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Abstract

Let H be a graph and t > s > 2 be integers. We prove that if G is an n-vertex
graph with no copy ofH and no induced copy ofKs,t, then λ(G) = O

(
n1−1/s

)
where

λ(G) is the spectral radius of the adjacency matrix of G. Our results are motivated
by results of Babai, Guiduli, and Nikiforov bounding the maximum spectral radius
of a graph with no copy (not necessarily induced) of Ks,t.

Mathematics Subject Classifications: 05C35

1 Introduction

Many questions in extremal graph theory start from the classical Turán-type question:
given a forbidden subgraph H, what is the maximum number of edges in an n-vertex
graph that does not contain H as a subgraph? This maximum is denoted by ex(n,H).
The Erdős-Stone Theorem gives an asymptotic formula for ex(n,H) when χ(H) > 3 which
is quadratic in n. On the other hand, the Kővari-Sós-Turán Theorem [7] implies that for
any bipartite graph H, there is a positive constant δ such that ex(n,H) = O

(
n2−δ).

Turán problems forbidding bipartite graphs are often called degenerate and have been
studied extensively [5].

In many cases, theorems in classical extremal graph theory may be strengthened via
spectral graph theory. For an n-vertex graph G, let λ1 > λ2 > · · · > λn be the eigenvalues
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of its adjacency matrix. Write λ(G) = λ1 for the spectral radius of G. Since the spectral
radius satisfies the inequality 2e (G) /n 6 λ(G), any upper bound on λ(G) implies an
upper bound on e(G). For example, in [10], Nikiforov improved a result of Babai and
Guiduli [1] as follows:

Theorem (Nikiforov). Let s > t > 2, and let G be a Ks,t-free graph of order n. If t = 2,
then

λ (G) 6 1/2 +
√

(s− 1)(n− 1) + 1/4.

If t > 3, then
λ (G) 6 (s− t+ 1)1/tn1−1/t + (t− 1)n1−2/t + t− 2.

In view of 2e (G) /n 6 λ(G), the above theorem implies also Füredi’s improvement of
the Kővari-Sós-Turán Theorem [3].

In this paper, we consider a modification of the Turán-type question, where one forbids
induced copies of a subgraph F . Without additional restrictions, this problem is trivial if
F is not complete, because Kn has

(
n
2

)
edges and no induced F, whereas the problem is

thoroughly investigated if F is a complete graph. More precisely, we study the maximum
spectral radius that a graph may have if it has no induced Ks,t and no copy (not necessarily
induced) of a fixed forbidden subgraph H. We note that if χ(H) > 3, then one may forbid
H and have quadratically many edges, or one may forbid an induced copy of Ks,t and have
quadratically many edges. One of the main theorems in [8] shows that when one forbids
both H and Ks,t-induced at the same time, then a graph may not have quadratically
many edges.

Theorem (Loh, Tait, Timmons, Zhou [8]). Let s and t be integers and H be a graph. Then
there is a constant C depending on s, t, and H such that if G is a graph on n vertices
which has no copy of H as a subgraph and no copy of Ks,t as an induced subgraph, then

e(G) < Cn2−1/s.

Our main theorems are spectral strengthenings of the above theorem via the same
inequality 2e(G)/n 6 λ(G).

Finally, we note that this problem could be discussed in a more general context. A
hereditary graph property is a family of graphs which is closed under isomorphisms and
taking induced subgraphs. Given a hereditary property P , let Pn denote the set of n-
vertex graphs in P . One may ask to find ex(n,P) := maxG∈Pn e(G) and λ(n,P) :=
maxG∈Pn λ(G). Nikiforov [11] found the asymptotics of these parameters similarly to
the Erdős-Simonovits theorem for monotone graph properties. Let us note that both
Erdos-Simonovits’s and Nikiforov’s theorems are informative only for problems with dense
extremal graphs. Not surprisingly, extremal problems leading to sparse extremal graphs
are harder and need special methods. As before, we call such problems degenerate.

In this note we focus on a degenerate extremal problem that we feel is quintessential
for the area; our main result reads as follows.
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Theorem 1. Let t > s > 3 be integers, H be a graph, and K > (R(H,Kt))
2/sR(H,Ks).

If G is an H-free graph of order n and

λ (G) > Kn1−1/s, (1)

then G contains an induced copy of Ks,t.

Here, and throughout the rest of the paper, R(H,G) is the Ramsey number of H vs.
G. One can question why in the premises of Theorem 1 the parameter s is at least 3,
while 2 seems a more natural value. The reason is that for s = 2 we can prove a somewhat
stronger estimate as stated in the theorem below.

Theorem 2. Let r > 2, t > 2 be integers, and K > R(Kr, Kt). If G is a Kr+1-free graph
of order n and

λ (G) > Kn1/2,

then G contains an induced copy of K2,t.

We note that Theorem 2 may be made more general by forbidding an arbitrary sub-
graph H instead of Kr+1. For ease of exposition, we will prove Theorem 2 only when
H = Kr+1. It is clear from the proof of Theorem 1 how to generalize the result. The
proofs of the two theorems differ at several points, so we shall keep them separate; they
are proved in Section 2.

Finally, in Section 3 we will consider the specific case when H = C5 and when an
induced copy of K2,t is forbidden. This will serve as an example of how, when more
information aboutH is known, one can obtain close to tight estimates on the multiplicative
constant. We will prove the following theorem.

Theorem 3. Let t > 2 be an integer. If G is a C5-free graph with no induced copy of
K2,t, then

λ(G) 6
√
t+ 1 + 0.3751/2n1/2 +O(n3/8).

For each integer t and prime power q for which t−1 divides q2−1, there is a bipartite
K2,t-free graph that is q-regular and has q2−1

t−1
vertices in each part (see Füredi [4]). Such

a graph will have spectral radius
√

1
2
(t− 1)n+ 1 where n is the number of vertices and

so Theorem 3 is best possible up to a multiplicative factor of at most 2.
Before concluding our introduction, we mention the following corollary to Theorems

1 and 2 which implies one of the main results of [8] mentioned above.

Corollary 4. Let H be a graph and t > s > 2 be integers. If G is a graph of order n that
is H-free and has no copy of Ks,t as an induced subgraph, then

e(G) 6
1

2
(R(H,Kt))

2/sR(H,Ks)n
2−1/s.
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1.1 Some notation

If G and H are graphs, we write H ≺ G to indicate that H is an induced subgraph of G.

Given a graph G, we write:
- V (G) for the vertex set of G and v (G) for |V (G)|;
- E (G) for the edge set of G and e (G) for |E (G)|;
- Γ (X) for the set of vertices joined to all vertices of a set X ⊂ V (G) and d (X) for

|Γ (X)|;
- G [X] for the subgraph of G induced by a set X ⊂ V (G);
- Ir (M) for the set of independent r-sets of G and ir (G) for |Ir (G) |;
- λ (G) for the largest eigenvalue of the adjacency matrix of G;
- C4 (G) for the number of 4-cycles of G;
- ω(G) for the clique number of G;
- kr(G) for the number of cliques on r vertices in G;

We also write:
-
(
V
r

)
for the set of r-sets of a set V ;

- R(H,G) for the Ramsey number of H vs. G and Rp,q for the Ramsey number of Kp

vs. Kq.

2 Proofs of the main results

The following technical statement will be used in the proofs of both Theorems 1 and 2.

Proposition 5. If G is a graph of order n, then∑
X∈(V

2)

d2 (X) >
1

2

(
λ4 (G)− nλ2 (G)

)
. (2)

Proof. Set for short V := V (G), and observe that∑
X∈(V

2)

(
d (X)

2

)
= 2C4 (G) .

Hence, ∑
X∈(V

2)

d2 (X) = 4C4 +
∑
X∈(V

2)

d (X) = 4C4 +
∑
v∈V

(
d (v)

2

)

= 4C4 +
1

2

∑
v∈V

d2 (v)− e (G) . (3)

On the other hand, writing CW4 (G) for the number of closed walks of length 4, it is
known that

CW4 (G) = 8C4 (G) + 2
∑
i∈V

d2 (i)− 2e (G) .
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Hence inequality (3) implies that

2
∑
X∈(V

2)

d2 (X) = 8C4 +
∑
i∈V

d2 (i)− 2e (G) = CW4 (G)−
∑
v∈V

d2 (v) . (4)

Finally, in view of the identity

CW4 (G) = λ4
1 (G) + · · ·+ λ4

n (G)

and Hofmeister’s bound

λ2 (G) >
1

n

∑
v∈V

d2 (v) ,

inequality (2) follows immediately from (4).

Proof of Theorem 2. Suppose that t, r,K, and G satisfy the premises of the theorem.
Note that for any pair X ∈

(
V
2

)
, the graph G [Γ (X)] is Kr-free; hence, Turán’s theorem

implies that

k2 (G [Γ (X)]) 6
(r − 2)

2 (r − 1)
d2 (X) ,

and therefore,

i2 (G [Γ (X)]) >

(
d (X)

2

)
− (r − 2)

2 (r − 1)
d2 (X) =

1

2 (r − 1)
d2 (X)− 1

2
d (X) .

Summing this inequality over all pairs X ∈
(
V
2

)
and applying Proposition 5, we obtain

∑
I∈I2(G)

(
d (I)

2

)
>

1

2 (r − 1)

∑
X∈(V

2)

d2 (X)− 1

2

∑
X∈(V

2)

d (X)

>
1

4 (r − 1)

(
λ4 (G)− nλ2 (G)

)
− 1

2

∑
v∈V

(
d (v)

2

)
.

Using Hofmeister’s bound and some algebra, we find that∑
I∈I2(G)

(
d (I)

2

)
>

1

4 (r − 1)

(
λ4 (G)− nλ2 (G)

)
− 1

4
nλ2 (G)

=
1

4 (r − 1)
λ2 (G)

(
λ2 (G)− rn

)
>

K2

4 (r − 1)

(
K2 − r

)
n2 >

K3

2

(
n

2

)
> K

(
n

2

)
.

That is to say, there is an I ∈ I2 (G), such that d (I) > K > Rr,t. Since G [Γ (I)] is
Kr-free, it follows that Kt ≺ G [Γ (I)] , and so K2,t ≺ G, completing the proof.
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The proof of Theorem 1 is similar to the proof of Theorem 2, but needs a more technical
approach; in particular, Turán’s theorem does not apply as above. The focal point of the
proof is the fact that if ∑

I∈Is(G)

(
d (I)

2

)
>

(
R(H,Kt)

2

)(
n

s

)
, (5)

then G has an independent s-set I such that d (I) > R(H,Kt); since G [Γ (I)] is H-free,
it follows that Kt ≺ G [Γ (I)], and hence Ks,t ≺ G.

In turn, we deduce (5) along the following lines: we show that the premises of the the-
orem imply that G contains many copies of K2,s, albeit not necessarily induced. However,
the fact that G is H-free implies that for a positive proportion of these subgraphs of G
their part of size s is an independent set. The requirement K > (R(H,Kt))

2/sR(H,Ks)
is sufficient to obtain (5) eventually.

To make this argument precise, we need three additional technical statements.

Proposition 6. If k > 2 and G is a graph of order n with λ (G) >
√
n, then∑

X∈(V
2)

dk (X) >
1

2nk−2
λk (G)

(
λ2 (G)− n

)k/2
.

Proof. The Power Mean inequality and inequality (2) imply that(n
2

)−1 ∑
X∈(V

2)

dk (X)


1/k

>

(n
2

)−1 ∑
X∈(V

2)

d2 (X)


1/2

>

(
n

2

)−1/2(
1

2

(
λ4 (G)− nλ2 (G)

))1/2

.

Hence, after simple algebra, we get∑
X∈(V

2)

d2 (X) >

(
n

2

)1−k/2(
1

2

(
λ4 (G)− nλ2 (G)

))k/2
> n2−k2k/2−12−k/2

(
λ4 (G)− nλ2 (G)

)k/2
=

1

2nk−2
λk (G)

(
λ2 (G)− n

)k/2
.

Proposition 7. Let K > 2, s > 3, and n > s − 1. If G is a graph of order n with
λ (G) > Kn1−1/s, then G contains at least

Ks

(
n

s

)
copies of K2,s.
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Proof. Proposition 6 implies that∑
X∈(V

2)

ds (X) >
1

2ns−2
λs (G)

(
λ2 (G)− n

)s/2
>
Ksns−1

2ns−2

(
K2n2−2/s − n

)s/2
>
Ks

2
n
(
3n2−2/s

)s/2
> 2Ksns.

Next, we find that∑
X∈(V

2)

(
d (X)

s

)
>

1

s!

∑
X∈(V

2)

(
ds (X)−

(
s

2

)
ds−1 (X)

)
= −

(
s
2

)
ns−1

s!
+

1

s!

∑
X∈(V

2)

ds (X)

> 2Ksn
s

s!
−
(
s
2

)
ns−1

s!
> Ksn

s

s!
> Ks

(
n

s

)
.

To complete the proof, it is enough to note that if s > 2, the sum∑
X∈(V

2)

(
d (X)

s

)

is precisely the number of K2,s copies in G.

Proposition 8. Let s > 2. If G is a H-free graph of order n, then

is (G) >

(
R(H,Ks)

s

)−1(
n

s

)
− 1. (6)

Proof. If n < R(H,Ks), then the inequality is trivial, so assume n > R(H,Ks). Since G
is H-free, any set of R(H,Ks) vertices must contain an independent set of size s. Each
independent set of size s may be contained in at most(

n− s
R(H,Ks)− s

)
independent sets of size R(H,Ks). Therefore,

is(G) >

(
n

R(H,Ks)

)(
n− s

R(H,Ks)− s

)−1

=

(
n

s

)(
R(H,Ks)

s

)−1

.

Armed with the above propositions, we encounter no difficulty in proving Theorem 1.

Proof of Theorem 1. Suppose that s, t,H,K, and G satisfy the premises of the theo-
rem. Note that n > s−1, because n > λ (G) > Kn1−1/s and therefore n > Ks > 2s > s−1.
Further, for any X ∈

(
V
2

)
, the graph G [Γ (X)] is H-free; hence, Proposition 8 implies that

is (G [Γ (X)]) >

(
R(H,Ks)

s

)−1(
d (X)

s

)
− 1.
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Summing this inequality over all pairs X ∈
(
V
2

)
and double counting, we obtain

∑
I∈Is(G)

(
d (I)

2

)
> −

(
n

2

)
+

(
R(H,Ks)

s

)−1 ∑
X∈(V

2)

(
d (X)

s

)
. (7)

On the other hand, Proposition 7 implies that G contains at least

R(H,Kt)
2R(H,Ks)

s

(
n

s

)
copies of K2,s, that is to say,∑

X∈(V
2)

(
d (X)

s

)
> R(H,Kt)

2R(H,Ks)
s

(
n

s

)
.

Combining this inequality with (7), we find that∑
I∈Is(G)

(
d (I)

2

)
> −

(
n

2

)
+

(
R(H,Ks)

s

)−1

R(H,Kt)
2R(H,Ks)

s

(
n

s

)
>

(
R(H,Kt)

2

)(
n

s

)
.

Therefore, inequality (5) holds; as shown above, it implies Theorem 1.

3 Forbidding C5 and induced K2,t

We begin this section with a general lemma that gives an upper bound on λ(G) that holds
whenever G is H-free and has no induced K2,t. Because we will be working with eigenvec-
tors, it will be convenient to assume throughout this section that V (G) = {1, 2, . . . , n}.
Furthermore, given a pair of vertices {i, j}, we will write d(i, j) rather than d({i, j}) and
we do the same for Γ({i, j}).

Lemma 9. Let t > 2 be an integer and H be a graph with h > 2 vertices. If G is an
H-free graph of order n with no induced copy of K2,t, then for any vertex x ∈ V (H),

λ(G)2 6 (R(H − x,Kt) + 1)n+

 ∑
{i,j}∈E(G)

d(i, j)2

1/2(
ω(G)− 1

2ω(G)

)1/2

.

Additionally, if x and y is a pair of nonadjacent vertices in H, then R(H − x,Kt) can be
replaced with R(H − x− y,Kt) in the estimate above.

Proof. Let x = (x1, . . . , xn) be a non-negative eigenvector for the eigenvalue λ := λ(G)
scaled to have 2-norm equal to 1. We have

λ2 = λ2

n∑
i=1

x2
i =

n∑
i=1

(λxi)
2 =

n∑
i=1

∑
j∈Γ(i)

xj

2

=
n∑
i=1

d(i)x2
i + 2

∑
16i<j6n

d(i, j)xixj.
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If 1 6 i < j 6 n and {i, j} /∈ E(G), then for any vertex x ∈ V (H), the common
neighborhood Γ(i, j) cannot contain a copy of H − x or an independent set of size t,
otherwise we find a copy of H or an induced copy of K2,t. Therefore,

d(i, j) < R(H − x,Kt). (8)

Using this inequality, we have for any vertex x ∈ V (H),

λ2 =
n∑
i=1

d(i)x2
i + 2

∑
16i<j6n

d(i, j)xixj

< n
n∑
i=1

x2
i + 2

∑
{i,j}/∈E(G)

d(i, j)xixj + 2
∑

{i,j}∈E(G)

d(i, j)xixj

< n+ 2R(H − x,Kt)
∑

{i,j}/∈E(G)

xixj + 2
∑

{i,j}∈E(G)

d(i, j)xixj

6 n+R(H − x,Kt)
n∑
i=1

n∑
j=1

xixj + 2
∑

{i,j}∈E(G)

d(i, j)xixj.

The double sum
n∑
i=1

n∑
j=1

xixj

is at most n. This follows from two applications of the Cauchy-Schwarz inequality and
the fact that ‖x‖ = 1. Therefore,

λ2 6 (1 +R(H − x,Kt))n+ 2
∑

{i,j}∈E(G)

d(i, j)xixj.

By Cauchy-Schwarz,

∑
{i,j}∈E(G)

d(i, j)xixj 6

 ∑
{i,j}∈E(G)

d(i, j)2

1/2 ∑
{i,j}∈E(G)

x2
ix

2
j

1/2

. (9)

Since G is H-free, G does not contain a complete graph on h := |V (H)| vertices. As∑n
i=1 x

2
i = 1, we can apply the Motzkin-Straus inequality [9] to get∑

{i,j}∈E(G)

x2
ix

2
j 6

ω(G)− 1

2ω(G)
. (10)

Combining (9) and (10), we have

∑
{i,j}∈E(G)

d(i, j)xixj 6

 ∑
{i,j}∈E(G)

d(i, j)2

1/2(
ω(G)− 1

2ω(G)

)1/2

.
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We conclude that for any vertex x ∈ V (H),

λ2 6 (R(H − x,Kt) + 1)n+

 ∑
{i,j}∈E(G)

d(i, j)2

1/2(
ω(G)− 1

2ω(G)

)1/2

.

If H contains a pair of nonadjacent vertices x and y, then (8) can be replaced with

d(i, j) < R(H − x− y,Kt)

and the rest of the proof is the same.

We may use Lemma 9 to be more precise than Theorem 2 in the case that we can say
something about the number of triangles in the graph.

Proof of Theorem 3. Let t > 2 be an integer and G be a C5-free graph with no induced
copy of K2,t. We must show that

λ(G) 6
√

2t+ 0.3751/2n1/2 +O(n3/8).

Using the fact that ω(G) 6 4 and that a C5 minus 2 non-adjacent vertices leaves an edge,
we have by Lemma 9,

λ(G)2 6 (R(K2, Kt) + 1)n+

 ∑
{i,j}∈E(G)

d(i, j)2

1/2(
3

8

)1/2

.

Note that R(K2, Kt) = t. Now∑
{i,j}∈E(G)

d(i, j)2 = 2
∑

{i,j}∈E(G)

(
d(i, j)

2

)
+

∑
{i,j}∈E(G)

d(i, j)

= 2
∑

{i,j}∈E(G)

(
d(i, j)

2

)
+ 3k3(G)

6 2
∑

{i,j}∈E(G)

(
d(i, j)

2

)
+ cn3/2

for some constant c. In the last line we have used a result of Bollobas and Györi [2] which

bounds the number of triangles in a C5-free graph. The sum
∑

{i,j}∈E(G)

(
d(i, j)

2

)
counts

pairs of vertices, say {z1, z2} ⊂ V (G), such that there is an edge {i, j} ∈ E(G) for which
{z1, z2} ⊂ Γ(i, j). Suppose that this sum counts the same pair more than once. Let
{z1, z2} ⊂ Γ(i, j)∩Γ(x, y). Without loss of generality, we may assume that i, j, and x are
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all distinct vertices. In this case, ijz1xz2i is a cycle of length 5 which is a contradiction.
Thus,

2
∑

{i,j}∈E(G)

(
d(i, j)

2

)
6 2

(
n

2

)
6 n2.

We conclude that

λ(G)2 6 (t+ 1)n+
(
(n2 + cn3/2)

)1/2
(3/8)1/2 6 (t+ 1 + 0.3751/2)n+O(n3/4).

Taking square roots completes the proof of Theorem 3.
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