. In what follows we may assume that both edges
of any 2-edge-cut are positive. Let n1 = u1v1 and n2 = u2v2.

Case 1: G is 3-edge-colorable. By Lemma 20, there is a nowhere-zero 4-flow (τ ′, φ′)
on (G, 1) such that φ′(n1) = φ′(n2) = 1, and φ′(e) > 0, for every e ∈ E(G).

Suppose, without loss of generality, that n1 ∈ δ+(u1) and n2 ∈ δ+(u2) in τ ′. Since
φ′(n1) = 1, there is another edge f = u1v ∈ δ+(u1). It follows from Lemma 3, that there is
a directed v-v2-path of (G, 1), which together with the edge f forms a directed u1-v2-path
P of (G, 1). We claim that n1 6∈ E(P ). Otherwise either n1 is a bridge, or n1 belongs to
a 2-edge-cut, a contradiction.

If n2 6∈ E(P ), then to obtain τ from τ ′ reverse the direction of hn1
u1

and hn2
v2

. Let
φ(e) = φ′(e) + 2 if e ∈ E(P ), and φ(e) = φ′(e) otherwise. Then (τ, φ) is the desired
nowhere-zero 6-flow on (G, σ).

Suppose now that n2 ∈ E(P ), for every directed u1-v2-path P of (G, 1) with n1 /∈ P .
Consider any edge-cut X that contains n2 and separates u1 and v2. Let X divide V (G)
into two subsets U and W , where u1 ∈ U and v2 ∈ W . By Kirchhoff’s law, the total
outflow from U is 0. Since φ′(n2) = 1 and n2 does not belong to any 2-edge-cut, there
must be another edge of X oriented from U to W under τ ′. This is possible if and only if
n1 ∈ X, since every directed u1-v2-path P of (G, 1) with n1 /∈ P contains n2. Thus, there
are two edges oriented from U to V and they both carry the flow value 1. Therefore,
there are at most two edges oriented from V to U , and 3 6 |X| 6 4. By Corollary 9,
|X| = 4, and thus, the two edges oriented from V to U carry the flow value 1, according
to Kirchhoff’s law. Let f ′ = u3v3 ∈ X −Nσ be one of them and suppose that f ′ ∈ δ+(v3)
in τ ′. Let P ′ = P1 ∪ f ′ ∪ P2, where P1 is a directed u1-u3-path such that E(P1) ∩Nσ = ∅
and P2 is a directed v3-v2-path such that E(P2) ∩ Nσ = ∅. Note that P1 and P2 may be
trivial, but they always exist due to Kirchhoff’s law. Similarly as in the case above, we
define a nowhere-zero 6-flow (τ, φ) on (G, σ). Note that f ′ ∈ δ+(u3) in τ and φ(f ′) = 1.

Case 2: G is a critical snark. Hence, (G, 1)− n1 admits a nowhere-zero 4-flow (τ ′, φ′),
and by Lemma 20, we may assume that φ′(n2) = 1, n2 ∈ δ+(u2), and φ′(e) > 0 for
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every e ∈ E(G). Consider a directed u1-v2-path P1 and a directed v1-v2-path P2 in
(G − n1, 1). Since φ′(n2) = 1 and n2 does not belong to any 2-edge-cut, we may assume
that n2 /∈ E(P1)∪E(P2). Note that P1 and P2 are not edge-disjoint, because they share an
edge whose end-vertex is v2. Obtain an orientation τ of (G, σ) by letting n1 be extroverted,
reversing the direction of hn2

v2
, and τ(h) = τ ′(h) for every other half-edge h of (G, σ). Let

φ′′(e) = φ′(e) + 1 if e ∈ E(P1), φ
′′(n1) = 1, and φ′′(e) = φ′(e) if e 6∈ E(P1) ∪ {n1}. The

desired nowhere-zero 6-flow on (G, σ) is (τ, φ) with φ(e) = φ′′(e) + 1 if e ∈ E(P2), and
φ(e) = φ′′(e) otherwise.

6 General case

In this section we prove the bound 7 for all flow-admissible signed graphs with two negative
edges, and the bound 6 if the Tutte’s conjecture is true.

Theorem 22. Let (G, σ) be a flow-admissible signed cubic graph with two negative edges
n1 = u1v1 and n2 = u2v2. Let G∗ = (V (G), E(G)∪ {n} − {n1, n2}) be an unsigned graph,
where n = u1u2 /∈ E(G). If G∗ admits a nowhere-zero k-flow for some integer k > 2 such
that n receives the flow value 1, then (G, σ) admits a nowhere-zero (k+1)-flow (τ, φ) with
the following properties:

1. φ(e) > 0, for every e ∈ E(G),

2. φ(n1) = φ(n2) = 1, and

3. there exists a v1-v2-path P such that φ−1(k) ⊆ E(P ) and φ−1(1) ∩ E(P ) = ∅.

Proof. Let (τ ∗, φ∗) be a nowhere-zero k-flow of G∗ with φ∗(e) > 0 for every e ∈ E(G∗),
φ∗(n) = 1 and n ∈ δ+(u1). By Lemma 3, there is a directed v2-v1-path in G∗. We claim
that there is a directed v2-v1-path P in G∗ − {n}. If not, then all directed paths from
v2 contain n. Since φ∗(n) = 1, it follows that there is an edge f such that {n, f} is
a 2-edge-cut of G∗ which separates the two sets {v1, u2} and {u1, v2}. Note that none
of the negative edges is a bridge, otherwise the signed graph (G, σ) would not be flow-
admissible. Moreover, the negative edges do not belong to any 2-edge-cut by Lemma 7.
Hence, {n1, n2, f} is a 3-edge-cut of (G, σ) that contains two negative edges, contradicting
Lemma 8, since (G, σ) is flow-admissible. Thus, there is a directed v2-v1-path P in
G∗ − {n}.

We define (τ, φ) on (G, σ) as follows. For e ∈ E(G) ∩ E(G∗) we set τ(e) = τ ∗(e).
Let n2 be extroverted and n1 be introverted, and let φ(n2) = φ(n1) = 1. If e /∈ P , then
φ(e) = φ∗(e), and if e ∈ P , then φ(e) = φ∗(e) + 1. It is easy to see that (τ, φ) is the
required nowhere-zero (k + 1)-flow.

The previous theorem combined with the following observation provides several inter-
esting corollaries.
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Observation 23. Let (G, σ) be a flow-admissible signed cubic graph with two negative
edges n1 = u1v1 and n2 = u2v2. Let G∗ = (V (G), E(G) ∪ {n} − {n1, n2}) be an unsigned
graph, where n = u1u2 /∈ E(G). If no 2-edge-cut of (G, σ) contains a negative edge, then
G∗ is flow-admissible.

Proof. Suppose to the contrary that G∗ is not flow-admissible. Then G∗ contains a bridge
b. If b = n, then either (G, σ) has two components, each containing a negative edge, or
{n1, n2} is a 2-edge-cut of (G, σ). In the first case (G, σ) is not flow-admissible, and in
the second case there is a 2-edge-cut of (G, σ) containing a negative edge, a contradiction.
If b 6= n, then u1 and u2 belong to the same component H of G∗ − b. If v1 and v2
both belong to H, then b is a bridge of (G, σ) with an all-positive signed graph on one
side, contradicting the flow-admissibility of (G, σ) due to Lemma 2. If neither v1 nor v2
belongs to H, then {n1, n2, b} is a 3-edge-cut containing two negative edges, contradicting
the flow-admissibility of (G, σ) due to Corollary 9. Suppose, finally, that one of v1 and v2,
say v1, belongs to H. Then {n2, b} is a 2-edge-cut of (G, σ) containing a negative edge, a
contradiction.

Theorem 24. If (G, σ) is a flow-admissible signed cubic graph with Nσ = {n1, n2}, then
(G, σ) has a nowhere-zero 7-flow (τ, φ) such that φ(n1) = φ(n2) = 1, and all edges with
the flow value 6 lie on a single path.

Proof. Suppose the contrary, and let (G, σ) be a minimal counterexample. By Theo-
rem 19, we may assume that (G, σ) is bridgeless. By Lemma 7 and Theorem 6, Nσ does
not form a 2-edge-cut. Suppose that there is a 2-edge-cut X containing one positive
and one negative edge. Let (G1, σ1) and (G2, 1) be the resulting graphs of the 2-edge-
cut reduction of (G, σ) with respect to X (see Section 3 for notation). By Lemma 10,
(G1, σ1) and (G2, 1) are flow-admissible. Furthermore, (G1, σ1) has two negative edges
and is smaller than (G, σ). Therefore, (G1, σ1) admits a nowhere-zero 7-flow (τ1, φ1) with
the required properties. We may assume that φ1(e) > 0, for every e ∈ E(G1). Note,
that the added edge f1 of (G1, σ1) is negative and therefore, φ1(f1) = 1. By Corollary 18,
there is nowhere-zero 6-flow (τ2, φ2) on (G2, 1) with φ2(f2) = φ1(f1). By Lemma 11, we
can combine (τ1, φ1) and (τ2, φ2) to define the desired nowhere-zero 7-flow on (G, σ), a
contradiction.

Finally, we may assume that every 2-edge-cut of (G, σ) contains only positive edges.
Let n1 = u1v1, n2 = u2v2 and let G∗ = (V (G), E(G) ∪ {n} − {n1, n2}) be an unsigned
graph obtained from (G, σ), where n = u1u2 /∈ E(G). By Observation 23, G∗ is flow-
admissible, and by Theorem 6 and Corollary 18, G∗ admits a nowhere-zero 6-flow with
the flow value 1 on n. We obtain a contradiction by applying Theorem 22.

We will relate Tutte’s 5-flow conjecture and Bouchet’s 6-flow conjecture for signed
graphs with two negative edges. For this we will need the following lemma.

Lemma 25. Let G be a cubic graph, f ∈ E(G) and t ∈ {1, . . . , 4}. If G has a nowhere-
zero Z5-flow, then for every possible direction of f , G has a nowhere-zero 5-flow (τ, φ)
with φ(f) = t, and φ(e) > 0 for each e ∈ E(G).
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Proof. By Observation 4, we only need to prove the statement for different values of t
irrespective of the direction of f . Let (τ, φ) be a nowhere-zero Z5-flow on G. If t ∈ {1, 4},
then we may assume that φ(f) = 1, otherwise we will consider (τ, c · φ), for c · φ(f) = 1
( mod 5). If t ∈ {2, 3}, then we may assume that φ(f) = 2, otherwise we will consider
(τ, c · φ), for c · φ(f) = 2 ( mod 5).

Let f1 and f2 be edges of G adjacent to f and incident with a common vertex v. We
may assume that δ+(v) = {f, f1} and δ−(v) = f2, since otherwise we revert the edge and
the flow value on it. If none of φ(f), φ(f1), φ(f2) is 1, then φ(f) = φ(f1) = 2 and φ(f2) = 4.
Let C be a directed circuit containing edges f1 and f2, which exists by Lemma 3. For the
edges of C revert their orientation and replace their value φ(e) by 5 − φ(e) to obtain a
new flow. Now, the flow value of f2 equals 1. Apply Lemma 17 to obtain a nowhere-zero
5-flow (τ1, φ1) with φ1(f) = φ(f). If φ1(f) 6= t, then repeat the trick with a directed
circuit C for f to obtain the correct value on f . Finally, the required flow is obtained by
reversing the orientations and values of edges with the negative flow value.

Theorem 26. If Tutte’s 5-flow conjecture holds true, then Bouchet’s conjecture holds true
for all signed graphs with two negative edges. Moreover, for any bridgeless signed graph
(G, σ) with Nσ = {n1, n2}, there is a nowhere-zero 6-flow (τ, φ) with φ(e) > 0 for every
e ∈ E(G) such that φ(n1) = φ(n2) = 1, and there is a path P such that φ−1(5) ⊆ E(P )
and φ−1(1) ∩ E(P ) = ∅.

Proof. Suppose the contrary, and let (G, σ) be a minimal signed graph with two negative
edges, for which the theorem does not hold. By Theorem 19, (G, σ) is bridgeless. Let X
be a 2-edge-cut of (G, σ). If X = Nσ, then (G, σ) has a nowhere-zero 5-flow by Lemma 7
and by the assumption, a contradiction.

Suppose that |X ∩Nσ| = 1. Let (G1, σ1) and (G2, 1) be the resulting graphs of the 2-
edge-cut reduction of (G, σ) with respect to X (see Section 3 for notation). By Lemma 10,
(G1, σ1) and (G2, 1) are flow-admissible. Since (G1, σ1) is smaller than (G, σ), it admits
a nowhere-zero 6-flow (τ1, φ1) with the required properties. In particular, φ1(f1) = 1. By
the assumption and by Lemma 25, there is a nowhere-zero 5-flow (τ2, φ2) on (G2, σ2) with
φ2(f2) = 1. By Observation 4 and by Lemma 11, we obtain a contradiction.

Finally, we may assume that |X∩Nσ| = 0 or that G is 3-edge-connected. Let ni = uivi,
for i ∈ {1, 2}, and let G∗ = (V (G), E(G)∪{n}−{n1, n2}) be an unsigned graph such that
n = u1u2 /∈ E(G). By Observation 23, G∗ is bridgeless and therefore, it has a nowhere-
zero 5-flow (τ, φ). By Lemma 25, we may assume that φ(n) = 1. Now, the result follows
from Theorem 22.

A graph G is cyclically k-edge-connected if there exists no edge-cut X with less than
k edges such that G−X has two components that contain a circuit. The oddness ω(G)
of a cubic graph G is the minimum number of odd circuits of any 2-factor of G. In
[15] it is proved that if the cyclic connectivity of a cubic graph G is at least 5

2
ω(G) − 3,

then F (G, 1) 6 5. Clearly, if G′ is obtained from G by subdividing an edge, then G
is cyclically k-edge-connected if and only if G′ cyclically k-edge-connected. Hence, the
following corollary follows from Lemma 25 and Theorem 22.
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Corollary 27. Let (G, σ) be a flow-admissible signed cubic graph with with two negative
edges n1 = u1v1 and n2 = u2v2. Let G∗ = (V (G), E(G) ∪ {n} − {n1, n2}), where n =
u1v1 /∈ E(G). If G∗ is cyclically k-edge-connected and k > 5

2
ω(G′)− 3, then F (G, σ) 6 6.
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