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Abstract

We examine properties of random numerical semigroups under a probabilistic
model inspired by the Erdős-Rényi model for random graphs. We provide a thresh-
old function for cofiniteness, and bound the expected embedding dimension, genus,
and Frobenius number of random semigroups. Our results follow, surprisingly, from
the construction of a very natural shellable simplicial complex whose facets are
in bijection with irreducible numerical semigroups of a fixed Frobenius number and
whose h-vector determines the probability that a particular element lies in the semi-
group.

Mathematics Subject Classifications: 20M14, 05E45

1 Introduction

A numerical semigroup is a subset S ⊂ Z>0 that is closed under addition (we do not
require S to have finite complement in Z>0). A nonnegative integer n is a gap of S if
n /∈ S and we denote the set of gaps of S by G(S). Numerical semigroups appear in several
areas of mathematics [5], and there are several interesting combinatorial invariants of a
semigroup [18]. Notable numerical semigroup invariants include
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1. the embedding dimension e(S), which is the size of the (unique) minimal generating
set of S,

2. the genus g(S) = #G(S), which is the number of gaps of S, and

3. the Frobenius number F(S), which is the largest gap of S.

The latter two invariants are usually only defined when S is cofinite, that is, when S has
finite complement in Z>0. The theory of numerical semigroups is a vibrant subject, with
connections to algebraic geometry and commutative algebra [1, 6, 9, 10, 15, 20] as well
as integer optimization and number theory (see [5] and references therein). In this paper,
we investigate invariants of numerical semigroups from a probabilistic point of view.

V. Arnold [4], J. Bourgain and Y. Sinai [8] initiated the study of the “average behavior”
of numerical semigroups by analyzing the Frobenius function F(S) for “typical” numerical
semigroups (see more recent work in [2]). Each of these papers produced random numerical
semigroups using the uniform probability distribution on the collection

G(N, T ) = {a ∈ ZN>0 : gcd(a) = 1 and ‖a‖∞ 6 T}

of generating sets, and each proved several interesting statements about the expected
value (in the usual probabilistic sense) of the Frobenius number. See the references in [2]
for a thorough overview.

In this paper, we study a different model, which generates at random a numerical
semigroup S according to the following procedure:

1. fix a nonnegative integer M and a probability p ∈ [0, 1];

2. for each positive integer n 6 M , independently choose with probability p whether
to include n in a set of generators A for S.

The notation S ∼ S(M, p) indicates S is a random numerical semigroup produced with
this model. A similar model was recently used to produce random monomial ideals [11]
(that is, each multivariate monomial with bounded total degree is included in a generating
set with probability p). The authors dubbed this model the “ER-type model” because its
definition was inspired by the Erdős-Rényi model of random graphs [13]; we will use the
same convention.

Unlike previously studied models, which sampled uniformly among numerical semi-
groups with a fixed number of generators, the ER-type model allows one to specify a
probability as input, yielding more refined control over the numerical semigroups pro-
duced. Our model is also more closely aligned with the “standard” sampling methods
from probabilistic combinatorics, and more compatible with the use of numerical semi-
groups in integer programming, where non-cofinite semigroups occur alongside cofinite
ones.

Our main result is as follows.
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Theorem 1. Let S ∼ S(M, p), where p = p(M) is a monotone decreasing function of M .

(a) If p� 1
M
, then S = 〈0〉 a.a.s.

(b) If 1
M
� p� 1, then S is cofinite, i.e., the set of gaps is finite, a.a.s and

lim
M→∞

E [e(S)] = lim
M→∞

E [g(S)] = lim
M→∞

E [F(S)] =∞.

(c) If limM→∞ p(M) > 0, then

lim
M→∞

E [e(S)] <∞, lim
M→∞

E [g(S)] <∞, and lim
M→∞

E [F(S)] <∞,

and each limit is bounded by explicit rational functions in p (see Theorem 30).

Although part (a) of Theorem 1 follows from standard arguments in probabilistic com-
binatorics (Theorem 5), parts (b) and (c) follow, surprisingly, from the construction of a
very natural shellable simplicial complex (Definition 8) whose facets are in bijection with
irreducible numerical semigroups of a fixed Frobenius number (Definition 7). As it turns
out, some of the probabilities involved in determining the expected values above require
precisely the h-vector (in the sense of algebraic combinatorics [21]) for this simplicial com-
plex. Through the h-vector, we distinguish parts (b) and (c) of Theorem 1 (Corollary 26)
and estimate the finite expectations (Theorem 30).

2 Distribution and cofiniteness

In this section, we prove that the threshold function for cofiniteness coincides with the
threshold function for nonemptyness (Theorem 5). We begin by briefly establishing some
notation and terminology for threshold functions; for a more comprehensive resource on
methods in probabilistic combinatorics, we refer the reader the excellent book of Alon
and Spencer [3].

If f, g are functions depending on some parameter n, we use the notation f � g to
indicate that the ratio g/f → 0 as n → ∞ and similarly f � g means that f/g → 0 as
n → ∞. With this, clearly f � 1 implies f → 0 as n → ∞. In the theory of Erdős-
Rényi random graphs, many graph properties tend to appear or not appear with high
probability based on the asymptotics of the probability parameter p. This phenomenon is
quantified by the notion of a threshold function [3, Chapter 10]. Here we define a notion of
threshold function tailored to the context of random numerical semigroups. We say that
a property P of a numerical semigroup S is monotone if whenever S has P , so does every
oversemigroup of S. For example, the property of being cofinite is monotone, whereas
the property of having Frobenius number n is not. A threshold function for a monotone
numerical semigroup property P is a function t(M) such that

lim
M→∞

P [S has P ] =

{
1 if p(M)� t(M),

0 if p(M)� t(M)
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for S ∼ S(M, p) as M →∞. If limM→∞ P [S has P ] = 1, then P is said to hold asymptot-
ically almost surely (hereafter abbreviated as a.a.s.). Loosely speaking, if t is a threshold
for a property P , when p is much smaller than t, then S will not have P a.a.s., and if p
is much larger than t, S will have P a.a.s.

Proposition 3 gives the probability of observing a fixed numerical semigroup in terms
of its embedding dimension and gaps.

Remark 2. In what follows, we denote by gM(S) the number of gaps n of S such that
n 6M .

Proposition 3. Let S ∼ S(M, p) and let S be a numerical semigroup with minimal
generating set A ⊂ [M ]. Then,

P [S = S] = pe(S)(1− p)gM (S).

If, in addition, F(S) 6M , then

P [S = S] = pe(S)(1− p)g(S).

Proof. Let A denote the generating set for S ∼ S(M, p). The key observation is that
S = S if and only if A ⊂ A and no gap of S is in A. The first claim thus follows by
independence, and the second claim then follows from the fact that F(S) 6 M implies
gM(S) = g(S).

Lemma 4. Let S ∼ S(M, p). If p(M)� 1/M, then S = 〈0〉 a.a.s.

Proof. The condition p(M)� 1/M implies pM → 0 as M →∞. By Markov’s inequality,
P [|A| > 0] 6 E [|A|] and by linearity of expectation, E[|A|] = pM → 0 as M →∞.

The proof of the threshold function for cofiniteness relies on counting the number of
coprime pairs in the random set A.

Theorem 5. The function t(M) = 1/M is a threshold function for the property that
S ∼ S(M, p) is cofinite.

Proof. By Lemma 4, when p� 1/M, S is the non-cofinite numerical semigroup 〈0〉 a.a.s.
Consider the case when p � 1/M. For each pair of coprime integers {i, j} such that
1 6 i < j 6M , define the indicator random variable 1{i,j} to be

1{i,j} :=

{
1, if i, j ∈ A
0, otherwise

and let
X =

∑
i<j

(i,j)=1

1{i,j},
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where (i, j) denotes the gcd of i and j. Then, E[1{i,j}] = p2 and Var[1{i,j}] = p2(1 − p2).
Further, if {i, j} ∩ {i′, j′} = ∅, Cov[1{i,j}, 1{i′,j′}] = 0, since the events 1{i,j} = 1 and
1{i′,j′} = 1 are independent. If i = i′ and j 6= j′,

Cov[1{i,j}, 1{i,j′}] = E[1{i,j} · 1{i,j′}]− E[1{i,j}]E[1{i,j′}] = p3(1− p).

Thus,

E[X] =
∑
i<j

(i,j)=1

p2 6M2p2,

and

Var[X] =
∑
i<j

(i,j)=1

p2(1− p2) +
∑
i<j<j′

(i,j)=1
(i,j′)=1

p3(1− p) 6M2p2(1− p2) +M3p3(1− p).

Hence,
Var[X]

E[X]2
6
M2p2(1− p2) +M3p3(1− p)

E [X]2
.

Now, to get a handle on the denominator E [X]2, note that

E [X] =
∑
i<j

(i,j)=1

p2 =
M−1∑
n=1

ϕ(n)p2,

where ϕ(·) denotes the Euler totient function. By [16, p. 131],
∑M−1

n=1 ϕ(n) ∼ 3
π2M

2 +

O (M lnM), from which it follows that E [X]2 > 9
π4M

4p4 for M sufficiently large. Hence,

Var[X]/E [X]2 → 0 as M →∞. By the second moment method, P [X > 0]→ 1 and thus
when p� 1/M , A will contain a pair of coprime integers a.a.s, which guarantees that S
is cofinite a.a.s. in this case.

3 The simplicial complex of irreducible semigroups

Before proving the remaining parts of Theorem 1, we introduce in Definition 8 a simplicial
complex whose combinatorial properties govern several questions arising from the ER-type
model for sampling random numerical semigroups. We prove that this complex is shellable
(Proposition 12), in the process uncovering a combinatorial interpretation of its h-vector
entries (Corollary 15). We begin by recalling the definition of a simplicial complex and
some related concepts, as presented in [21, Chapter 2].

Definition 6 ([21, Chapter 2]). Fix n ∈ Z>1. A simplicial complex with vertices [n] =
{1, . . . , n} is a collection ∆ of subsets of [n] (called faces) such that A ∈ ∆ implies B ∈ ∆
whenever B ⊂ A. The dimension of a face A is dim(A) = |A| − 1 and the dimension
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d = dim(∆) of ∆ is the largest dimension among the faces of ∆. The facets of ∆ are the
maximal faces with respect to containment, and ∆ is pure if its facets all have the same
dimension. The f -vector (f−1, f0, . . . , fd) of ∆ has entries giving the number

fi = #{A ∈ ∆ : |A| = i+ 1}

of i-dimensional faces of ∆, and the h-vector (h0, h1, . . .) of ∆ has entries expressed as

hi =
i∑

j=0

(−1)i−j
(
d− j
i− j

)
fj−1

in terms of the f -vector.

Definition 7 ([18, Chapter 2]). A numerical semigroup S is irreducible if it is maximal
(with respect to containment) among numerical semigroups with the same Frobenius
number F(S).

We now define the simplicial complex ∆n whose facets are in natural bijection with
irreducible numerical semigroups with Frobenius number n.

Definition 8. Fix n > 2, and let S1, . . . , Sr denote the irreducible numerical semigroups
with Frobenius number n. Define ∆n as the simplicial complex on [n − 1] with facets
Fi = Si ∩ [n− 1] (or, equivalently, a set A ⊂ [n− 1] is a face A ∈ ∆n whenever n /∈ 〈A〉).
Let dn = deg hn(x), where

hn(x) = hn,0 + hn,1x+ · · ·

denotes the polynomial in x whose coefficients are the h-vector (hn,0, hn,1, . . .) of ∆n.

Lemma 9. A numerical semigoup S with Frobenius number F(S) = n is irreducible if
and only if n− s /∈ S implies s ∈ S for s < n/2. In particular, ∆n is pure of dimension
b(n− 1)/2c.

Proof. The first claim follows from [18, Proposition 3.4], and yields a bijection between
the gaps of S (excluding n/2) and the elements of S less than n. The second claim now
follows.

Remark 10. Lemma 9 implies that for an irreducible numerical semigroup S, the set of
minimal generators less than n/2 (so long as it is nonempty) uniquely determines S. In
particular, the minimal generators determine which integers less than n/2 lie in S, and the
fact that i ∈ S if and only if n− i /∈ S determines the remainder of the gaps of S.

Definition 11 ([21, Definition 2.1]). A shelling order of a pure simplicial complex ∆
is a total ordering F1, . . . , Fr of the facets of ∆ so that for every i > 1, the complex
{Fi ∩ F1, . . . , Fi ∩ Fi−1} is pure of dimension dim(∆)− 1. We say ∆ is shellable if it has
a shelling order.
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Proposition 12. Fix n > 1, let S1, . . . , Sr denote the irreducible numerical semigroups
with Frobenius number n, and let Fi = Si ∩ [n− 1] be the facet of ∆n corresponding to Si.
If
∑
Fi >

∑
Fj for all i < j, then F1, . . . , Fr is a shelling order for ∆n.

Proof. Fix i > 2. It suffices to prove that whenever |Fj ∩ Fi| < |Fi| − 1 for j < i, there
exists k < i such that Fk ∩Fi ⊃ Fj ∩Fi. Let a = min(Fi \Fj) and b = max(Fj \Fi). Then
Si \ {a} is closed under addition since Sj is closed under addition and Fj and Fi have
identical elements less than a. Additionally, Si∪{b}\{a} is closed under addition, since its
elements greater than b are identical to those of Sj. In particular, Sk = Si∪{b}\{a} is an
irreducible numerical semigroup with Frobenius number n, and k < i since

∑
Fk >

∑
Fi.

This completes the proof.

Theorem 13. Each h-vector entry hn,i is nonnegative and equals the number of irreducible
numerical semigroups with Frobenius number n with exactly i minimal generators less than
n/2.

Proof. Fix notation as in Proposition 12. Any shellable simplicial complex has non-
negative h-vector entries [21, Corollary 3.2], so the non-negativity of each hn,i follows
from Proposition 12. Moreover, under any shelling order of ∆n (in particular, under any
ordering F1, . . . , Fr satisfying Proposition 12), Fj \ (F1 ∪ · · · ∪Fj−1) has a unique minimal
face Rj for each j, and

hn,i = #{Rj : #Rj = i}

counts the number of such minimal faces with i vertices. As such, it suffices to show each
Ri equals the set Gi of minimal generators of Si less than n/2.

Now, clearly hn,0 = 1, so assume Gi is nonempty. Any facet F containing Gi agrees
with Fi for all elements less than n/2, and Remark 10 implies Fi = F . As such, Fi is
the only facet containing the face Gi, and Ri ⊂ Gi. Conversely, suppose a ∈ Gi \ Ri,
and let S ′ = Si \ {a} ∪ {n− a}. Since a is a minimal generator of S, the set S ′ is closed
under addition and has the same number of elements less than n as Si, meaning S ′ is
an irreducible numerical semigroup. Since Si contains Ri and its corresponding facet Fi
appears before the facet F ′ corresponding to S ′ in the shelling order, we have arrived at
a contradiction.

Example 14. The faces in the simplicial complex ∆7 are depicted in Figure 1. The
shelling order for ∆7 produced by Proposition 12 is (456, 356, 246), and the unique minimal
face corresponding to each facet (see the proof of Theorem 13) is double-circled in the
figure. Since hn,i counts the number of such minimal faces with exactly i elements, we
have h7(x) = 1 + 2x.

Corollary 15. There is a bijection between the irreducible numerical semigroups with
Frobenius number n and the numerical semigroups not containing n whose generators
are all less than n/2. In particular, hn,i equals the number of embedding dimension i
semigroups not containing n whose generators are all less than n/2.
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Figure 1: The simplicial complex ∆7 (left) and its face poset (right); see Example 14.

Proof. For any irreducible numerical semigroup S = 〈n1 < · · · < nk〉 with F(S) = n,
the semigroup T = 〈n1, . . . , nt〉 with nt < n/2 < nt+1 is contained in S and thus cannot
contain n. Conversely, fix a numerical semigroup T = 〈n1 < · · · < nt〉 with nt < n/2, let

B = {s ∈ (n/2, n) : s /∈ T and n− s /∈ T},

and let S = T ∪ B ∪ {n + 1, n + 2, . . .}. If s + s′ /∈ T for s ∈ B and s′ ∈ T , then
(n− s)− s′ /∈ T , meaning s + s′ ∈ B. We conclude S is closed under addition, at which
point Lemma 9 implies S is irreducible. The second claim now follows from the first and
Theorem 13.

Remark 16. By Theorem 13, the coefficients hn,i of the polynomial hn(x) can be computed
using an implementation of [7] in the GAP package numericalsgps [12], which gives an
algorithm to compute the set of irreducible numerical semigroups with Frobenius num-
ber n. A precomputed list up to n = 90 can be found at the following webpages (the
computations for n > 88 each take over a day to complete with the authors’ personal
computers):

https://gist.github.com/coneill-math/c2f12c94c7ee12ac7652096329417b7d

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p37/data

The h-vectors of ∆89 and ∆90 (some entries of which are given in Table 1) demonstrate
an interesting phenomenon: not only are the coefficients hn,i not necessarily monotone
for fixed i, but the fewer divisors n has, the larger hn,i tends to be with respect to the
surrounding n-values. This is likely due in part to the complex ∆n having more vertices
in this case. The computations also take considerably longer in such cases; indeed, n = 89
took longer than for n = 88 and n = 90 combined.

We remind the reader that the polynomial hn(x) does not depend on a given numeri-
cal semigroup; rather, there is precisely one polynomial for each n ∈ Z>1, and it encodes
information about all numerical semigroups with Frobenius number n. Though a wide as-
sortment of posets whose elements are numerical semigroups have been studied elsewhere
in the literature [19, 17], we were unable to locate any that consider ∆n.

We are now ready to give the following bounds on the h-vector entries of ∆n, which
play a crucial role in establishing the final threshold function in Section 4 and estimating
several expected values in Section 5.
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n = 89 n = 90 n = 500
i Lower Actual Upper i Lower Actual Upper i Lower Upper
1 43 43 43 1 34 34 43 10 2.4 · 1012 9.3 · 1016

3 501 3873 9139 3 403 2442 9139 20 8.1 · 1018 4.4 · 1027

5 3025 27570 324632 5 2023 16065 324632 30 3.4 · 1022 7.7 · 1034

7 6436 39358 2629575 7 3433 21213 2629575 40 8.0 · 1023 1.3 · 1039

9 5005 18186 4686825 9 2002 8343 4686825 50 1.4 · 1023 2.0 · 1040

11 1365 3044 1352078 11 364 1055 1352078 60 1.8 · 1020 6.4 · 1037

13 105 153 27132 13 14 31 27132 70 5.2 · 1014 1.6 · 1030

Table 1: Comparison of the bounds in Theorem 17 with values computed in Remark 16.

Theorem 17. For any n > 1, i > 1, and N > 2, we have

N∑
j=2

(
b(n− 1)/jc − bn/(j + 1)c

i

)
6 hn,i 6

(
dn/2e − 2i

i

)
.

Proof. By Corollary 15, hn,i counts sets A minimally generating a semigroup not contain-
ing n. We claim

m = min(A) >

{
2i+ 1 if n is even;

2i if n is odd.

Indeed, since A forms a minimal generating set, each element must be distinct modulo
m. Additionally, since n /∈ 〈A〉, any element a ∈ A cannot satisfy a ≡ n mod m, and
since max(A) 6 b(n− 1)/2c, any two elements a, b ∈ A cannot satisfy a+ b ≡ n mod m.
If n is odd, this means m > 2i, and if n is even, then additionally no a ∈ A satisfies
a ≡ n/2 mod m, so m > 2i + 1. This proves the claimed lower bound on m. Lastly, we
can write

b(n− 1)/2c − (2i− 1) = b(n+ 1)/2c − 2i = dn/2e − 2i,

from which the upper bound immediately follows.
For the lower bound, we claim that for any j > 2, each set A of i distinct integers

chosen from the open interval (n/(j+1), n/j) minimally generates a numerical semigroup
S with n /∈ S. Indeed, the sum of any j elements of A is strictly less than n, while the
sum of any j + 1 is strictly larger than n. Additionally, since j > 2, the sum of any
two elements of A exceeds n/j, ensuring A minimally generates S. This completes the
proof.

Remark 18. Proposition 19 implies the lower bound in Theorem 17 is tight for i = 1.
The given bounds are tighter than those for more general Cohen-Macaulay simplicial
complexes [21] and are sufficient to prove the results in the coming sections, but still leave
room for improvement. Table 1 compares values from Theorem 17 with those computed
in Remark 16.

We conclude this section by using Theorem 17, which gives some basic properties of
hn(x), and Corollary 20, which gives a lower bound on the number of irreducible numerical
semigroups with Frobenius number n, improving a previous bound in [14, Proposition 5].
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Proposition 19. Fix n > 1.

(a) hn,0 = 1.

(b) hn,1 = b(n+ 1)/2c − τ(n), where τ(n) denotes the number of divisors of n.

(c) dn = deg hn(x) = b(n− 1)/2c − bn/3c.

Proof. We proceed using Corollary 15 and characterizing the possible sets A ⊂ (0, n/2) of
integers minimally generating a numerical semigroup S = 〈A〉 with n /∈ S. Since A = ∅
generates the semigroup S = {0}, we have hn,0 = 1. Additionally, any non-divisor of n
less than n/2 generates a semigroup not containing n, which proves part (b).

Now, taking cases for n modulo 6, the bound on min(A) obtained in the proof of
Theorem 17 implies dn 6 b(n − 1)/2c − bn/3c. Moreover, the set A = (n/3, n/2) ∩ Z
minimally generates a semigroup not containing n since the sum of any two elements is
strictly less than n while the sum of any three is strictly larger than n. Since |A| = dn,
this proves (c).

Corollary 20. For any N > 2, the number of irreducible numerical semigroups with
Frobenius number n is at least

N∑
j=2

2b(n−1)/jc−bn/(j+1)c.

4 Expected number of minimal generators

The main result of this section is Corollary 26, which states that if p → 0 as M → ∞,
then the expected number of generators, expected number of gaps, and expected Frobenius
number are all unbounded. Our proof uses a surprising connection between the probability
an(p) that a non-negative integer n lies outside the chosen semigroup (Definition 22) and
the h-vector of the simplicial complex ∆n introduced in Section 3; see Remark 24.

Note 21. In the remainder of the paper, we adhere to the convention that if S is a
numerical semigroup that is not cofinite, then g(S) = F(S) = 0. We do this so as not
to affect E [g(S)] and E [F(S)]; indeed, the assumption 1/M � p(M) is made everywhere
either of those two quantities appears, so Theorem 5 ensures that S is cofinite a.a.s.

Definition 22. Let S ∼ S(M, p). For each integer n ∈ [M ], denote by an(p) the proba-
bility that n cannot be written as a sum of elements in S ∩ [n− 1], that is,

an(p) := P [n /∈ 〈S ∩ [n− 1]〉] .

Proposition 23. For each n > 1 with n 6M , an(p) = (1− p)bn/2chn(p).
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Proof. The faces of ∆n are precisely the sets A ⊂ [n−1] satisfying n /∈ 〈A〉. In particular,
an(p) is the probability of choosing a generating set for S that lies in ∆n. As such,

an(p) =
∑
A∈∆n

p|A|(1− p)n−1−|A| = (1− p)bn/2c
dn∑
i=0

fi−1p
i(1− p)dn−i = (1− p)bn/2chn(p)

follows upon unraveling Definitions 6 and 8.

Remark 24. By Proposition 23, we can write

an(p) = (1− p)nH(k[x]/I∆n ; p)

in terms of the Hilbert series of the Stanley-Reisner ring k[x]/I∆n (see [21, Chapter 2,
Definition 1.1]). We encourage the interested reader to consult [21] for background on
Hilbert functions.

Theorem 25. Let S ∼ S(M, p), where p = p(M) is a monotone decreasing function of
M . If 1/M � p� 1, then limM→∞ E [e(S)] =∞.

Proof. The probability of an integer n being a minimal generator of S equals pan(p) since
the event that n is chosen (probability p) and the event n cannot be written as a sum of
other chosen values (probability an(p)) are independent. As such, by Proposition 23 and
the linearity of expectation,

E [e(S)] =
M∑
n=1

pan(p) =
M∑
n=1

p(1− p)bn/2chn(p).

For any fixed integer N > 2, the lower bound in Theorem 17 gives

E [e(S)] >
M∑
n=1

p(1− p)bn/2c
dn∑
i=0

N∑
j=2

(
b(n− 1)/jc − bn/(j + 1)c

i

)
pi

=
N∑
j=2

M∑
n=1

p(1− p)bn/2c
dn∑
i=0

(
b(n− 1)/jc − bn/(j + 1)c

i

)
pi.

We now consider each summand σj of the outer sum for a fixed value of j. Using the
division algorithm to write each n = k(2j(j + 1)) + r for k > 0 and 1 6 r 6 2j(j + 1),
and supposing M = m(2j(j + 1)) for some m ∈ Z>1, we obtain

σj =
M∑
n=1

p(1− p)bn/2c
dn∑
i=0

(
b(n− 1)/jc − bn/(j + 1)c

i

)
pi

=
M∑
n=1

p(1− p)bn/2c(1 + p)b(n−1)/jc−bn/(j+1)c
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=
m∑
k=1

p(1− p)kj(j+1)+O(1)

2j(j+1)∑
r=1

(1 + p)2k(j+1)−2kj+O(1)

=

2j(j+1)∑
r=1

(1− p)O(1)(1 + p)O(1)

 m∑
k=1

p
(
(1− p)j(j+1)(1 + p)2

)k−1

=

2j(j+1)∑
r=1

(1− p)O(1)(1 + p)O(1)

 p
1−

(
(1− p)j(j+1)(1 + p)2

)m
1− (1− p)j(j+1)(1 + p)2

.

Since p� 1/M , a simple calculus exercise shows
(
(1− p)j(j+1)(1 + p)2

)m → 0. If p→ 0,
we obtain

E [e(S)] >
N∑
j=2

σj →
N∑
j=2

2j(j + 1)

j(j + 1)− 2
> 2(N − 1),

which must hold for every N > 2.

Corollary 26. Resuming notation from Theorem 25, if 1/M � p� 1, then

lim
M→∞

E [e(S)] = lim
M→∞

E [g(S)] = lim
M→∞

E [F(S)] =∞.

Proof. Apply Theorem 25 and the inequalities

e(S)− 1 6 min(S \ {0})− 1 6 g(S) 6 F(S),

which hold for any cofinite numerical semigroup S.

5 Approximations

In the final section of this paper, we prove the only remaining case in Theorem 1, namely
where p is bounded away from zero (Theorem 30). In this case, it suffices to assume
p ∈ (0, 1) is constant. In doing so, we provide explicit bounds on E [e(S)], E [g(S)], and
E [F(S)] as M → ∞ using the h-vector bounds in Theorem 17; Remark 31 discusses the
accuracy of these estimates.

Lemma 27. For any cofinite numerical semigroup S and M 6 F(S), |S∩ [0,M ]| 6M/2.

Proof. The key observation is that if a ∈ S, then F(S) − a /∈ S, so at least half of the
integers less than F(S) lie outside of S. As such, if |S∩[0,M ]| > M/2 and F is the smallest
gap of S not less than M , the semigroup T = S ∪ [F + 1,∞) violates the observation.

Recall that gM(S) denotes the number of gaps n of S such that n 6M .

Lemma 28. Let S ∼ S(M, p) where p ∈ (0, 1) is consant. Then,

lim
M→∞

E [g(S)] = lim
M→∞

E [gM(S)] .
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Proof. We split the expectation E [g(S)] into two parts:

E [g(S)] =
∞∑
n=1

P [n ∈ G(S)] =
M∑
n=1

P [n ∈ G(S)] +
∑
n>M

P [n ∈ G(S)] .

The first term is just E [gM(S)]. For the second term, notice that if n > M is a gap, then
no consecutive pair of integers m,m+ 1 in the range [1,

√
M ] can be in S, since

F(〈m,m+ 1〉) = m(m+ 1)− 2m− 1 6M.

For each even integer m 6
√
M , let Em denote the event that m and m − 1 are not

both in A. Note that P [Em] = 1 − p2 and that for m 6= m′, the events Em and Em′ are
independent. Hence,

P [n ∈ G(S)] 6 P [E2 ∩ E4 ∩ · · · ] = (1− p2)b
1
2

√
Mc,

which implies the desired result.

Proposition 29. For constant p ∈ (0, 1),

6− 8p+ 3p2

2p− 2p3 + p4
6 lim

M→∞

M∑
n=1

an(p) 6
2− p2

p2
.

Proof. We begin with the upper bound. Suppose M = 2m for some m ∈ Z>1. By
Theorem 17,

M∑
n=1

an(p) 6
M∑
n=1

(1− p)bn/2c
dn∑
i=0

(
bn/2c
i

)
pi 6

M∑
n=1

(1− p)bn/2c
bn/2c∑
i=0

(
bn/2c
i

)
pi

=
M∑
n=1

(1− p2)bn/2c = 1 + 2
m∑
n=1

(1− p2)n = 1 + 2(1− p2)
1− (1− p2)m

1− (1− p2)
,

which yields the claimed upper bound since (1 − p2)m → 0 as m → ∞. For the lower
bound, write n = 6k + r for r ∈ [6], let M = 6m for some m ∈ Z>1, and use Theorem 17
with N = 2 to obtain

M∑
n=1

an(p) >
M∑
n=1

(1− p)bn/2c
dn∑
i=0

(
dn
i

)
pi =

M∑
n=1

(1− p)bn/2c(1 + p)dn

= (6− 8p+ 3p2)
m∑
k=0

((1− p)3(1 + p))k,

and since ((1− p)3(1 + p))
m+1 → 0 as m→∞, the desired lower bound is obtained.
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Theorem 30. Let S ∼ S(M, p) where p ∈ (0, 1) is constant. Then

6− 8p+ 3p2

2− 2p2 + p3
6 lim

M→∞
E [e(S)] 6

2− p2

p
,

6− 14p+ 11p2 − 3p3

2p− 2p3 + p4
6 lim

M→∞
E [g(S)] 6

(1− p)(2− p2)

p2
, and

6− 14p+ 11p2 − 3p3

2p− 2p3 + p4
6 lim

M→∞
E [F(S)] 6

2(1− p)(2− p2)

p2
.

Proof. Lemma 27 implies g(S) 6 F(S) 6 2 g(S) for any cofinite numerical semigroup S.
Since

E [e(S)] = p
M∑
n=1

an(p) and E [gM(S)] = (1− p)
M∑
n=1

an(p),

each claimed inequality follows from Lemma 28 and Proposition 29.

Remark 31. Neither of the bounds in Proposition 29 use the full strength of Theorem 17.
The summands for j > 3 in the lower bound yield increasingly complicated rational
functions in p, though the resulting sequence of values necessarily converges to 0 by The-
orem 30. Additionally, substituting the upper bound for hn,i given in Theorem 17 yields a
sum that is nontrivial to unravel in a way sufficient to compute the limit as M →∞, and
doing so would likely only marginally improve the resulting upper bounds in Theorem 30.
Indeed, it is the larger values of i whose terms benefit from the improved upper bound,
and these terms are rendered negligible by the large exponent in the accompanying value
pi.

We see here the need for improvements in the upper bound in Theorem 17. Several
computed values can be found in Table 2. For instance, the upper bound for E [e(S)]
in Theorem 30 could be made better by simply noting that e(S) is at most the smallest
generator (which has expected value 1/p). Such improvements to Theorem 17 should be
possible, given the precise characterization of the h-vector of ∆n in Corollary 15.

It is also worth noticing that the polynomials computed in Remark 16 are not sufficient
for accuracy for the p values in Table 2. Indeed, with p = 0.01 and p = 0.001, each partial
sum for M = 90 fails to reach the lower bound, and even when p = 0.1, the last 10
summands (i.e. for n = 81, . . . , 90) each lie between 0.01 and 0.02, so the next several
summands will likely still contribute significantly to the limit.

Proof of Theorem 1. Apply Theorems 5, Corollary 26 and Theorem 30.
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[11] J. De Loera, S. Petrović, L. Silverstein, D. Stasi, and D. Wilburne, Random monomial
ideals, J. Algebra (to appear).

the electronic journal of combinatorics 25(4) (2018), #P4.37 15
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