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Abstract

The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and A. Yong
(2009) for minuscule varieties has been extended in two orthogonal directions, either
enriching the cohomology theory or else expanding the family of varieties considered.
In one direction, A. Buch and M. Samuel (2016) developed a combinatorial theory of
‘unique rectification targets’ in minuscule posets to extend the Thomas-Yong rule
from ordinary cohomology to K-theory. Separately, P.-E. Chaput and N. Perrin
(2012) used the combinatorics of R. Proctor’s ‘d-complete posets’ to extend the
Thomas-Yong rule from minuscule varieties to a broader class of Kac-Moody struc-
ture constants. We begin to address the unification of these theories. Our main
result is the existence of unique rectification targets in a large class of d-complete
posets. From this result, we obtain conjectural positive combinatorial formulas for
certain K-theoretic Schubert structure constants in the Kac-Moody setting.

Mathematics Subject Classifications: 05E15, 06A07, 14M15

1 Introduction

The 1970s saw a major advance in the combinatorial approach to enumerative geometry
when M.-P. Schützenberger proved the Littlewood-Richardson rule for describing the co-
homology rings of Grassmannians. Since then, the modern Schubert calculus has turned
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to extending this understanding in two different directions: on the one hand to replace
the Grassmannian with a more complicated homogeneous space, and on the other hand
to replace ordinary cohomology with a richer generalized cohomology theory. Along these
lines, the goal of this paper is to begin unraveling the K-theoretic Schubert calculus of
Kac-Moody homogeneous spaces. Our results are purely combinatorial in nature, but al-
low us to conjecture explicit Littlewood-Richardson-style rules in this geometric context.

Let G be a complex Kac-Moody group with Borel and opposite Borel subgroups B+

and B−, respectively. Let B+ ⊆ P ⊂ G be a parabolic subgroup. The homogeneous space
X = G/P is a Kac-Moody flag variety. The Zariski closures of the B−-orbits are the
Schubert varieties {Xw}w∈WP and give a cell decomposition of X; here, W P denotes the
set of minimal-length representatives of the quotient W/WP , where W is the Weyl group
of G and WP is the parabolic Weyl group for P . The cohomology ring H?(G/P ) thereby
has a distinguished Schubert basis {σw}w∈WP , where σw is Poincaré dual to Xw. Thus,
to determine multiplication in H?(X), it suffices to determine the Schubert structure
constants cwu,v defined by

σu · σv =
∑
w∈WP

cwu,vσw. (1.1)

In the case thatX = Grk(Cn) is a Grassmannian, the parameter space of k-dimensional
linear subspaces of Cn, this problem is solved in a positive combinatorial manner by any
of the various Littlewood-Richardson rules (e.g., [LR34, Sch77, Vak06]). For a general
Kac-Moody flag variety X, these cwu,v are also non-negative integers, but it is generally a
major open problem to give an analogous Littlewood-Richardson-style rule to determine
them.

For X = Grk(Cn), M.-P. Schützenberger’s Littlewood-Richardson rule is stated in
terms of the jeu de taquin for standard Young tableaux [Sch77] fitting inside a k× (n−k)
rectangle. One may realize this rectangle as a subposet of positive roots for GLn(C) in
such a way that the inversion set of w ∈ W P is an order ideal in this subposet. One may
further realize standard Young tableaux as linear extensions of intervals in this poset.
Using this perspective, H. Thomas and A. Yong [TY09a] gave a uniform extension of
Schützenberger’s rule to compute all cohomological Schubert structure constants for the
larger family of minuscule varieties. This was further extended by P.-E. Chaput and
N. Perrin [CP12] to a positive combinatorial formula for computing certain Λ-minuscule
Schubert structure constants for general Kac-Moody X. In the Chaput-Perrin rule, the
role of the k×(n−k) rectangle is played by the d-complete posets introduced by R. Proctor
[Pro99a, Pro99b]; d-complete posets are exactly those posets encoding the containment
relations among Λ-minuscule Schubert varieties.

Much work in the modern Schubert calculus has been devoted to studying homoge-
neous spaces through richer cohomology theories. In these theories, there are Schubert
bases analogous to the cohomological σw and the structure constants defined analogously
to Equation (1.1) enjoy various positivity properties. Hence, it makes sense to attempt to
develop positive combinatorial formulas for these structure constants in the style of the
classical Littlewood-Richardson rules. In the Grassmannian case, one has, for example:
the equivariant cohomology rule of A. Knutson and T. Tao [KT03], the K-theory rule
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of A. Buch [Buc02]; the equivariant K-theory rule of O. Pechenik and A. Yong [PY17a];
the quantum cohomology rule of A. Buch, A. Kresch, K. Purbhoo, and H. Tamvakis
[BKPT16]; and the equivariant quantum cohomology rule of A. Buch [Buc15]. Our in-
terest is in the ordinary K-theory ring K(X) of the Kac-Moody flag variety X, where
the K-theoretic Schubert classes {[OXw ]}w∈WP are represented by the structure sheaves
of the Schubert varieties. Specifically, we are interested in the structure constants Kw

u,v of
K(X) defined by

[OXu ] · [OXv ] =
∑
w∈WP

Kw
u,v[OXw ]. (1.2)

For Grassmannians, various alternatives to Buch’s original rule [Buc02] for Kw
u,v are

now known [Vak06, TY09b, PY17b]. However, only the rule of H. Thomas and A. Yong
[TY09b] is currently known to extend to all of the minuscule varieties [BR12, CTY14,
BS16]. This rule is based on a jeu de taquin theory for increasing tableaux. This combi-
natorial theory displays several additional subtleties when compared to Schützenberger’s
jeu de taquin for standard tableaux. In particular, a key ingredient is the need to identify
increasing tableaux with the unique rectification target property. (These combinatorial
notions are reviewed in Section 2.)

In [TY09b, Problem 9.1] and [BS16, Remark 3.24], the authors ask to what extent their
combinatorial theory extends to the case of d-complete posets. The missing ingredient is
that it is not currently known whether general d-complete posets have “enough” unique
rectification targets. We conjecture, however, that they do.

Conjecture 1. Let P be a d-complete poset and let λ ⊆ P be an order ideal. Then there
is an (explicitly-defined) unique rectification target supported on λ.

We initiate a study of the existence and structure of unique rectification targets in
the d-complete posets. As shown by R. Proctor [Pro99a], every d-complete poset can be
constructed by gluing together (in prescribed ways) certain irreducible d-complete posets.
These irreducible pieces are classified in [Pro99a] and include all of the minuscule posets
(i.e., the posets describing the Schubert stratification of minuscule varieties). The informal
version of our main result is the following special case of Conjecture 1.

Theorem 2. Conjecture 1 holds in the case that P is built from minuscule posets.

For an example of such a poset covered by Theorem 2, see Figure 1. The precise
formulation of Theorem 2 appears as Corollary 54. We also demonstrate the extent to
which Conjecture 1 is sensitive to the poset P being d-complete. We establish general
results on the failure of Conjecture 1 to extend to posets that are slight deformations of
d-complete posets.

For any P satisfying Conjecture 1, one obtains (as in [BS16, §3.5]) a corresponding
combinatorially-defined associative commutative unital algebra K(P) with a basis {λ}
indexed by order ideals of P . The structure constants tνλ,µ of K(P) are defined in such
a way as to transparently alternate in degree. (This construction is discussed in Sec-
tion 6.) For w ∈ W P Λ-minuscule, the interval [id, w] in Bruhat order is isomorphic to
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Figure 1: The Hasse diagram of a representative d-complete poset P that is “built from
minuscule posets” in the sense of Theorem 2. In P , every order ideal λ ⊆ P has a unique
rectification target, provided by Theorem 2.

the poset of order ideals of a certain d-complete poset Pw constructed from w. Building
on Conjecture 1, we propose the following.

Conjecture 3. Let X = G/P be a Kac-Moody flag variety and let m ∈ W P be Λ-
minuscule. Then, for u, v, w 6 m in Bruhat order, we have the equality of structure
constants

Kw
u,v = tνλ,µ,

between the rings K(X) and K(Pm), where the order ideals λ, µ, ν ⊆ Pm correspond to
the the Weyl group elements u, v, w ∈ W P , respectively.

Remark 4. The reader familiar with [CP12] might be surprised that Conjecture 3 is
stated only for m Λ-minuscule, instead of also for m Λ-cominuscule. In fact, we expect
the Λ-cominuscule case to be significantly harder. Even in the finite-dimensional La-
grangian Grassmannian (the unique cominuscule flag variety that is not also minuscule),
no Littlewood-Richardson-type rule is known in K-theory, even conjecturally. For fur-
ther discussion of Lagrangian K-theory, see the Pieri rule of A. Buch and V. Ravikumar
[BR12] and some qualitative conjectures of O. Pechenik and A. Yong [PY17b].
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In Section 6, we give the precise versions of Conjecture 1 and Theorem 2, as well as
the details necessary for a precise understanding of Conjecture 3. In light of Conjecture 3,
Theorem 2 should be understood as giving a conjectural positive combinatorial rule for
certain K-theoretic Schubert structure constants of Kac-Moody flag varieties. Several
cases of Conjecture 3 are known to be true or have been previously conjectured. If the
flag variety X is minuscule, then Conjecture 3 reduces to the main theorem of [BS16]. If,
on the other hand, X is general but |ν|−|λ|−|µ| = 0, then Conjecture 3 reduces to [CP12,
Conjecture 1.1], many cases of which are proved in [CP12, Theorem 1.3]. Assuming one
followed the general structure utilized by [CP12, BS16], the main ingredients one would
need in a proof of Conjecture 3 are

(1.) a proof of the remaining cases of Conjecture 1 and

(2.) ad hoc geometric verifications of Conjecture 3 for special u lying in a generating set
of classes.

For a large class of such Schubert problems, Theorem 2 provides the necessary first ingre-
dient, so it only remains to establish the second in those cases.

Another potential application of Theorem 2 (or more generally Conjecture 1) is to
establishing plane partition identities. In [HPPW16], the authors use the existence of
unique rectification targets in minuscule posets to give bijective proofs of the equinu-
merosity of various classes of plane partitions, in particular resolving a 1983 question of
R. Proctor [Pro83]. The main technology of [HPPW16] applies equally to any d-complete
poset satisfying Conjecture 1; hence, we expect Theorem 2 to yield analogous identities.
Further discussion may appear elsewhere.

This paper is organized as follows. In Section 2, we fix notation for posets and de-
scribe the Thomas-Yong theory of jeu de taquin for increasing tableaux. We then recall
the definition of unique rectification targets (URTs). Section 3 studies the behavior of
URTs when two posets are combined via Proctor’s slant sum operation. Section 4 builds
on Section 3 by introducing the notion of a p-chain URT, a stronger version of a URT that
we will later need. Section 5 establishes the necessary technical fact that all increasing
tableaux of straight shape in a double-tailed diamond poset are p-chain URTs. In Sec-
tion 6, we first recall background on d-complete posets. We also recall needed notions to
make Conjectures 1 and 3 precise. We then apply the results from Section 4 and Section
5 to the study of d-complete posets and prove Theorem 2, our main result.

2 Posets, skew shapes, and rectifications

All posets in this paper will be finite, nonempty, and connected. These assumptions are
made for convenience and clarity only; many of our results do not fundamentally rely
on these properties, although the statements and proofs become messier without them.
Moreover, the original definition of d-complete posets (which we follow in this paper)
requires finiteness. Although there is now a more general notion of infinite d-complete
posets (see the “Added Notes” at the very end of [PS17] for discussion), we will not
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explicitly consider such objects. In this section, P will denote an otherwise arbitrary
poset.

We begin by fixing necessary terminology regarding posets. For x, y ∈ P , we say that
z covers x (written x l z), if x < z and there does not exist a y ∈ P with x < y < z.
Let x, y ∈ P . If x < y, we say that x is an ancestor of y and that y is a descendant of
x. If x l y, we say that x is a parent of y and that y is a child of x. Adding “weak”
to any of these terms also allows for equality, e.g. x is a weak descendant of y if x > y.
We denote the minimum element (if it exists) of the poset P by 0̂P . We say a poset P
has a 0̂P to mean that it has a minimum, which is 0̂P .

We often visualize posets using Hasse diagrams, where each element is represented by
a circle, and al b if there is a line that goes up from a to b.

Example 5. Let Q be the poset on the elements

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

of Z2 under the natural order (a, b) 6 (c, d) if both a 6 c and b 6 d. As a Hasse diagram,
we have

Q =

We will use this Q as a running example throughout this section.

A shape ν of P is any subset of P . The shape ν has a natural poset structure given
by restricting that of P . A shape ν of P is called an order ideal of P if it is closed
downwards, i.e. if y ∈ ν and x < y together imply x ∈ ν. Similarly, an order filter of P
is a subset that is closed upwards. For historical reasons, we will also refer to the order
ideals of P as straight shapes.

Example 6. The following are all the straight shapes of the poset Q from Example 5. For
greater visual context, we represent elements not in the straight shape with solid black
circles.

If λ ⊆ ν are straight shapes of P , then the shape ν \ λ is called a skew shape of P
and is denoted ν/λ. Note that every straight shape λ can also be realized as the skew
shape λ/∅.
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An element x ∈ λ is called an inner corner of the skew shape ν/λ if x is maximal in
λ. We write IC(ν/λ) to denote the set of inner corners of ν/λ.

Clearly, we have the following.

Lemma 7. Let ν/λ be a skew shape of the poset P. If c ∈ IC(ν/λ) and b < c, then
b /∈ IC(ν/λ).

For a skew shape ν/λ of P , a function T : ν/λ → Z>0 is called a skew increasing
P-tableau of shape ν/λ if T is a strictly order preserving map, i.e. if x < y implies
T (x) < T (y). If, in addition, T is a bijection onto an initial segment of Z>0, we say T is a
skew standard P-tableau. In both cases, if ν/λ is a straight shape, we drop the word
“skew.”

We depict a skew increasing P-tableau T using Hasse diagrams with labels. For an
element x ∈ P , we put the value of T (x) in the circle of the Hasse diagram corresponding
to x. Also, to make clear what the ambient poset is we represent skewed out elements
(the elements in λ) with unlabeled hollow circles.

Example 8. If P is the numbers 1, 2, 3, 4 with the usual order and ν/λ = P and T (x) =
x+ 5, then T can be visualized as

6

7

8

9

Example 9. The following is an example of a skew increasing Q-tableau T of shape ν/λ

ν = , λ = , T =

1

2

3

4 4

.

For a skew shape ν/λ of P , we say a function T : ν/λ→ Z>0 ∪ {•} is a skew dotted
increasing P-tableau of shape ν/λ if there is a rational number q such that T becomes
a strictly order preserving map (ν/λ→ Q) when we replace each • with that fixed q.

Example 10. The following is a skew dotted increasing Q-tableau

1

•
2

•
3 2

and the following is not (because one cannot replace the • with one fixed q and make it
an order preserving map)

1

•
3

3

• 4
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Definition 11. Let T be a skew increasing P-tableau of shape ν/λ. If γ is a nonempty
set of inner (or outer) corners of ν/λ, then AddDotsγ(T ) is the skew dotting increasing
P-tableau S of shape ν/λ ∪ γ defined by

S(x) =

{
T (x), if x ∈ ν/λ;

•, if x ∈ γ.

Example 12. For

T =

31 2

let γ be the set of blue shaded inner corners. Then, we have

AddDotsγ(T ) =

•
3

•
1 2

Definition 13. Let T be a skew dotted increasing P-tableau. For n ∈ Z>0, Swap•,n(T )
is the skew dotted increasing P-tableau S defined by

S(x) =


n, if T (x) = • and T (y) = n for some y l x;

•, if T (x) = n and T (y) = • for some y m x;

T (x), otherwise.

Example 14. We have

Swap•,1

 •
3

•
1 2

 = •
3

1

• 2

Swap•,2

 1

2

•
2 2

 = 1

2

2

• •

Swap•,1

 •
2

•
1 1

 = 1

2

1

• •

Swap•,1

 •
1

•
1 1

 = 1

•

1

• •

Swap•,1

 •
3

1

2 3
 = •

3

1

2 3

Swap•,1

 •
2

•
2 1

 = 1

2

1

2 •

Definition 15. Let T be a skew dotted increasing P-tableau. Let Q be the subset of P
which T maps to an integer, i.e.

Q = {x : T (x) ∈ Z>0}.

Then, we define RemoveDots(T ) = T |Q.
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Example 16. For example,

RemoveDots


1

2

•

2

• •
 =

1

22
.

Definition 17. Let T be a skew increasing P-tableau of shape ν/λ and let γ ⊆ IC(ν/λ).
Let n = max(Range(T )). The slide of γ in T is the skew increasing P-tableau

Slideγ(T ) = RemoveDots ◦ Swap•,n ◦ · · · ◦ Swap•,1 ◦ AddDotsγ(T ).

We will also use the notation Slideγ1,...,γn to denote iterated slides, i.e.

Slideγ1,...,γn(T ) = Slideγn ◦ · · · ◦ Slideγ1(T ).

Example 18. As an example, let T be an increasing P tableau

T =

1

2

2

3

2

3 4

, P =

a b

where a, b are the two inner corners for T . We compute Slideγ for various values of γ,
beginning after addDots, showing the intermediate swaps, and ending after removeDots:

γ = {a}
•

1

2

2

3

2

3 4

1

•

2

2

3

2

3 4

1

2

•

2

3

2

3 4

1

2 2

3

2

3 4

γ = {b}
1

2

•

2

3

2

3 4

1

2

2

•

3

•

3 4

1

2

2

3

•

3

• 4

1

2

2

3 3

4

γ = {a, b}
•

1

2

•

2

3

2

3 4

1

•

2

•

2

3

2

3 4

1

2

•

2

•

3

•

3 4

1

2

•

2

3

•

3

• 4

(continued)
1

2

2

3 3

4

For a tableau T of shape ν/λ, we use the notation IC(T ) to mean IC(ν/λ).

Definition 19. Let T be a skew increasing P-tableau. We define its rectification step
sets, Si, recursively. First, S0 = {T}. Next,

Sn+1 = {Slideγ(S) : S ∈ Sn and ∅ 6= γ ⊆ IC(S)}.
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The rectifications of T are the elements of the rectification set

rects(T ) = {U : U ∈ Sn for some n ∈ Z>0 and U is of straight shape}.

To denote that U is a rectification of T given by sliding the sequence of sets of inner
corners (γ1, . . . , γn), we write T

γ1,...,γn−−−−→ U .

Example 20. We do an example which has two rectifications. Let

P = , T =

2 2

1

3

4

.

One possible rectification follows this path

•
2 2

1

3

4

2

4

1

3

2 •
4

1

3

2 3

4

1

•
2

•
3

4

1

2

4

1

3

•
2

4

1

3

1

2

4

3

so one rectification of T is
1

2

4

3 .

Another rectification follows this path

•
2

•
2

1

3

4

2 2

4

1

3

2

•
2

4

1

3

2

1

2

4

3

•
2

1

2

4

3

2

4

1

4 3

•
2

4

1

4 3

1

2

4

3

4
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so another rectification of T is
1

2

4

3

4

. One can check that these two are the only

rectifications of T .

We say a skew increasing P-tableau rectifies uniquely if it has exactly one rectifi-
cation. We say an increasing P-tableau T of straight shape is a unique rectification
target (URT) if every skew increasing P-tableau which rectifies to T rectifies uniquely.

3 Unique rectification in slant sums

In this section, we explore the structure of URTs in posets that are built out of smaller
posets by a slant sum operation.

Definition 21. [Pro99a] Let P ,Q be disjoint posets. Assume Q has a minimum element

0̂Q. Let p ∈ P . The slant sum of Q to P at p, denoted P p/
0̂Q Q is the poset on P t Q

induced by imposing 0̂Q m p together with the orders on P and Q. Because a poset’s
minimum is unique, we will usually drop the 0̂Q and denote the slant sum as P p/Q. If
Q1, . . . ,Qn are pairwise disjoint posets which each have minima, then P p/ (Q1, . . . ,Qn)
denotes the iterated slant sum of posets at p. (Clearly, the order of the Qis does not
matter.) Finally, given p1, . . . , pm ∈ P and pairwise disjoint posets Qji with minima, we
write

P p1/ (Q1
1, . . . ,Q1

r1
) p2/ · · · pm/ (Qm1 , . . . ,Qmrm)

to denote the result of slant summing each Qji onto pj (in any order).

We say that a poset P is a chain if all pairs of elements of P are comparable, that is,
if P is a total order. The size of a chain P is the number of its elements.

Proposition 22. Let P be a poset with 0̂P and let C = {c} be a chain of size 1. Let
R = C c/P. If T is a a skew increasing P-tableau that rectifies uniquely (in P), then
the skew increasing R-tableau TR of shape ν t c/λ t c defined by TR(x) = T (x) rectifies
uniquely (in R).

Proof. Suppose U is the unique rectification of T . Let p be the minimum of P .
When we rectify TR in R, since c is covered only by p, the last step of rectification

is to slide c. Just before this final step, one has a tableau S whose shape is an order
ideal in P ⊂ R. Clearly, a process of slides producing S from TR (in R) corresponds to
a sequence of slides rectifying T (in P). Thus, since T rectifies uniquely to U , we have
S(x) = U(x) for all x ∈ P .

The final slide is necessarily Slide{c}, since c is the only inner corner of S. Hence, there
are no further choices to make and thus TR rectifies uniquely.
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Remark 23. The converse of Proposition 22 is false. Let

P = and R = .

Observe that the skew increasing P-tableaux TP = 1

2

has 3 distinct rectifications,

while the skew R-tableaux TR =
1

2

rectifies uniquely.

Remark 24. Extending a poset by a new maximum element does not preserve unique

rectification targets. For example, it is easy to check that
1

2 is a unique rectification

target in the poset . However,

1

2
is not a unique rectification target in the

poset P of Remark 23.

We now introduce some useful notation and terminology that we will need. Suppose
Q is a shape of P , and T is a skew increasing P-tableau. Then, the restriction of T to
Q, denoted T |Q is the increasing Q-tableau given by restricting the domain of T to those
elements that are in Q.

Definition 25. Suppose F is an order filter of a poset P with a 0̂F . We say F is a funnel
if, for all p ∈ P \ F with p < f for some f ∈ F , we have p < 0̂F .

Note that, in particular, the embedded copy of Q in any slant sum P p/
0̂Q Q forms a

funnel.

Definition 26. Let F be a funnel of a poset P . Suppose T is a skew increasing P-tableau
of shape ν/λ with a rectification U . Then, the corresponding skew increasing F -tableau
of T for U , denoted as (T → U)|F , is the increasing F -tableau defined by

(T → U)|F = T |E ,

where

E :=

{
{x ∈ ν/λ ∩ F : T (x) > U(0̂F)}, if 0̂F ∈ ν/λ;

∅, if 0̂F /∈ ν/λ.
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Proposition 27. Let F be a funnel of a poset P and let T be a skew increasing P-tableau.
If U is a rectification of T , then U |F is a rectification of (T → U)|F .

Proof. For concision, write F for (T → U)|F . The proposition is trivial if F is the empty
tableau, so we assume F is supported on at least one element of F .

Let T
γ1,...,γn−−−−→ U . Using the sequence of sets of inner corners γ1, . . . , γn, we will

recursively construct sets of inner corners θ1, . . . , θn that rectify F to S|F .
We write T ji to represent T after i slides and just before the jth swap; that is,

T ji :=

{
Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsγi+1

◦ Slideγ1,...,γi(T ), if j > 1;

Slideγ1,...,γi(T ), if j = 0.

In particular, T 0
0 = T and T 1

0 = AddDotsγ1(T ).
Let F0 := F . For 1 6 i 6 n, recursively define θi and Fi as follows

θi := {c ∈ IC(Fi−1) : there exists a j with T ji (c) = • and

T j+1
i (f) = • for some f m c with f ∈ Dom(Fi−1)}

and
Fi := Slideθ1,...,θi(F ).

Similar to T ji , we let F j
i be

F j
i :=

{
Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsθi+1

(Fi), if j > 1;

Fi, if j = 0.

Finally, we define certain subsets of θi which will be useful in our analysis. Let θ0i = ∅
and, for k > 0, let

θki := {c ∈ IC(Fi−1) : there exists a j? > k with T j
?

i (c) = • and

T j
?+1
i (f) = • for some f m c with f ∈ Dom(Fi−1)}.

Note that θ1i = θi.
Set m := U(0̂F) = min Range(F ). For the remainder of this proof, we say F j

i and T ji
N-agree if F j

i and T ji agree on all numeric labels within F greater than or equal to m;
that is, for all f ∈ F , if T ji (f) > m or F j

i (f) ∈ Z, then T ji (f) = F j
i (f). Additionally, for

the remainder of this proof, we say that F j
i and T ji agree if they satisfy all the conditions:

(A.0) F j
i and T ji N-agree;

(A.1) F j
i |Dom(Fi) = T ji |Dom(Fi);

(A.2) for all c ∈ IC(Fi), F
j
i (c) = • if and only if c ∈ θji+1.
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We now establish inductively that F j
i and T ji agree for all i and j.

First, note that, since F 0
0 = F = (T → U)|F is by definition a restriction of T = T 0

0

to the subposet of F consisting of those x ∈ F with T 0
0 (x) > m, F 0

0 and T 0
0 satisfy (A.0)

and (A.1). Furthermore, θ01 = ∅ and F 0
0 has no •s, which proves (A.2).

Now, inductively assume that F h
` and T h` agree for all ` 6 i and h 6 j. Let

M = max Range(T |F) = max Range(F ).

(Case 1: j = M + 1): Since the largest label in F and T |F is M , our inductive step
is to show that F 0

i+1 and T 0
i+1 agree. We have F 0

i+1 = RemoveDots(FM+1
i ) and T 0

i+1 =
RemoveDots(TM+1

i ). Hence, since FM
i and TMi satisfy (A.0), it is clear that F 0

i+1 and
T 0
i+1 satisfy (A.0) since removing •s does not change numeric values. Since F 0

i+1 and T 0
i+1

satisfy (A.0) and F 0
i+1 has no •s, we have that F 0

i+1 and T 0
i+1 satisfy (A.1). Furthermore,

by definition θ0i+1 = ∅ and F 0
i+1 has no •s, proving (A.2).

(Case 2: j = 0): In this case, F 1
i = AddDotsθi+1

(F 0
i ) and T 1

i = AddDotsγi+1
(T 0

i ). (We note
that, by definition, θi+1 is a subset of Fi’s inner corners, so AddDotsθi+1

(F 0
i ) is valid.) To

show that F 1
i and T 1

i agree, we must verify (A.0)–(A.2).
Proof of (A.0): Since F 0

i and T 0
i N-agree by assumption and AddDotsθi+1

does not
affect numerical labels, it is clear that F 1

i and T 1
i N-agree.

Proof of (A.1): Let f ∈ Dom(Fi). Then Fi(f) ∈ Z, so

F 1
i (f) = Fi(f) = Ti(f) = F 1

i (f) ∈ Z,

where the first and last equalities are by adding •s not affecting numeric labels and the
middle equality is by (A.0) for F 0

i and T 0
i .

Proof of (A.2): Since F 1
i = AddDotsθi+1

(Fi), we have that Fi(c) = • if and only if
c ∈ θi+1 = θ1i+1.

(Case 3: 0 < j < M + 1): We must verify (A.0)–(A.2) for F j+1
i and T j+1

i . First, we prove
some helpful claims.

Claim 28. For all c ∈ IC(Fi), if F j
i (c) = •, then either T ji (c) = • or else, for all

f ∈ Dom(F j
i ) with cl f , we have F j

i (f) = T ji (f) > j;

Proof of Claim 28. Let c ∈ IC(Fi) and suppose F j
i (c) = •. Then, by (A.2), f ∈ θji+1, so

there exists a j? > j such that T j
?

i (c) = • and T j
?+1
i (f0) = •. There are two cases to

consider: either j? = j or j? > j.
First, suppose j? = j. Then T ji (c) = T j

?

i (c) = •, as desired.
Otherwise, suppose j? > j. Since T j

?

i (c) = •, we have that for all c′ ∈ P with c′ m c
that T ji (c′) > j? > j. Thus, by the inductive (A.1), we have for all f ∈ Dom(Fi) with
f m c that F j

i (f) = T ji (f) > j.

Claim 29. Suppose p ∈ P \ (Dom(Fi) ∪ IC(Fi)). Further suppose pl f with f ∈ F and
F j
i (f) = j. Then, F j

i (p) 6= • and T ji (p) 6= •.
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Proof of Claim 29. Since p /∈ Dom(Fi) ∪ IC(Fi), we have p /∈ Dom(F j
i ), and so it is not

the case that F j
i (p) = •.

Suppose T ji (p) = •. We will obtain a contradiction by deriving that p ∈ IC(Fi).
Suppose p′ m p and p′ /∈ Dom(Fi).

If p′ ∈ Dom(T ji ), then since T ji (p) = •, we have that T ji (p′) > j (since it above a • after
the (j − 1)st swap), and we know j > m since F j

i (f) = j and m is the least label in F .
Hence, by the inductive (A.1), we have T ji (p′) = F j

i (p′) > j. Therefore, F j
i (p′) = Fi(p

′),
so p′ ∈ Dom(Fi), in violation of our assumption. Thus, p′ /∈ Dom(T ji ).

Let p′′ > p′. Because the domain of T ji is a skew shape and p′ /∈ Dom(T ji ), we know
that p′′ /∈ Dom(T ji ). Thus, since Dom(Fi) ⊆ Dom(Ti) ⊆ Dom(T ji ), we have p′′ /∈ Dom(Fi).
Thus, for any p′m p with p′ /∈ Dom(Fi), we then have, for all p′′ > p′, that p′′ /∈ Dom(Fi).
Thus, p ∈ IC(Fi), which is our desired contradiction.

Proof of (A.0): By the inductive (A.0), F j
i and T ji agree on numeric labels greater

than or equal to m. Since F j+1
i and T j+1

i are just F j
i and T ji after applying Swap•,j,

it suffices to consider the movement of the j labels. If j < m, we are done. Hence,
assume j > m. We know by (A.0) that for all f ∈ F , that T ji (f) = j if and only if
F j
i (f) = j. Hence, it suffices to show that whenever f ∈ F with F j

i (f) = T ji (f) = j and

whenever f̂ l f , we have F j
i (f̂) = • if and only if T ji (f̂) = •. Fix f ∈ F and f̂ l f .

Suppose T ji (f) = F j
i (f) = j. We must show F j

i (f̂) = • if and only if F j
i (f̂) = •. Either

f̂ ∈ Dom(Fi), f̂ ∈ IC(Fi), or f̂ /∈ Dom(Fi) ∪ IC(Fi).
Suppose f̂ ∈ Dom(Fi). Then, the inductive (A.1) directly gives that F j

i (f̂) = • if and

only if T ji (f̂) = •, as desired.

Suppose f̂ /∈ Dom(Fi) ∪ IC(Fi). Then, Claim 29 gives that F j
i (f̂) 6= • and T ji (f̂) 6= •.

Finally, suppose f̂ ∈ IC(Fi). If F j
i (f̂) = •, then Claim 28 gives that T ji (f̂) = •.

Conversely, if T ji (f̂) = •, then T j+1
i (f) = • by the definition of swapping, so by definition

f̂ ∈ θji+1. Hence, F j
i (f̂) = • by the inductive (A.2).

Proof of (A.1): Let f ∈ Dom(Fi). Then by the inductive (A.0), we have that
f ∈ Dom(Ti), so either T j+1

i (f) ∈ Z or T j+1
i (f) = •.

If T j+1
i (f) ∈ Z, then by construction of the swapping process T j+1

i (f) > Ti(f). More-
over, Ti(f) = Fi(f) > m by the inductive (A.0). Hence, T j+1

i (f) > m. Thus, we have
F j+1
i (f) = T j+1

i (f) by (A.0) for F j+1
i and T j+1

i (which has already been established at
this point).

Now, suppose that T j+1
i (f) = •. If F j+1

i (f) 6= •, then F j+1
i (f) > m. Hence, by (A.0)

for F j+1
i and T j+1

i (which has already been established at this point), we have

• 6= F j+1
i (f) = T j+1

i (f) = •,

which is a contradiction. Thus, F j+1
i (f) = •.

Proof of (A.2): We have

{f ∈ IC(Fi) : F j+1
i (f) = •} = {f ∈ IC(Fi) : F j

i (f) = • and F j
i (f ′) 6= j for all f ′ m f}.

By the inductive (A.2), this equals

{f ∈ θji : F j
i (f ′) 6= j for all f ′ m f},
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which in turn equals

{f ∈ θji : T ji (f ′) 6= j for all f ′ ∈ Dom(Fi) with f ′ m f}

by the inductive (A.0). As this last set is the definition of θj+1
i , this completes the proof

of (A.2) and hence the induction.
As a consequence of our induction, we have F 0

n = T 0
n |F = U |F . Hence,

F
θ1,...,θn−−−−→ U |F ,

as desired.

We now derive a few straightforward corollaries of Proposition 27. We will not use
these corollaries in the sequel; however, they seem interesting to us for elucidating some
of the structure of URTs among collections of related posets.

Corollary 30. Let T be a skew increasing P-tableau and let F be a funnel of P. Let U, V
be rectifications of T . If U |F is a URT in F and U(0̂F) = V (0̂F), then U |F = V |F .

Proof. By definition, (T → U)|F = (T → V )|F , since U(0̂F) = V (0̂F). By Proposition 27,
(T → U)|F rectifies to U |F and (T → V )|F rectifies to V |F . Since by assumption U |F is
a URT in F , it follows that U |F = V |F .

Definition 31. The bottom chain C of a poset P is the order ideal of P constructed as
follows. Define

min(P) :=

{
{0̂P}, if P has a 0̂P ;

∅, otherwise.

We construct the shapes Ci recursively. Let C0 := min(P) and let Ci+1 := Ci∪min(P\Ci).
Finally, the bottom chain of P is

C :=
⋃

n∈Z>0

Cn.

Lemma 32. Let C be the bottom chain of a poset P. Let U, V be rectifications of a skew
increasing P-tableau T . Then U |C = V |C.

Proof. In any rectification W of T , the labels of W |C must be just the smallest numbers
in the range of T in increasing order.

Corollary 33. Let P1, . . . ,Pn be pairwise disjoint posets with minimum elements 0̂Pk
.

Let C = {c} be a chain of size 1. Construct the slant sum R := C c/ (P1, . . . ,Pn). For U
a straight-shaped increasing R-tableau, if U |Pk

is an URT in Pk for each 1 6 k 6 n, then
U is a URT in R.
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Proof. Suppose U, V are rectifications of some skew increasing R-tableau T . Since c is
in the bottom chain of R, U |C = V |C by Lemma 32. Let m := U(c) = V (c). It remains
to show that U |Pk

= V |Pk
for all k. Fix some Pk. By the increasingness of U and V , we

have U(0̂Pk
) > m and V (0̂Pk

) > m, but both U(0̂Pk
) and V (0̂Pk

) must also be less than
all the other labels in their respective tableaux for elements in Pk that are greater than
0̂Pk

. Thus, since 0̂Pk
only covers c and all the Pk are disjoint funnels, it is easy to see that

U(0̂Pk
) = V (0̂Pk

) = min(Range(T |Pk
) \ {m}).

Finally, since U(0̂Pk
) = V (0̂Pk

), we have U |Pk
= V |Pk

by applying Corollary 30.

We will say a poset T is a tree if T has a 0̂T and if each other x ∈ T has exactly
one parent.

Corollary 34. Let T be a tree. Let t1, . . . , tn be (not necessarily distinct) elements of
T . Let P1, . . . ,Pn be pairwise disjoint posets with minimum elements. Define

R0 := T

and
Ri+1 = Ri ti+1

/Pi+1 for i = 0, . . . , n− 1.

Let U be a straight-shaped increasing Rn-tableau. If U |Pk
is an URT in Pk for all 1 6

k 6 n, then U is a URT in Rn.

Proof. By repeated application of Corollary 33.

4 Restricted rectifications and p-chain URTs

Most of the results in this section are fairly technical lemmas that we will need later.

Definition 35. Let P be a poset, let Q be a subset of P , and let T be a skew increasing
P-tableau. Then, the rectifications of T restricted to Q are the elements of the set

rects|Q(T ) := {U |Q : U ∈ rects(T )}.

Lemma 36.

1. Fix p ∈ P and let k := |{x ∈ P : x 6 p}| be the cardinality of the principal order
ideal generated by p. Let C be a chain poset of size k. If

R = P p/ (Q1, . . . ,Qn)

for pairwise disjoint posets Q1, . . . ,Qn with minimum elements and T is a skew
increasing R-tableau, then there is a skew increasing (P p/ C)-tableau C such that

rects|P(T ) = rects|P(C).
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2. More generally, if p1, .., pn ∈ P are distinct, define ki := |{x ∈ P : x 6 pi}| and let
Ci be the chain poset of size ki. Then, if

R = P p1/ (Q1
1, . . . ,Q1

m1
) p2/ . . . pn/ (Qn1 , . . . ,Qnmn

)

for pairwise disjoint posets Q1
1, . . . ,Qnmn

with minimum elements and T is a skew
increasing R-tableau, then there is a skew increasing (P p1/ C1 p2/ . . . pn/ Cn)-tableau
C such that

rects|P(T ) = rects|P(C).

Proof. We first prove (1). Since there are k weak ancestors of p, there are at most k
distinct labels from

⋃
hQh that can swap into P during rectification of the skew increasing

R-tableau T . Let q1 < · · · < qm ∈ Z>0 be the m smallest labels of elements in T |⋃
hQh

,
where m is the lesser of k and the number of distinct labels in T |⋃

hQh
. Fix a chain

C = {c1 < · · · < ck} of size k. Define the skew increasing P p/ C-tableau C as follows:

C(x) =

{
T (x), x ∈ P ∩Dom(T );

qr, x = cr and 1 6 r 6 m.

We will show rects|P(T ) = rects|P(C). First, we show that rects|P(T ) ⊆ rects|P(C).

To do this, suppose T
γ1,...,γn−−−−→ U in R. We must show that U |P ∈ rects|P(C). We use the

sequence of inner corners θi := γi ∩ P to rectify C.
Write T ji to represent T after i slides and just before the jth swap; that is,

T ji :=

{
Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsγi+1

◦ Slideγ1,...,γi(T ), if j > 1;

Slideγ1,...,γi(T ), if j = 0.

Similarly, let Cj
i be

Cj
i :=

{
Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsθi+1

◦ Slideθ1,...,θi(C), if j > 1;

Slideθ1,...,θi(C), if j = 0.

For the rest of this proof, we say T ji and Cj
i are similar if they satisfy both of the

following conditions:

(S.0) T ji |P = Cj
i |P ;

(S.1) {T ji (q) ∈ Z : q ∈
⋃
hQh and T ji (q) 6 qm} = {Cj

i (c) ∈ Z : c ∈ C and Cj
i (c) 6 qm}.

We show by induction that T ji and Cj
i are similar for all i and j. In particular, this

will yield T ji |P = Cj
i |P , proving that U |P = T 0

n |P = C0
n|P ∈ rects|P(C), as desired.

By construction, we have that T 0
0 |P = T |P = C|P = C0

0 |P so T 0
0 and C0

0 satisfy (S.0).
Condition (S.1) for T 0

0 and C0
0 is also by construction.
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Now, inductively assume T ji and Cj
i are similar. For concision, write Sji for the set

{T ji (q) ∈ Z : q ∈
⋃
h

Qh and T ji (q) 6 qm} = {Cj
i (c) ∈ Z : c ∈ C and Cj

i (c) 6 qm}

considered in the inductive (S.1) condition. Let

M = max Range(T ) > max Range(C).

(Case 1: j = M + 1): We have that

T 0
i+1|P = RemoveDots(TM+1

i )|P = RemoveDots(TM+1
i |P)

= RemoveDots(CM+1
i |P) = RemoveDots(CM+1

i )|P
= C0

i+1|P ,

so T 0
i+1 and C0

i+1 satisfy (S.0). Removing •s does not affect the numerical labels in
⋃
hQh

or C, so (S.1) for T 0
i+1 and C0

i+1 is immediate from (S.1) for TM+1
i and CM+1

i . This
completes this case.

Before turning to the next case, note that if none of the weak ancestors of p are skewed
out of T 0

i |P = C0
i |P , then (S.0) and (S.1) continue holding in perpetuity since no elements

of
⋃
hQh or C will be involved in any swaps. Thus, for the remaining cases, assume at

least one weak ancestor of p is skewed out.
Further, note that if Sji = ∅, then since at least one weak ancestor of p is skewed out,

we have {T ji (q) ∈ Z : q ∈
⋃
hQh} = {Cj

i (c) ∈ Z : c ∈ C} = ∅ by the definition of qm.
Hence if Sji = ∅, then (S.0) and (S.1) continue to hold in perpetuity, since neither tableau
has labels outside of P . Thus, for the remaining cases, we may further assume Sji 6= ∅.

(Case 2: j = 0): First, we verify that θi+1 ⊆ IC(C0
i ). Let t ∈ θi+1. Since t ∈ θi+1, we have

that t ∈ γi+1∩P , so t is an inner corner in T 0
i |P = C0

i |P . (This equality is by the inductive
(S.0).) Hence, since C has skewed out nodes only in P , it follows that t ∈ IC(C0

i ). Thus,
θi+1 ⊆ IC(C0

i ).
Since θi+1 = γi+1 ∩ P , we have

T 1
i |P = AddDotsγi+1

(T 0
i )|P = AddDotsθi+1

(T 0
i )|P

= AddDotsθi+1
(T 0

i |P) = AddDotsθi+1
(C0

i |P)

= C1
i |P ,

proving (S.0) for T 1
i and C1

i . Similarly to the previous case, since adding •s does not
affect the numerical labels in

⋃
hQh or C, (S.1) for T 1

i and C1
i is immediate from (S.1) for

T 0
i and C0

i .

(Case 3: 0 < j < M + 1): We show (S.0) first. Observe that the structure of R, P p/ C,
and P easily ensures that if q ∈ P , then

(F.1) for all q̂ l q (in either R or P p/ C), q̂ ∈ P , and
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(F.2) if q 6= p, then for all q′ m q (in either R or P p/ C) we have that q′ ∈ P .

Now (F.1), (F.2), the fact that T ji |P = Cj
i |P , and the local nature of the swapping process,

together ensure that T j+1
i (q) = F j+1

i (q) for all q ∈ P with q 6= p. Furthermore, if
T ji (p) 6= •, then (F.1) ensures T j+1

i (p) = F j+1
i (p).

Hence, it remains to consider the situation where T ji (p) = Cj
i (p) = •. Then

T j+1
i (p) =

{
j, if j = min{T ji (p′′) ∈ Z : p′′ ∈ R and p′′ > p}
•, otherwise

=

{
j, if j = min{Cj

i (p
′′) ∈ Z : p′′ ∈ P p/ C and p′′ > p}

•, otherwise

= Cj+1
i (p).

Here, the first and third equalities are by the definition of the swapping process and the
increasingness of the tableaux. The second equality is because

min {T ji (p′′) ∈ Z : p′′ ∈ R and p′′ > p} = min {Cj
i (p
′′) ∈ Z : p′′ ∈ P p/ C and p′′ > p},

as follows from the inductive (S.0), (S.1), and the assumption that Sji 6= ∅. This proves
(S.0).

It remains to show (S.1). The swapping process only affects labels with value j. We
already have

{T ji (q) ∈ Z : q ∈
⋃
Qh and T ji (q) 6 qm} = {Cj

i (c) ∈ Z : c ∈ C and Cj
i (c) 6 qm},

so it just remains to show that

j ∈ {Cj+1
i (c) ∈ Z : c ∈ C and Cj+1

i (c) 6 qm}
m

j ∈ {T j+1
i (q) ∈ Z : q ∈

⋃
Qh and T j+1

i (q) 6 qm}.

Either T j+1
i (p) = j or not. If T j+1

i (p) = j, then (S.0) for T j+1
i and Cj+1

i (which is
already established at this point) implies Cj+1

i (p) = j. Hence, the increasingness of T j+1
i

and Cj+1
i ensures that

j /∈ {T j+1
i (q) ∈ Z : q ∈

⋃
Qh and T j+1

i (q) 6 qm}

and
j /∈ {Cj+1

i (c) ∈ Z : c ∈ C and Cj+1
i (c) 6 qm}.

Otherwise, T j+1
i (p) 6= j. Then, nothing could have been swapped into p at this stage.

Thus, since p is the only element connecting P to
⋃
Qh or C, in this situation (S.1) for

T j+1
i and Cj+1

i is immediate from (S.1) for T ji and Cj
i . This completes the induction and

shows that rects|P(T ) ⊆ rects|P(C).
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To show the reverse containment rects|P(C) ⊆ rects|P(T ), we follow the same strategy,

except that we first remove any skewed out nodes in
⋃
hQh. Suppose C

θ1,...,θn−−−−→ V .
We must find a sequence of inner corners that yields a rectification U of T such that
U |P = V |P . First, we remove any skewed nodes in

⋃
hQh, as follows. Let T0 = T .

Recursively define

αi+1 := IC(Ti) ∩ (
⋃
h

Qh)

and
Ti+1 := Slideαi+1

(Ti).

Let k be least such that αk = ∅. Then Tk has no skewed out nodes in
⋃
hQh. Finally, let

γi := θi ∩ P . Then Slideγ1,...,γn(Tk) = U |P . The proof is exactly the same as before except
C, V , Tk, θi, and γi play the respective roles of T , U , C, γi, and θi. This completes the
proof of (1).

The proof for (2) is by induction on n. The base case n = 1 is the previously proven
statement (1). For n > 1, let

P ′ = P p1/ (Q1
1, . . . ,Q1

m1
)

and let
S = P ′ p2/ C2 p3/ . . . pn/ Cn.

By the inductive hypothesis, there is a skew increasing S-tableau TS such that

rects|P ′(TS) = rects|P ′(T ),

so furthermore by restriction we have

rects|P(TS) = rects|P(T ).

Observe that

S = P ′ p2/ C2 p3/ . . . pn/ Cn = (P p2/ C2 p3/ . . . pn/ Cn) p1/ (Q1
1, . . . ,Q1

m1
).

Then, by (1), there is an increasing skew P p1/ C2 p2/ . . . pn/ Cn-tableau TC such that

rects|(P p2/ C2 p3/ ... pn/ Cn)(TS) = rects|(P p2/ C2 p3/ ... pn/ Cn)(TC)

so furthermore by restriction

rects|P(TS) = rects|P(TC).

Thus,
rects|P(TC) = rects|P(TS) = rects|P(T ),

as desired.
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Definition 37. Let P be a poset and fix p ∈ P . Let U be a URT in P . Then U
is a p-chain unique rectification target in P if U is a URT in P p/ C for every
chain poset C. More generally, U is a {p1, . . . , pn}-chain URT in P if U is a URT
in P p1/ C1 p2/ · · · pn/ Cn for all pairwise disjoint chains C1, . . . , Cn.

Being a p-chain URT is a strictly stronger notion than being a URT. For an example
of a URT that is not a p-chain URT, see Remark 24.

Proposition 38. Let R be the slant sum

R := P p1/ (Q1
1, . . . ,Q1

m1
) p2/ · · · pn/ (Qn1 , . . . ,Qnmn

),

for pi distinct and Qj
i all pairwise disjoint with minimum elements. Let T be a skew

increasing R-tableau with rectifications U and V . If U |P is a {p1, .., pn}-chain URT in P,
then U |P = V |P .

Proof. By Lemma 36, there exist chain posets C1, . . . , Cn, as well as a skew increasing
P p1/ C1 p2/ · · · pn/ Cn-tableau TC such that

rects|P(T ) = rects|P(TC).

Since U |P is a {p1, .., pn}-chain URT, we know |rects|P(TC)| = 1, so |rects|P(T )| = 1.
Hence U |P = V |P .

Proposition 39.

1. Let R be the slant sum P p/Q and let U be an increasing R-tableau of straight shape.
Suppose A ⊆ P and B ⊆ Q. If p ∈ A and U |P is an A-chain URT in P and U |Q is
a B-chain URT in Q, then U is an A ∪B-chain URT in R.

2. More generally, let

R := P p1/ (Q1
1, . . . ,Q1

m1
) p2/ · · · pn/ (Qn1 , . . . ,Qnmn

)

and let U be an increasing R-tableau of straight shape. Suppose {p1, . . . , pn} ⊆ A ⊆
P and Bj

i ⊆ Q
j
i . Set

D := A ∪

(⋃
i,j

Bj
i

)
.

If U |P is an A-chain URT in P and U |Qj
i

is a Bj
i -chain URT in Qji for each i, j,

then U is a D-chain URT in R.

Proof. For simplicity, we only explicitly prove part (1). The proof of part (2) follows the
same strategy.

Let C be a poset formed by taking R and slant summing chains on top of elements
in A ∪ B. We must show that U is a URT in C. Hence, suppose some skew increasing
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C-tableau C rectifies to U and V . Then, we must show U = V . Since U is an A-chain
URT in P , by Proposition 38, we have that U |P = V |P .

It is easy to see that since U and V agree on P , they must also agree on any chain Ca
slant summed onto an element a ∈ A ⊆ P . This is since, in any such chain, the labels
of Ca in U and V must be exactly those labels of Ca in T that have values greater than
U(a) = V (a). By increasingness of U and V , these are necessarily written in increasing
order along Ca in both tableaux. Thus, U |Ca = V |Ca .

Let QC be the principal order filter of C generated by 0̂Q. Since QC is a funnel in C,
we may consider the tableaux (T → U)|QC

and (T → V )|QC
. By Definition 26, we have

(T → U)|QC
= (T → V )|QC

, since both tableaux defined to the the restriction of T to
the set

E := {q ∈ Q : T (q) > U(p)} = {q ∈ Q : T (q) > V (p)},

where the second equality is by recalling U(p) = V (p) (since p ∈ P) and noting that p is
the only element of C covered by 0̂Q. By Proposition 27, U |QC

and V |QC
are rectifications

of (T → U)|Q = (T → V )|Q. However, since U |Q is a B-chain URT in Q, we have that
U |Q is a URT in QC . Hence U |QC

= V |QC
.

Thus, we have shown that U(c) = V (c) for all c ∈ C, so U = V , as desired.

The following result follows inductively from Corollary 33; we, however, prove it here
as a useful demonstration of working with p-chain URTs in preparation for more sophis-
ticated uses later.

Corollary 40. Let T be a tree. Let U be any increasing T -tableau of straight shape.
Then U is a URT in T .

Proof. Let n = |T |. Define T1 ⊆ · · · ⊆ Tn such that for all i, Ti is an order ideal
of T and |Ti| = i. In particular, we have T1 = {0̂T } and Tn = T . We claim that
for all i, U |Ti

is a Ti-chain URT in Ti. We work by induction on i. First, we note
that in any singleton poset P , every increasing P-tableau of straight shape is a P-chain
URT by Lemma 32. Thus, since |T1| = 1, U |T1 is a T1-chain URT in T1. Now suppose
i > 1. Let t be the unique element in Ti \ Ti−1 and let p be the unique parent of t in
T . Then Ti = Ti−1 p/ {t}. By the inductive hypothesis, U |Ti−1

is a Ti−1-chain URT in
Ti−1. Because |{t}| = 1, U |{p} is a {t}-chain URT in {t}. Thus by Proposition 39, U |Ti

is a Ti-chain URT in Ti. This completes the induction. Hence U |Tn = U is a URT in
Tn = T .

Trees are a particularly simple subfamily of the d-complete posets studied in this
paper. Corollary 40 should be understood as a particularly strong version of Theorem 2
for this special subfamily.

5 Double-tailed diamonds

In this section, we investigate the p-chain unique rectification targets of certain posets,
called double-tailed diamonds. This special family of d-complete posets plays a central
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role in the study of general d-complete posets. We will apply the results developed here
to the general case in Section 6.

For k > 3, a double-tailed diamond D(k) has 2k − 2 elements, two of which are
incomparable elements in the middle with chains of size k − 2 above and below them.
Figure 2 illustrates the Hasse diagrams of some of these posets. It is easy to work out
that any increasing tableau on any order ideal of a double-tailed diamond is a URT. (This
is even explicitly observed in [BS16, Proof of Theorem 3.12].) For application in Section 6,
we need to strengthen this observation to the setting of p-chain URTs.

D(3) D(4) D(5)

Figure 2: The Hasse diagrams of the three smallest double-tailed diamonds.

To study the p-chain URTs of double-tailed diamonds, we introduce a chained double-
tailed diamond. A chained double-tailed diamond is formed by slant summing a chain
onto each of the two middle elements of the double-tailed diamond. We index the elements
of a chained double-tailed diamond as shown in Figure 3. We refer to the set of elements
indexed as `k as the left chain of the poset, and those indexed as rk as the right chain. In
this notation, a chained double-tailed diamond corresponds to a triple of positive integers
m,n, p > 1. We denote the chained double-tailed diamond for (m,n, p) by D(m,n, p). In
particular, D(k) = D(1, k, 1).

Proposition 41. Let T be a skew increasing D(m,n, p)-tableau. Then T rectifies uniquely.

Proof. Suppose T has shape ν/λ. If {`1, r1} 6⊆ λ, then there are no choices to be made
during rectification and hence T rectifies uniquely. Thus, assume {`1, r1} ⊆ λ. We can
repeatedly perform slides on inner corners not equal to `1 or r1 because all the descendants
of `1 and r1 are in disjoint chains and hence these slides clearly commute. Thus, we may
assume T has exactly two inner corners `1 and r1. Write I := {`1, r1}. Let s ∈ Z be
largest such that ts ∈ ν (set s = 0 if t1 /∈ ν).

We induct on s. If s = 0, then ν is a tree, and so T rectifies uniquely by Corollary 40.
Assume s > 1 and that the proposition holds for smaller s.

(Case 1: T (t1) 6= min Range(T )): Without loss of generality, we may assume T (`2) <
T (t1). There are three possibilities for γ ⊆ I: either γ = {`1}, γ = {r1}, or γ = {`1, r1}.
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tn

...

t2

t1

`1 r1

b1

b2

...

bn

`2

..
.

`m

r2

. .
.

rp

Figure 3: Our standard indexing of the nodes of the chained double-tailed diamond poset
D(m,n, p).

If we choose γ = {`1}, then after Slide{`1} is completed, r1 will be the unique inner corner;
thus, the following slide is necessarily at r1. Similarly, if we choose γ = {r1}, the next
slide is necessarily at `1.

By routine case analysis, one checks that

Slide{`1},{r1}(T ) = Slide{r1},{`1}(T ) = Slide{r1,`1}(T )

in any of the various cases: T (t1) < T (r2), T (t1) = T (r2), or T (t1) > T (r2). Thus, any
choice made at this first step of rectifying T yields the same tableau after one or two
slides. That latter tableau has a unique rectification, as there are no further choices to
be made. Hence, T rectifies uniquely.

(Case 2: T (t1) = min Range(T )):

(Case 2.1: s = 1): Then T looks like the following.

T (t1)

...

bn

T (`2)

..
.

T (`m)

T (r2)

. .
.
T (rp)

Consider any rectifications U and V of T . By Lemma 32, for all k we have U(bk) =
V (bk) is the (n−k+1)st smallest element of Range(T ). Thus, since T (t1) = min Range(T )
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by assumption, we have U(bn) = T (t1). Hence, t1 /∈ Dom(U) and so U looks like:

U(b1)

U(`1) U(r1)

U(b2)

...

U(bn)bn

U(`2)

..
.

U(`m)

U(r2)

. .
.
U(rp)

Consulting these pictures, one observes that

U(`1) = min({T (`i) : 2 6 i 6 m and T (`i) > U(b1)}

and similarly for V . Since U(b1) = V (b1) by Lemma 32, this means U(`1) = V (`1).
Clearly, the labels of U in the left chain of D(m,n, p) are exactly the labels on the left
chain of D(m,n, p) in T that are at least U(`1) written in increasing order. Since the same
is true for V , we have U(`q) = V (`q) for all q. The same argument shows U(rq) = V (rq).
Thus, U = V and T rectifies uniquely.

(Case 2.2: s > 2): Let U, V be rectifications of T . As in Case 2.1, we have U(bn) =
V (bn) = T (t1). Let Q := D(m,n, p) \ {bn}. We must show U |Q = V |Q. Since n > s > 2,
Q has a minimum and is a funnel of D(m,n, p). Then by Proposition 27, U |Q is a
rectification of SU := (T → U)|Q and V |Q is a rectification of SV := (T → V )|Q. Since
U(bn) = V (bn) = T (t1), it follows from the definition of corresponding tableaux that
SU = SV . In fact, SU and SV are merely T restricted by deleting all labels of value T (t1).
Hence, write S := SU = SV . It remains to show that S rectifies uniquely in Q.

Since S is T restricted by deleting all labels of value T (t1) = min Range(T ) and the
inner corners of T are exactly {`1, r1}, it follows that the inner corners of S are exactly
those elements q ∈ Q with T (q) = T (t1). The structure of Q ensures that `2 and r2 are the
only two nodes q besides t1 that could possibly have the label T (t1). Let J ⊆ {t1, `2, r2}
be the set of inner corners of S. Clearly, since the various slides only affect disjoint chains,
for any set partitions (γ1, . . . , γh) and (δ1, . . . , δk) of J , we have

Slideγh ◦ · · · ◦ Slideγ1(T ) = Slideδk ◦ · · · ◦ Slideδ1(T ).

Hence, without loss of generality, we may assume that we perform Slide{t1} first. That is,
set S ′ := Slide{t1}(S) and observe that Rects(S ′) = Rects(S).

Finally, we must show that S ′ rectifies uniquely. Let the shape of S ′ be η/θ. Recall,
s is defined to be the largest integer with ts ∈ Dom(T ), so by the construction of S, we
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also have that s is the largest integer with ts ∈ Dom(S). Hence, since S ′ := Slide{t1}(S),
we have that ts /∈ Dom(S ′). Since s 6 n, this ensures that η is an order ideal of

Q \ {tn} = D(m,n, p) \ {bn, tn} = D(m,n− 1, p),

where the first equality is by the definition of Q and the second equality follows from
n > s > 2. Hence, S ′ is a skew increasing D(m,n− 1, p)-tableau. Moreover, the largest i
such that S ′(ti) is defined is s− 1, so by the inductive hypothesis, S ′ rectifies uniquely in
D(m,n−1, p). Thus, S rectifies uniquely inQ, and so W |Q is the same for all rectifications
W of T , so T rectifies uniquely.

Corollary 42. Every increasing D(m,n, p)-tableau of straight shape is a URT.

Proof. Immediate from Proposition 41.

Corollary 43. Every increasing D(n)-tableau of straight shape is an {`1, r1}-chain URT.

Proof. Immediate from Corollary 42

Proposition 41 is a special case of the following more general conjecture, for which
we have some additional experimental evidence. (For the definition of ‘d-complete’, see
Section 6.)

Conjecture 44. Let P be a d-complete poset with bottom tree B. If T is a skew increasing
P-tableau with rectifications R and S, then we have R|B = S|B.

Special cases of Conjecture 44 are key lemmas in [TY09b] and [CTY14]. These lem-
mas have additional combinatorial applications [TY11, Pec17]; Conjecture 44 might have
similar applications.

6 d-complete posets and minuscule posets

In this section, we recall the definition of d-complete posets following [Pro99b], and prove
our main result Theorem 2 regarding slant sum trees of minuscule posets. (Note that the
paper [Pro99a] uses a dual convention, so the posets in [Pro99a] are the duals of ours.)
The proofs presented in this section are all straightforward, relying on the technical results
of the previous sections. We also develop appropriate terminology here to give precise
interpretations of Conjectures 1 and 3.

If x, y ∈ P , the interval [x, y] is the set {z ∈ P : x 6 z 6 y}. We call an interval [x, y]
in P a Q-interval if it is isomorphic to the poset Q. We will be especially interested in
D(k)-intervals (k > 3). Let D0(k) := D(k) \ {t}, where t is the minimal element of D(k).
We will also be interested in D0(k)-intervals (k > 4). Examples of D0(k)-intervals are
shown in Figure 4; the corresponding posets D(k) are shown in Figure 2.

Definition 45. A poset P is D(3)-complete if it satisfies the following three conditions:
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D0(4) D0(5)

Figure 4: The Hasse diagrams of some small truncated double-tailed diamonds D0(k).

1. anytime an element z covers two distinct elements x and y, there exists a fourth
element w that x and y both cover;

2. if [w, z] is a D(3)-interval in P with elements {w, x, y, z}, then w is only covered by
x and y in P ; and

3. for such a D(3)-interval, there is no w′ 6= w that both x and y cover.

Let k > 4. Suppose [x, z] is a D0(k)-interval in which y is the unique element with
y l z. If there is no w ∈ P with w l x such that [w, z] is a D(k)-interval, then [x, z] is
an incomplete D0(k)-interval. If there exists z′ 6= z with z′ m y such that [x, z′] is also a
D0(k)-interval, then we say that [x, z] and [x, z′] overlap.

Definition 46. For any k > 4, a poset P is D(k)-complete if it satisfies the following
three conditions:

1. there are no incomplete D0(k)-intervals;

2. if [w, z] is a D(k)-interval, then w is covered by only one element in P ; and

3. there are no overlapping D0(k)-intervals.

A poset P is d-complete if it is D(k)-complete for every k > 3.

Briefly, the algebraic context of d-complete posets is as follows. (For further details,
see [Ste96, Pro99b, CP12].) Let Λ be a dominant integral weight of a Kac-Moody Lie
algebra g with (generally infinite) Weyl group W . The Weyl group element w ∈ W is
called Λ-minuscule if it can be written as a reduced word in the simple reflections as

w = si1si2 · · · si` ,

so that for all j
(sij+1

· · · si` − sij · · · si`)Λ = αij ,
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where αij is the simple root for sij . (In fact, this property is independent of the choice
of reduced word [Ste01, Proposition 2.1].) Now, if w is Λ-minuscule, then the interval
[id, w] in Bruhat order is a distributive lattice. A poset P is d-complete if and only
if it is isomorphic to the poset of join irreducibles of such a ‘Λ-minuscule distributive
lattice’; equivalently, a poset Q is isomorphic to a Bruhat interval [id, w] for some Λ-
minuscule w if and only if Q is isomorphic to the poset of order ideals of a d-complete
poset. Since Bruhat order on W also describes containment of Schubert varieties in
the Kac-Moody homogeneous space X = G/B, we have for u, v 6 w all Λ-minuscule
that the inclusion of Schubert varieties Xu ⊆ Xv is equivalent to the reverse inclusion
λv ⊆ λu of the corresponding order ideals in the d-complete poset for w. In addition
to their algebraic relations, d-complete posets enjoy a number of beautiful combinatorial
properties, including an analogue of the classical hook-length formula (see, e.g., [Pro09,
Pro14, PS17, KY17, NO18]); for a detailed bibliography of work on d-complete posets,
see [PS17, §12]. Figure 1 shows an example of a reasonably large d-complete poset.

Say a d-complete poset is irreducible if it is not the slant sum of two d-complete
posets. R. Proctor [Pro99a] showed that all d-complete posets can be uniquely decom-
posed as a slant sum of irreducible d-complete components. In this decomposition, irre-
ducible components are only slant summed onto special nodes of other irreducible com-
ponents, called acyclic nodes [Pro99a]; that is, if P = Q q/R is d-complete and R is
irreducible, then q is an acyclic node of its irreducible component. (We avoid giving the
somewhat technical definition of acyclic nodes, as it is sufficient for our purposes to use
Proctor’s explicit identification [Pro99a] of all acyclic nodes of all irreducible d-complete
posets.) The irreducible d-complete posets are classified into 15 (mostly infinite) families
by Proctor and Stembridge [Pro99a, Ste01]; we follow Proctor’s numbering and naming
conventions for these families from [Pro99a]. Of these 15 families, only the components
from families 1–9 and 11 have any acyclic nodes.

For a poset P , we say an increasing P-tableau T of straight shape λ ⊆ P is minimally-
labeled if it is minimal among all increasing P-tableaux of shape λ under nodewise
comparison of labels; that is, if U is another increasing tableau of shape λ, then U(x) >
T (x) for all x ∈ λ. It is easy to see that there exists a unique minimally-labeled P-tableau
of each straight shape λ. We write Mλ for this unique tableau. The precise version of
Conjecture 1 is the following.

Conjecture 47. Let P be d-complete and let λ ⊆ P be an order ideal. Then, the
minimally-labeled increasing P-tableau Mλ of shape λ is a unique rectification target.

In light of the slant sum structure of d-complete posets, Conjecture 47 would follow
from Proposition 39 together with information about (p-chain) URTs in the 15 families
of irreducible d-complete posets. Specifically, it remains to show that

• for each irreducible d-complete poset Q with acyclic nodes, that Mλ is a p-chain
URT for each order ideal λ ⊆ Q and each acyclic node p ∈ Q, and that

• for each irreducible d-complete poset Q without acyclic nodes, that Mλ is a URT
for each order ideal λ ⊆ Q.
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Unfortunately, we are unable to establish the necessary results for some of these families;
hence, we can only leverage Proposition 39 to prove a weaker version of Conjecture 47,
namely Theorem 2. First, we recall the minuscule posets, a special subset of d-complete
posets. Except for some trivial instances, all minuscule posets are irreducible.

Algebraically, one obtains the minuscule posets as follows. Suppose the Kac-Moody
group G is in fact complex reductive. Put a partial order on the positive roots Φ+ of G
by taking the transitive closure of the covering relation α l β if and only if β − α is a
simple root. The simple root δ is a minuscule root if for every positive root α ∈ Φ+, the
multiplicity of δ∨ in the simple coroot expansion of α∨ is at most 1. For each minuscule
root, one obtains a corresponding minuscule poset Pδ by restricting the partial order
on (Φ+)∨ to those positive coroots that use δ∨ in their simple coroot expansion. There
is also a corresponding minuscule variety obtained as the quotient G/Pδ, where Pδ is
the maximal parabolic subgroup associated to the minuscule root δ. The minuscule poset
Pδ encodes the Schubert stratification of G/Pδ; specifically, the Schubert varieties are
naturally indexed by the order ideals of Pδ, and inclusions of order ideals correspond to
reverse inclusions of Schubert varieties.

Combinatorially, the minuscule posets are completely classified. Minuscule posets
consist of three infinite families together with a pair of exceptional examples. This clas-
sification is given in Table 1, with examples shown in Figure 5. One infinite family of
minuscule posets is the rectangles; combinatorially, these are the products Ci × Cj of
two chain posets. Another infinite family is the double-tailed diamonds studied in Sec-
tion 5. The final infinite family is the shifted staircases; identifying the chain Ci with
the natural order on {1, . . . , i}, shifted staircases are of the form

{(x1, x2) ∈ Ci × Ci : x1 > x2},

with the order structure restricted from Ci × Ci. For convenience, we will assume that
shifted staircases have at least 10 nodes, as the smaller shifted staircases coincide with
small rectangles/double-tailed diamonds. Lastly, for the definitions of the exceptional
Cayley-Moufang swivel and bat, see their Hasse diagrams depicted in the second row
of Figure 5. The acyclic nodes of the minuscule posets are also shown in Figure 5; we will
use the indexing of these nodes as L and R, as in that figure.

We will only use the following proposition in the case k = 1 of rectangles; however,
for possible future use, we note that it is equally true for four of Proctor’s other families:
birds (family 3), tailed insets (family 5), banners (family 6), and nooks (family 7).

Lemma 48. Let k ∈ {1, 3, 5, 6, 7}. Let P be an irreducible d-complete poset from family
k and let A ⊆ P be the set of all acyclic nodes in P. If a straight-shaped increasing
P-tableau U is a URT for all posets in family k, then U is a A-chain URT in all such
posets.

Proof. Suppose A = {a1, . . . , ak}. Let i1, . . . , ik be arbitrary positive integers. Let R be
the iterated slant sum P a1/ Ci1 a2/ . . . ak/ Cik of P with a collection of chains. Observe
that R is an order ideal of a larger poset in the same irreducible family. Thus, U is a
URT in R, as desired.
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Theorem 49 ([BS16]). Let P be a minuscule poset. Then, for every order ideal λ ⊆ P,
the minimally-labeled increasing P-tableau Mλ of shape λ is a URT in P.

..
.

L ..
.

. .
.

. .
.

. .
.

R

..
.

rectangle

. .
.

R

. .
.

. .
...

.

..
.

..
.

shifted staircase

...

L R

...

double-tailed diamond

Cayley-Moufang swivel bat

Figure 5: Examples of the 5 families of minuscule posets. The labeled red nodes mark the
acyclic nodes of these posets. The exceptional posets of the bottom row have no acyclic
nodes.

Corollary 50. Let P be a rectangle. Let Mλ be an minimally-labeled P-tableau of straight
shape. Then, Mλ is an {L,R}-chain URT in P.

Proof. This follows from Lemma 48 and Theorem 49.

Corollary 51. Let P be a shifted staircase with at least 10 nodes. If Mλ is a minimally-
labeled P-tableau of straight shape, then Mλ is an {R}-chain URT in P.

Proof. If S is the slant sum P R/ Cj of P with a chain, then S is an order ideal of a larger
shifted staircase, in which minimally-labeled tableaux are URTs by Theorem 49.
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Minuscule poset Minuscule variety Irreducible d-complete classification

rectangle Grassmanian shapes (family 1)
shifted staircase orthogonal Grassmanian shifted shapes (family 2)
double-tailed diamond quadric hypersurface insets (family 4–special case)
Cayley-Moufang swivel octonion projective plane swivels (family 8–special case)
bat Freudenthal variety bat (family 15)

Table 1: The 5 families of minuscule posets are named in the first column. The second col-
umn identifies the corresponding minuscule homogeneous space. The third column shows
how the minuscule posets fall into R. Proctor’s classification of irreducible d-complete
posets from [Pro99a].

In order to state the following, we adopt the convention that an ∅-chain URT in P
is just a URT in P .

Proposition 52. Let P be a minuscule poset. Let A be the set of acyclic nodes in P.
Let Mλ be a minimally-labeled increasing P-tableau of straight shape. Then, Mλ is an
A-chain URT in P.

Proof. If P is the Cayley-Moufang swivel or the bat, then it has no acyclic nodes, so
A = ∅. Hence, in these cases, it suffices to verify that Mλ is a URT in P . This fact is a
special case of Theorem 49.

If P is a rectangle, then A = {L,R}, and Mλ is a {L,R}-chain URT in P by Corol-
lary 50. If P is a double-tailed diamond, then A = {L,R}, and Mλ is a {L,R}-chain
URT in P by Corollary 43. Finally, if P is a shifted staircase with at least 10 nodes, then
Mλ is an A-chain URT in P by Corollary 51.

Proposition 39 allows us to extend Proposition 52 to show that minimally-labeled
tableaux are unique rectification targets in iterated slant sums of minuscule posets.

Theorem 53. Let P be a d-complete poset. If P is an iterated slant sum of minus-
cule posets, then all minimally-labeled increasing P-tableaux of straight shape are unique
rectification targets.

Proof. We prove the stronger statement that all minimally-labeled increasing P-tableaux
of straight shape are A-chain URTs in P , where A denotes the set of acyclic nodes in P .
We induct on the number n of irreducible components in the slant sum decomposition of
P . For Q an irreducible component of P , write AQ for the set of acyclic nodes of Q.

The base case, n = 1 is provided by Proposition 52.
Otherwise, P is the slant sum of irreducible components. One of these components

contains the minimum 0̂P ; call this componentM. By R. Proctor’s classification of acyclic
nodes [Pro99a], M has at most two acyclic nodes. Then,

P =M L/ {L1, . . . ,L`} R/ {R1, . . . ,Rr},
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where L and R are the acyclic nodes of M (if L or R is not an acyclic node, then we
have ` = 0 or r = 0 respectively), and L1, . . . ,L` and R1, . . . ,Rr are disjoint d-complete
posets that are slant sum trees of minuscule components. Note that each Ri and Lj is a
slant sum of strictly fewer than n irreducible components.

Suppose T is a minimally-labeled increasing P-tableau of straight shape. Then, T |Ri

is a minimally-labeled Ri-tableau of straight shape (modulo shifting the alphabet), so by
the inductive hypothesis, T |Ri

is an ARi
-chain URT in Ri for all i. Similarly, T |Li is an

ALi-chain URT in Li for all i. Finally, T |M is a minimally-labeledM-tableau of straight
shape, so by the inductive hypothesis it is AM-chain URT inM. Thus, by Proposition 39,
we have that T is an A-chain URT in P , where A is the set of acyclic nodes in P .

The following is the precise version of Theorem 2.

Corollary 54. Let P be a d-complete poset. If P is an iterated slant sum of minuscule
posets and Q ⊆ P is an order ideal, then all minimally-labeled increasing Q-tableaux of
straight shape are unique rectification targets.

Proof. Let Mλ be a minimally-labeled increasing Q-tableau of straight shape. Since Q
is an order ideal of P , Mλ is also a minimally labeled increasing P-tableau of straight
shape. Hence by Theorem 53, Mλ is a unique rectification target in P , so it is a unique
rectification target in Q.

Finally, we recall the construction necessary to make precise sense of Conjecture 3.
Let P be any poset satisfying the conclusion of Conjecture 47. Then, as in [BS16, §3.5],
we construct a combinatorial K-theory ring associated to P . Let K(P) be the free abelian
group on the set of order ideals of P . Define a product structure on K(P) by setting

λ · µ :=
∑
ν

tνλ,µ ν,

where the Greek letters denote order ideals of P and tνλ,µ is defined to be (−1)|ν|−|λ|−|µ|

times the number of skew increasing P-tableaux of shape ν/λ that rectify to the minimally-
labeled tableau Mµ. (Since Mµ is by hypothesis a URT in P , this number is well-defined.)
By [BS16, Proposition 3.17], this product structure makes K(P) into a commutative asso-
ciative algebra with the empty order ideal as multiplicative identity. Conjecture 3 claims
then that, when P is d-complete, the structure constants of the algebra K(P) coincide
with corresponding Λ-minuscule Schubert structure constants of the K-theory ring K(X),
where X = G/P is a Kac-Moody homogeneous space, w ∈ W P is a Λ-minuscule Weyl
group element for P , and P is the poset of join irreducibles of the distributive lattice
[id, w].
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