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Abstract

A path coloring of a graph G is a vertex coloring of G such that each color
class induces a disjoint union of paths. We consider a path-coloring version of list
coloring for planar and outerplanar graphs. We show that if each vertex of a planar
graph is assigned a list of 3 colors, then the graph admits a path coloring in which
each vertex receives a color from its list. We prove a similar result for outerplanar
graphs and lists of size 2.

For outerplanar graphs we prove a multicoloring generalization. We assign each
vertex of a graph a list of q colors. We wish to color each vertex with r colors from
its list so that, for each color, the set of vertices receiving it induces a disjoint union
of paths. We show that we can do this for all outerplanar graphs if and only if
q/r > 2. For planar graphs we conjecture that a similar result holds with q/r > 3;
we present partial results toward this conjecture.

Mathematics Subject Classifications: Primary 05C15; Secondary 05C10

1 Introduction

All graphs will be finite, simple, and undirected. See West [27] for graph theoretic terms.
We denote the vertex set of a graph G by V (G). A path coloring of G is a coloring

(not necessarily proper) of V (G) such that each color class induces a linear forest, that
is, a forest of maximum degree at most 2, or, equivalently, a disjoint union of paths. A
graph G is path k-colorable if G admits a path coloring using k colors.

Every outerplanar graph is path 2-colorable; this was proven independently by Broere
& Mynhardt [7, Thm. 3] and by Akiyama, Era, Gervacio, & Watanabe [1, Thm. 2.3].

Theorem 1.1 (Broere & Mynhardt 1985; Akiyama, Era, Gervacio, & Watanabe 1989).
If G is an outerplanar graph, then G is path 2-colorable. �
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Chartrand & Kronk [10, Section 3] gave an example of a planar graph whose vertex set
cannot be partitioned into two subsets, each inducing a forest. It follows that not every
planar graph is path 2-colorable. Broere & Mynhardt conjectured [7, Conj. 16] that every
planar graph is path 3-colorable. This was proven independently by Poh [22, Thm. 2] and
by Goddard [14, Thm. 1].

Theorem 1.2 (Poh 1990, Goddard 1991). If G is a planar graph, then G is path 3-
colorable. �

Path colorability has a natural list-coloring generalization. A graph G is path k-
choosable if, whenever each vertex of G is assigned a list of k colors, there exists a path
coloring of G in which each vertex receives a color from its list.

A related, slightly weaker notion that has led to a number of results is that of 2-
defective choosability. A graph G is t-defective k-choosable if, whenever each vertex of
G is assigned a list of k colors, there exists a vertex coloring of G in which each vertex
receives a color from its list, and each color class induces a subgraph of maximum degree
at most t. When t = 2, each color class is a disjoint union of paths and cycles.

Much of the work on these types of list coloring has looked at restricted classes of
planar graphs. Of particular interest have been questions involving lists of size 2.

One way to restrict the class of planar graphs is to place a lower bound on the girth.
Škrekovski [24, Thm. 1.1] showed that each planar graph of girth at least 7 is 2-defective
2-choosable. Havet & Sereni [18, Corollary 1] improved this by showing by showing that
girth at least 6 suffices. Chappell, Gimbel, & Hartman [9, Thm. 3.1] further improved
this by showing that each planar graph of girth at least 6 is path 2-choosable. And Axen-
ovich, Ueckerdt, & Weiner [5, Thm. 1] improved the Chappell-Gimbel-Hartman result by
showing the existence of a path coloring in which each monochromatic component is a
path on at most 15 vertices.

In another improvement of the Škrekovski result, Borodin & Ivanova [6, Thm. 1]
showed that each planar graph of girth at least 7 is path 2-choosable such that, in the
path coloring, each monochromatic component is a path on at most 3 vertices.

In the other direction, Škrekovski [23, Prop. 3.2] constructed a planar graph of girth
4 that is not 2-defective 2-choosable (also see Chappell, Gimbel, & Hartman [9, Corol-
lary 3.4]). So none of the above girth-related results can be extended to planar graphs
of girth 4. The question of whether every planar graph of girth 5 is path 2-choosable, or
2-defective 2-choosable, remains open.

We can also restrict planar graphs by placing bounds on the maximum degree. Chap-
pell, Gimbel, & Hartman [9, Corollary 2.5, Prop. 2.7] showed that every planar graph
with maximum degree at most 4 is path 2-choosable, while there exists a planar graph
with maximum degree 5 that has no path 2-coloring.

Concerning planar graphs in general, Škrekovski [23, Thm. 2.2b] and Eaton & Hull [12,
Thm. 1] independently showed that every planar graph is 2-defective 3-choosable.

Defective choosability has also been investigated for various other classes of graphs,
including graphs on surfaces of higher genus (see Woodall [29]) and graphs with bounded
maximum average degree (see Havet & Sereni [18]). Recently, Ossona de Mendez, Oum,
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& Wood [21] investigated defective choosability for classes of graphs with certain excluded
subgraphs, leading to new results for a number of graph classes. See Wood [28] for a survey
of defective coloring.

In this work, we investigate list-coloring generalizations of Theorems 1.1 and 1.2.
In Section 2, we show that “colorable” may be replaced by “choosable” in the state-

ments of Theorems 1.1 and 1.2: every outerplanar graph is path 2-choosable, and every
planar graph is path 3-choosable. Thus, we strengthen the results of Škrekovski [23,
Thm. 2.2b] and Eaton & Hull [12, Thm. 1].

Erdős, Rubin, & Taylor [13] introduced a generalization of ordinary list coloring. A
graph G is (q, r)-choosable, for positive integers q and r, if, whenever each vertex of G is
assigned a list of q colors, we may color each vertex with a set of r colors from its list so
that adjacent vertices are colored with disjoint sets.

We define a path-coloring version of this generalized list coloring. In a path multicol-
oring of a graph G each vertex of G is colored with a set of colors such that, for each
color, the collection of vertices whose set contains that color, induces a linear forest. Note
that, if each vertex is colored with a set of size 1, then the result is an ordinary path
coloring. A graph G is path (q, r)-choosable if, whenever each vertex of G is assigned a
list of q colors, there is a path multicoloring of G in which each vertex receives a set of
r colors from its list. This generalizes our earlier definition of path choosability, as path
(k, 1)-choosability is the same as path k-choosability.

In Section 3, we consider path (q, r)-choosability of outerplanar graphs. We show that
every outerplanar graph is path (q, r)-choosable iff q/r > 2, for q and r positive integers.

In Section 4, we conjecture that a similar result holds for planar graphs with q/r >
3; we present partial results toward this conjecture. In particular, we show that the
implication holds in one direction: if every planar graph is path (q, r)-choosable, then
q/r > 3. We also show that, for each planar graph G, there exist an infinite number of
positive integers m such that G is path (3m,m)-choosable.

2 Path Choosability

We can generalize Theorem 1.2 to path choosability.

Theorem 2.1. If G is a planar graph, then G is path 3-choosable. �

Theorem 2.1 was proven by the second author in his Ph.D. thesis [17, Thm. 4.1].
Our proof is based on the proof found there, with some ideas taken from a proof by
Škrekovski [23, pf. of Lemma 2.1] of a slightly different result, using essentially the same
technique.

Theorem 2.1 follows from our next lemma. By a planar graph we mean a graph
that can be drawn in the plane without crossing edges, while a plane graph is a planar
graph along with an embedding in the plane. Given x, y ∈ V (G), we denote by SG(x, y)
the set containing x, y, and all cut vertices of G that separate x and y; in particular,
SG(x, x) = {x}.
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Figure 1: An illustration of the conditions in Lemma 2.2. The drawing represents a plane
graph G, with each block of G shown as an oval. Dots represent vertices x and y, and cut
vertices of G. Numbers give minimum list sizes: small red numbers for individual vertices
shown as dots, larger blue numbers for classes of vertices.

Lemma 2.2. Let G be a connected plane graph with distinguished vertices x, y—not
necessarily distinct—lying on the outer face. Let each vertex v of G be assigned a list
L(v) of colors such that

∣∣L(v)
∣∣ >


1, if v ∈ SG(x, y);

2, if v is any other vertex on the outer face;

3, otherwise, i.e., if v is an interior vertex.

Then there exists a path coloring of G in which each vertex receives a color from its list.

See Figure 1 for an illustration of the conditions on G in Lemma 2.2.

Proof. We proceed by induction on the order of G. If G has order 2 or less, then simply
color each vertex with any color from its list. Now suppose that G has order at least 3.
We may assume that each face of G—except possibly the outer face—is a triangle (if not,
then adding edges, coloring the resulting graph, and then removing the added edges will
result in the required coloring of G).

Number the vertices on the outer face consecutively, going clockwise:

x = z0, z1, . . . , zk = y, zk+1, . . . .

Note that if v is a cut vertex of G, then v appears in this list more than once.
Let Cx be a color in L(x). Consider the collection of all induced paths P in G such

that P begins at x and ends in the set { zi : 0 6 i 6 k } and every vertex of P has Cx in
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its list. This collection of paths is nonempty, since it contains the trivial path beginning
and ending at x = z0. Let P0 be a path in this collection whose ending point has the
greatest possible index e 6 k; so ze is the ending point of P0.

See the upper graph in Figure 2 for an illustration.
Color each vertex of P0 with color Cx. Create a new list assignment L′ for vertices in

G − P0. If a vertex v is adjacent in G to a vertex of P0, then let L′(v) = L(v) − {Cx};
otherwise, let L′(v) = L(v).

We wish to apply the induction hypothesis to each component of G − P0, using the
L′ lists. In each component we choose vertices x′ and y′ to take the role of x and y,
respectively, in the statement of the lemma; we then verify that the conditions of the
lemma are met. The colors given by the lemma, along with the coloring of each vertex of
P0 with Cx, will give us the required path coloring of G (since color Cx has been removed
from the list of each vertex of G− P0 that is adjacent to a vertex of P0).

Let H be a component of G − P0 with the plane embedding inherited from G. Let
i1 = max{ i : zi ∈ V (H) }, and let x′ = zi1 . If y ∈ V (H), then let i2 = k; otherwise, let
i2 = min{ i : zi ∈ V (H) }. Let y′ = zi2 .

We make three observations concerning x′ and y′. First, if y ∈ V (H), then y′ = y.
Second, it is possible that x′ = y′. Third, x′ has a neighbor in P0, as zi1+1—or z0 if there
is no zi1+1 in G—does not lie in H.

See the lower graph in Figure 2 for an illustration of x′ and y′ in components of G−P0.
Graph H is a connected plane graph, and vertices x′ and y′ lie on the outer face. In

order to apply the induction hypothesis to H, it remains to show that the L′ lists have
the required sizes.

Let v be a vertex of H that does not lie on the outer face of H. Then v does not lie
on the outer face of G, so |L(v)| > 3. Vertex v cannot be adjacent in G to any vertex of
P0; thus L′(v) = L(v), and |L′(v)| > 3.

Now let w be a vertex of H with |L′(w)| 6 1. We show that |L′(w)| = 1 and w ∈
SH(x′, y′). This will suffice to verify that the L′ lists have the required sizes, and will thus
complete the proof of the lemma. We consider two cases. In Case I, w ∈ SG(x, y). In
Case II, w 6∈ SG(x, y).

Case I. w ∈ SG(x, y).
Let j = min{ i : w = zi }. We cannot have j 6 e, as then w ∈ SG(x, xe), and w would

lie on P0. The walk x = z0, z1, . . . , zk = y in G must hit every vertex in SG(x, y); so j 6 k.
Therefore, e < j 6 k. Suppose |L′(w)| = 0. Then Cx was removed from L(w) to

obtain L′(w), so w is adjacent to a vertex of P0, and Cx ∈ L(w). But this contradicts
our choice of P0 as the path whose ending point has the greatest possible index. By
contradiction, |L′(w)| = 1.

Path P0 must be contained in a single component of G−w: the component containing
x. Since w ∈ SG(x, y), vertex y does not lie in this component. Therefore, there is a path
in G − P0 from w to y, so y ∈ H. By our choice of y′, we have y′ = y. Now consider a
walk in G beginning at x, following P0 until reaching a neighbor of x′, and then following
a path in H from x′ to y′ = y. If w 6∈ SH(x′, y′), then we may choose this path to avoid w,
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Figure 2: An illustration of part of the process involved in the proof of Lemma 2.2.
Above is a plane graph G with an induced path P0 shown in blue. Vertices x, y, and
ze are labeled. Below is the same graph G, with the components of G − P0 highlighted.
Vertices x′ and y′ are shown in each component. In the component containing y, we have
y′ = y.
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and the walk in G from x to y avoids w, contradicting the fact that w ∈ SG(x, y). Thus
we must have w ∈ SH(x′, y′).

Case II. w 6∈ SG(x, y).
We have |L(w)| > 2, so |L′(w)| > 1. We assumed that |L′(w)| 6 1, so |L′(w)| = 1.
We show that w ∈ SH(x′, y′). Suppose not. Then w 6= x′, w 6= y′, and there is a path

in H from x′ to y′ that avoids w. We will obtain a contradiction by exhibiting a K5 minor
in a planar graph F .

Let F be a graph with vertex set V (P0) ∪ V (H) ∪ {u1, u2}, where u1 and u2 are new
vertices. Edges of F will be all edges of G with both endpoints in V (P0) ∪ V (H), along
with an edge from u1 to u2, an edge from u1 to each of x, y′, w, an edge from u2 to each
of w, x′, x, and an edge from w to x′—unless such an edge exists in H.

We claim that F is planar. Since |L(w)| > 2 and |L′(w)| = 1, color Cx was removed
from L(w) to obtain L′(w); thus, w is adjacent to a vertex of P0, and Cx ∈ L(w). Further,
|L(w)| = 2, so w lies on the outer face ofG. Let i3 be the greatest integer such that w = zi3 .

We show that 0 < i2 < i3 < i1. None of i1, i2, i3 can be zero, since z0 = x lies on P0,
and so does not lie in H. Since w 6= x′, y′, we have i3 6= i1, i2. By our choice of x′ = zi1 ,
we have i3 < i1. If y 6∈ V (H), then, by our choice of y′, we have i2 < i3. Now suppose
that y ∈ V (H). Since w is adjacent to a vertex of P0 and Cx ∈ L(w), we cannot have
e < i3 < k = i2, as this would contradict our choice of P0 as the path whose ending point
has the greatest possible index. We also cannot have i3 < e, as then P0 would separate
w and y in G, and these two vertices could not lie in the same component of G − P0.
Therefore, i2 < i3. We conclude that, in all cases, 0 < i2 < i3 < i1.

The subgraph of G induced by V (P0)∪V (H) is planar, since G is planar. Since x = z0,
y′ = zi2 , w = zi3 , and x′ = zi1 lie on the outer face of G in clockwise order, if we place
vertices u1, u2 in the outer face of G, then we may add the edges involving u1 and u2, and
the edge from w to x′, without crossing any existing edges, resulting in a plane embedding
of F . Hence, the claim holds: F is a planar graph.

To finish our proof, we obtain a contradiction by finding a K5 minor in F . Start with
graph F , and contract all edges of P0. If x′ 6= y′, then also contract all edges of any path
in H from x′ to y′ that avoids w. In the resulting graph, vertices x, x′, and w are all
adjacent to each other, since x′ and w both have neighbors in P0, and x′ and w are joined
by an edge in F . In addition, vertices u1 and u2 are adjacent to each other and to all
three of x, x′, and w, since x′ = y′ after contracting edges. We see that vertices x, x′, w,
u1, and u2 are distinct and all adjacent to each other; they thus induce a K5.

Hence, we have a K5 minor in F , a planar graph. By contradiction, w ∈ SH(x′, y′).
This completes Case II and the proof of the lemma. �

Our proof of Lemma 2.2 is constructive. An implementation of an efficient path-
coloring algorithm based on this proof is discussed in Bross, Chappell, & Hartman [8].

Curiously, Theorem 2.1 has more or less been proven, while not being explicitly stated,
in two other papers. As noted previously, Škrekovski [23, Thm. 2.2b] and Eaton & Hull [12,
Thm. 1] independently showed that every planar graph is 2-defective 3-choosable. Recall
that, in the coloring associated with this property, each color class is a disjoint union of
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paths and cycles. In both cases, the proof is constructive, and the construction never
actually produces cycles; it only produces paths—but this fact is not noted in either
paper. The proof due to Škrekovski uses much the same technique as that in our proof
above, while the Eaton-Hull proof is somewhat different.

Readers who have seen the proof by Škrekovski [23, pf. of Lemma 2.1] may object
to our claim that that proof and our proof of Lemma 2.2 are much the same; the two
proofs are written quite differently. However, the proofs involve a common underlying
idea, which is as follows. Given distinguished vertices x, y, find a path that begins at x,
ends on the outer face as far as possible toward y, and is colorable with a color available
for x. Color this path with that color, remove that color from the lists of all neighbors
of the path, remove the path from the graph, and invoke the induction hypothesis; and
then everything else “just works.”

The idea above is a simple one; the bulk of the effort in both proofs lies in showing
that it “just works,” and it is there that they differ. The proof of Škrekovski is written as
a case analysis; some of the cases involve splitting the graph into blocks. Thus, when the
path is removed, Škrekovski does not need to worry about cut vertices. But care must
be taken to ensure that, when blocks are joined together, the coloring on the graph as a
whole has the required properties. We, on the other hand, proceed in a single step. We
avoid most of the cases, but we then need to spend time talking about cut vertices—our
argument involving the K5 minor.

We leave it to the reader to judge which form of the proof is preferable; we are not
certain ourselves.

The following is an immediate corollary of Lemma 2.2.

Theorem 2.3. If G is an outerplanar graph, then G is path 2-choosable. �

Theorem 2.3 was proven by the second author in his Ph.D. thesis [17] (see the com-
ments after the proof of Lemma 4.2 in that thesis). As with Theorem 2.1, Škrekovski [23,
Thm. 2.2a] and Eaton & Hull [12, Corollary 2] also proved a slightly weaker form of
Theorem 2.3: that every outerplanar graph is 2-defective 2-choosable.

3 Path List Multicoloring: Outerplanar Graphs

Recall that a graph G is (q, r)-choosable if, whenever each vertex of G is assigned a list
of q colors, we may color each vertex with a set of r colors from its list so that adjacent
vertices are colored with disjoint sets.

The following question is due to Erdős, Rubin, & Taylor [13, p. 155].

Question 3.1 (Erdős, Rubin, & Taylor 1980). Let q, r, and m be positive integers. If a
graph G is (q, r)-choosable, is G necessarily (mq,mr)-choosable? �

Little is known about the answer to Question 3.1 for graphs in general. Gutner [15,
Thm. 1.16] proved that every (2, 1)-choosable graph is (4, 2)-choosable. Tuza & Voigt [26,
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Thm. 1] showed that, if a graph is (2, 1)-choosable, then it is (2m,m)-choosable, for each
positive integer m. See Gutner & Tarsi [16] for a summary of these and related ideas.

It seems likely that Question 3.1 gets a “yes” answer, and that this idea generalizes
to colorings of hypergraphs. Let H = (X,F) be a hypergraph with finite vertex set X
and hyperedge set F . In a proper multicoloring of H, each vertex of H is colored with a
set of colors such that, for each hyperedge e ∈ F , there is no color that is used on every
vertex in e. Equivalently, for each color C, the set of vertices on which C is used forms an
independent set in H, that is, a set A of vertices of H such that A contains no hyperedge
of H. We say H is (q, r)-choosable if, whenever each vertex of H is assigned a list of q
colors, there is a proper multicoloring of H in which each vertex receives a set of r colors
from its list.

Conjecture 3.2. Let q, r, and m be positive integers. If a hypergraph H is (q, r)-
choosable, then H is (mq,mr)-choosable. �

Conjecture 3.2 is not really new, although we do not know that it has previously been
published. Certainly, the conjecture is implicit in works like that of Mihók, Tuza, &
Voigt [20].

We mention hypergraph coloring because path coloring is a special case.

Observation 3.3. Let G be a graph. Let H = (X,F) be the hypergraph with vertex set
X = V (G) whose hyperedges are those subsets of V (G) that induce, in G, either a cycle
or a claw (K1,3). Then the proper vertex colorings of H are precisely the path colorings
of G, and the proper multicolorings of H are precisely the path multicolorings of G. �

While we have not been able to prove Conjecture 3.2 in full generality, applying Con-
jecture 3.2 to the statement of Theorem 2.3 gives the following, which we can prove.

Theorem 3.4. If G is an outerplanar graph, then G is path (2r, r)-choosable, for each
positive integer r. �

Theorem 3.4 follows from our next lemma. An outerplane graph is an outerplanar
graph along with an embedding in the plane such that each vertex lies on the outer face.

Lemma 3.5. Let G be an outerplane graph with distinguished vertices x, y, such that xy
is an edge lying on the outer face. Let r be a positive integer. Let each vertex v of G be
assigned a list L(v) of colors such that

∣∣L(v)
∣∣ > {r, if v ∈ {x, y};

2r, if v is any other vertex.

Then there exists a path multicoloring of G in which each vertex receives r colors from its
list, x has no neighbor in any of its color classes, other than y, and y has degree at most
1 in each of its color classes.
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Proof. We proceed by induction on the order of G. If G has order 2, then simply color
each vertex with r colors from its list. Now suppose that G has order at least 3.

We may assume that G is maximal outerplanar; if not, add edges to G, maintaining
an outerplane embedding and keeping edge xy on the outer face. We may further assume
that |L(x)| = r.

Vertices x, y must have exactly one common neighbor; call it z. To see this, first
observe that, if there are no common neighbors, then xy is a cut edge, so G is not
maximal outerplanar. Second, if there is another common neighbor, say z′, then, because
edge xy lies on the outer face, we can add a new vertex z′′ adjacent to both x and y, to
obtain an outerplanar graph with a K2,3 subgraph, which is impossible.

Create a new list assignment L′. Let L′(z) be an r-element subset of L(z)−L(x). For
each vertex v ∈ V (G)− {z}, let L′(v) = L(v).

Let G′1 be the subgraph of G induced by x, z, and each other vertex v such that {x, z}
separates v and y. Similarly, let G′2 be the subgraph of G induced by y, z, and each other
vertex v such that {y, z} separates v and x. Note that G′1 and G′2 have exactly one vertex
in common: z. We have V (G′1) ∪ V (G′2) = V (G); any vertex v outside this union would
be the endpoint of three paths reaching x, y, z, respectively, without meeting either of
the other two vertices, resulting in a K4 minor, which is impossible.

See Figure 3 for an illustration of G′1 and G′2.
Edge xz lies on the outer face of G′1; apply the induction hypothesis to G′1, with

distinguished vertices x, z (playing the role of x, y, respectively) and list assignment L′.
Similarly, edge yz lies on the outer face of G′2; apply the induction hypothesis to G′2, with
distinguished vertices y, z (playing the role of x, y, respectively) and list assignment L′.
These applications of the induction hypothesis will color all vertices, although vertex z,
lying in both subgraphs, is colored twice. However, |L′(z)| = r, so z must receive the
same r colors in G′1 and in G′2. Thus, we have a vertex coloring of G.

It remains to show that this is the required path multicoloring.
Subgraphs G′1 and G′2 are both path multicolored, each vertex v receives r colors from

L′(v), and L′(v) ⊆ L(v).
In G′1, x has no neighbor in any of its color classes, other than z. However, L′(x) ∩

L′(z) = ∅. Thus, in G, x has no neighbor in any of its color classes, other than y, as
required.

In G′2, y has no neighbor in any of its color classes, other than z. Vertex y may also
share a color with its neighbor x in G. However, again, L′(x) ∩ L′(z) = ∅, so no color
used on y can be used on both x and z. Thus, in G, y has degree at most 1 in each of its
color classes, as required.

In each of G′1 and G′2, z has degree at most 1 in each of its color classes. Thus, in G,
z has degree at most 2 in each of its color classes.

It remains to show that no color class containing a cycle is formed when G′1 and G′2 are
glued together. The set {x, y, z} separates all other vertices of G′1 from all other vertices
of G′2, so any new cycle must contain at least 2 vertices of {x, y, z}. However, x and y
each have degree at most 1 in each of their color classes, and so cannot lie in any cycle.
�
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Figure 3: An illustration of part of the process involved in the proof of Lemma 3.5. Shown
is a portion of a maximal outerplane graph G, with vertices x, y, and their unique common
neighbor z labeled, along with subgraphs G′1 and G′2.

We can show that Theorem 3.4 is best possible, in that the “2” in its statement cannot
be replaced by any smaller real number.

Proposition 3.6. For each ε > 0, there exists an outerplanar graph G such that, if q and
r are positive integers with q/r < 2− ε, then G is not path (q, r)-choosable.

Proof. Let ε > 0. Let t > 2 be an integer such that 2 − εt 6 0. Let G be the star K1,t;
note that G is outerplanar. Suppose for a contradiction that q and r are positive integers
with q/r < 2− ε, and G is path (q, r)-choosable.

Assign lists of q colors to the vertices of G so that every vertex is assigned the same
list. There exists a path multicoloring of G in which each vertex is colored with r colors
from this list. Fix such a multicoloring.

Let x be the center vertex of the star G, that is, the unique vertex that is not a leaf.
We partition the colors into two kinds. First are those colors used on vertex x; there are
r of these. Second are those colors that are not used on vertex x; there are q− r of these.

Star G has t leaves, colored with r colors each, so the total number of colors used on
the leaves, counting repetitions, is rt. Consider the contribution to this total from each
of the two kinds of colors. Any color used on x can be used on at most two leaves. So
the contribution to the total from colors used on x is at most 2r. There are q − r colors
that are not used on x; the contribution to the total from such colors is at most t(q − r).
Thus, we have the following.

tr 6 2r + t(q − r)
= 2r + t(q − 2r) + tr
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Since q/r < 2− ε and r > 0, we have q < 2r − εr, so q − 2r < −εr. Continuing:

< 2r − εrt+ tr since t > 0

= r (2− εt) + tr

6 r · 0 + tr by our choice of t, since r > 0

= tr.

Thus, we have tr < tr. By contradiction, the desired result holds. �

Another way to state Theorem 3.4 would be to say that if q/r > 2, then every outer-
planar graph is path (q, r)-choosable. Proposition 3.6 shows that the converse also holds.
Thus, we have proven the following.

Theorem 3.7. The following are equivalent, for positive integers q, r.

(i) Every outerplanar graph is path (q, r)-choosable.

(ii) q/r > 2. �

4 Path List Multicoloring: Planar Graphs

We would like to prove results for planar graphs analogous to our list-multicoloring the-
orems for outerplanar graphs (Theorems 3.4 and 3.7). Every planar graph is path 3-
choosable (Theorem 2.1) and thus path (3, 1)-choosable. Hence, Conjecture 3.2, if true,
would imply that every planar graph is path (3r, r)-choosable, for each positive integer r.
However, we have been unable to prove this.

This is somewhat surprising. Tuza [25, Section 1.4] remarked that, “. . . almost all
proofs showing that a certain graph is (k, 1)-choosable can be extended with little effort
to verify (km,m)-choosability.” This observation generally extends to other kinds of graph
coloring.

However, the technique used in our proof that planar graphs are path 3-choosable
(Theorem 2.1) does not appear to work in the context of path multicolorings; nor does
the technique used in the proof of Eaton & Hull [12, pf. of Thm. 1] (see the comments
after our proof of Lemma 2.2). We therefore leave generalized path choosability of planar
graphs as an open problem.

Conjecture 4.1. If G is a planar graph, then G is path (3r, r)-choosable, for each positive
integer r. �

We have not even been able to show that every planar graph is path (6, 2)-choosable.
However, we can show that Conjecture 4.1 is best possible, if it is true: the “3” in its
statement cannot be replaced by any smaller real number. We use the following example,
found in Cowen, Cowen, & Woodall [11, pf. of Thm. 3] (and introduced there to prove
something else).
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Figure 4: A plane embedding of graph M3 from Example 4.2. Black edges are those
contained in the stars S1, S2, and S3. Green edges are those incident with vertex x.

Example 4.2. Given a positive integer t, define a planar graph Mt as follows. Let
S1, . . . , St be t disjoint copies of the star K1,t. For each i = 1, . . . , t, let yi be the center
vertex of star Si, that is, the unique element of the partite set of cardinality 1. Let Mt

be the join of a single new vertex x with S1 ∪ · · · ∪ St; that is, for each vertex v ∈ Si

(i = 1, . . . , t), there is an edge between x and v. Since the disjoint union of stars is
outerplanar, graph Mt is a planar graph.

See Figure 4 for a drawing of graph M3. �

Proposition 4.3. For each ε > 0, there exists a planar graph G such that, if q and r are
positive integers with q/r < 3− ε, then G is not path (q, r)-choosable.

Proof. Our proof is similar to that of Proposition 3.6.
Let ε > 0. Let t > 3 be an integer such that −2 + 4t − εt2 6 0; such a t must exist,

since the leading coefficient of the left-hand side is negative. Let G be the graph Mt from
Example 4.2; note that G is planar. Suppose for a contradiction that q and r are positive
integers with q/r < 3− ε, and G is path (q, r)-choosable.

Assign lists of q colors to the vertices of G so that every vertex is assigned the same
list. There exists a path multicoloring of G in which each vertex is colored with r colors
from this list. Fix such a multicoloring.

Consider a star Si contained in G (as defined in Example 4.2). Let ai be the number of
colors used on vertex x that are also used on vertex yi, the center of star Si. We partition
the colors into three kinds. First are those colors used on vertex x; there are r of these.
Second are those colors used on vertex yi but not on x; there are r − ai of these. Third
are those colors used on neither x nor yi; there are q− r− (r− ai) = q− 2r+ ai of these.

Star Si has t leaves colored with r colors each, so the total number of colors used on
the leaves of Si, counting repetitions, is rt. Consider the contribution to this total from
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each of the three kinds of colors. Let bi be the contribution to the total from colors used
on vertex x. There are r − ai colors used on vertex yi but not x, and each of these can
be used on at most 2 of the leaves of Si, so the contribution to the total from such colors
is at most 2(r − ai). Lastly, there are q − 2r + ai colors used on neither x nor yi; the
contribution to the total from such colors is at most t(q − 2r + ai). Thus, we have the
following.

tr 6 bi + 2(r − ai) + t(q − 2r + ai).

Now consider the total number of colors used on the leaves of all the Si stars, again
counting repetitions. Summing the above, we obtain the following.∑

i

tr 6
∑
i

[
bi + 2(r − ai) + t(q − 2r + ai)

]
=
∑
i

bi + 2tr + t2(q − 2r) + (t− 2)
∑
i

ai

There are r colors used on vertex x. Each of these may be used on at most 2 other vertices
of G. Thus

∑
i ai 6 2r, and similarly

∑
i bi 6 2r. Continuing:

6 2r + 2tr + t2(q − 2r) + 2r(t− 2) since t− 2 > 0

= −2r + 4tr + t2(q − 3r) + t2r

Since q/r < 3− ε and r > 0, we have q < 3r − εr, so q − 3r < −εr. Continuing again:

< −2r + 4tr − εrt2 + t2r since t2 > 0

= r
(
−2 + 4t− εt2

)
+ t2r

6 r · 0 + t2r by our choice of t, since r > 0

=
∑
i

tr.

Thus, we have
∑

i tr <
∑

i tr. By contradiction, the desired result holds. �

By Proposition 4.3, we see that Conjecture 4.1 is equivalent to the following.

Conjecture 4.4. The following are equivalent, for positive integers q, r.

(i) Every planar graph is path (q, r)-choosable.

(ii) q/r > 3. �

That (i) implies (ii) in Conjecture 4.4 follows from Proposition 4.3. We have not been
able to prove (ii) implies (i). However, our final result will be a slightly weaker form
of this. Our proof will make use of results related to the Erdős-Rubin-Taylor question
(Question 3.1).

A theorem of Alon [2, Thm. 6.1], which was based on work of Alon, Kleitman, Pomer-
ance, Saks, & Seymour [3], implies that, if a graph G is (q, r)-choosable, then G is
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(mq,mr)-choosable for infinitely many positive integers m. A slightly stronger result,
due to Alon, Tuza, & Voigt [4, Thm. 1.3], was generalized to other kinds of graph color-
ings by Mihók, Tuza, & Voigt [20, Thm. 2]. See the surveys of Tuza [25, Section 3.4] and
of Kratochv́ıl, Tuza, & Voigt [19, Section 8.2] for summaries of these and related ideas.

Mihók, Tuza, & Voigt [20, Thm. 4] further generalized these ideas to hypergraphs.
Recall that an independent set in a hypergraph H is a set A of vertices of H such that

A contains no hyperedge of H. A fractional coloring of H is a nonnegative real-valued
function ϕ on the set A of all independent sets of H, such that, for each vertex v of H,
we have ∑

v∈A∈A
ϕ(A) > 1.

The fractional chromatic number of H, denoted by χ∗(H), is the infimum, over all frac-
tional colorings ϕ of H, of ∑

A∈A
ϕ(A).

Theorem 4.5 (Mihók, Tuza, & Voigt 1999). For every positive integer n there exists a
number f(n) 6 (n+ 1)2n+2 such that the following holds. For every hypergraph H with n
vertices and fractional chromatic number χ∗(H), and for every positive integer q that is
divisible by all positive integers up to f(n), H is (q, r)-choosable where r = q/χ∗(H). �

Theorem 4.5 has the following corollary, which almost, but not quite, verifies Conjec-
ture 3.2. (As with Conjecture 3.2, this corollary is not really new, although we do not
know that it has previously been published.)

Corollary 4.6. Let q and r be positive integers. If a hypergraph H is (q, r)-choosable, then
there exist an infinite number of positive integers m such that H is (mq,mr)-choosable.

Proof. Let q and r be positive integers, and let H be a (q, r)-choosable hypergraph. If we
assign all vertices of H the same list of q colors, and color from these lists, then we obtain
a proper multicoloring of H in which each vertex is colored with r colors, and a total of
at most q colors are used.

Define a fractional coloring ϕ on H. For each color C, the set of vertices on which C
is used in the above multicoloring forms an independent set in H. Let ϕ(A) = 1/r if A is
an independent set of this form, and ϕ(A) = 0 otherwise.

For each vertex v of H, there are r colors used on v, so we have∑
v∈A∈A

ϕ(A) = r · 1

r
= 1.

Thus ϕ is a fractional coloring of H. There are exactly q colors available to be used on
vertices of H, so

χ∗(H) 6
∑
A∈A

ϕ(A) = q · 1

r
.
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Let f(n) be as in the statement of Theorem 4.5, where n is the order of H. Let s be
a positive integer that is divisible by all positive integers up to f(n). Let t be a positive
integer such that t · χ∗(H) is an integer. Given a positive integer k, let m = kst. Since
there are an infinite number of such integers m—one for each positive integer k—it suffices
to show that H is (mq,mr)-choosable.

The value mr · χ∗(H) is an integer, since t · χ∗(H) is an integer. Further, mr · χ∗(H)
is divisible by all positive integers up to f(n). Thus, by Theorem 4.5, hypergraph H is
(mr · χ∗(H),mr)-choosable.

Since χ∗(H) 6 q/r, we have mq > mr · χ∗(H). We conclude that H is (mq,mr)-
choosable. �

Applying Corollary 4.6 to the hypergraph of Observation 3.3, we obtain our final
result.

Theorem 4.7. If G is a planar graph, then there exist an infinite number of positive
integers m such that G is path (3m,m)-choosable.

Proof. Let G be a planar graph. Let H be the hypergraph of Observation 3.3, whose
vertices are the vertices of G, and whose hyperedges are the subsets of V (G) inducing, in
G, either a cycle or a claw (K1,3). As noted in Observation 3.3, the proper multicolorings
of H are precisely the path multicolorings of G.

By Theorem 2.1, G is path 3-choosable, so H is (3, 1)-choosable. By Corollary 4.6,
there exist an infinite number of positive integers m such that H is (3m,m)-choosable.
For each such m, G is path (3m,m)-choosable. �
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