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Abstract

We show that the cyclic sieving phenomenon of Reiner–Stanton–White together
with necklace generating functions arising from work of Klyachko offer a remarkably
unified, direct, and largely bijective approach to a series of results due to Kraśkiewicz–
Weyman, Stembridge, and Schocker related to the so-called higher Lie modules and
branching rules for inclusions Ca oSb ↪→ Sab. Extending the approach gives monomial
expansions for certain graded Frobenius series arising from a generalization of Thrall’s
problem.

Mathematics Subject Classifications: 05E05, 05E10

1 Introduction

The Lie module Ln is the nth degree component of the free Lie algebra over C with m
generators, which is naturally a GL(Cm)-module. The Lie modules were famously studied
by Thrall [Thr42] in the 1940’s and have been extensively studied by Brandt [Bra44],
Klyachko [Kly74], Kraśkiewicz–Weyman [KW01], Garsia [Gar90], Gessel–Reutenauer
[GR93], Reutenauer [Reu93], Sundaram [Sun94], Schocker [Sch03], and many others.
Thrall more generally introduced a certain GL(Cm)-decomposition ⊕λ∈ParLλ of the tensor
algebra of Cm arising from the Poincaré–Birkhoff–Witt theorem, where L(n) = Ln. The
Lλ are sometimes called the higher Lie modules. Thrall’s original paper considered the
determination of the multiplicity of the irreducible V µ in Lλ, which is often referred to as
Thrall’s problem. This problem is still open 75 years later. See Section 2.6 and [Reu93] for
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more background on Thrall’s problem and [Rei15] for a recent summary of related work.
See Section 2 for missing definitions.

Kraśkiewicz–Weyman [KW01] gave a combinatorial solution to Thrall’s problem when
λ = (n). In particular, they showed the multiplicity of V µ in L(n) is

#{T ∈ SYT(µ) : maj(T ) ≡n 1},

i.e. the number of standard tableaux of shape µ with major index 1 modulo n. Their
argument crucially hinges upon the formula

SYT(µ)maj(ωrn) = χµ(σrn) (1)

where we write the major index generating function as

SYT(µ)maj(q) :=
∑

T∈SYT(µ)

qmaj(T ),

ωn is a primitive nth complex root of unity, σn is an n-cycle in the symmetric group Sn,
and χµ is the character of the Sn-irreducible indexed by a partition µ of n. The analysis
in [KW01] is somewhat indirect. It involves results of Lusztig and Stanley on coinvariant
algebras and an intricate though beautiful argument involving `-decomposable partitions.

Equation (1) bears a striking resemblance to the cyclic sieving phenomenon (CSP) of
Reiner–Stanton–White, which we now recall.

Definition 1.1. [RSW04] Suppose Cn is a cyclic group of order n generated by σn, W is
a finite set on which Cn acts, and f(q) ∈ Z>0[q]. We say the triple (W,Cn, f(q)) exhibits
the cyclic sieving phenomenon (CSP) if for all r ∈ Z,

f(ωrn) = #W σrn

:= #{w ∈ W : σrn · w = w} = χW (σrn),
(2)

where ωn is a primitive nth root of unity and χW is the character of W as a Cn-module.

See [Sag11] for an excellent survey and introduction to cyclic sieving. The following cyclic
sieving result also due to Reiner–Stanton–White is intimately related to (1). We use
W stat(q) to denote

∑
w∈W qstat(w).

Theorem 1.2. [RSW04, Theorem 8.3, Proposition 4.4] Let α � n, let Wα denote the set
of all words of content α, let Cn act on Wα by rotation, and let maj denote the major
index statistic. Then, the triple (

Wα, Cn,W
maj
α (q)

)
exhibits the CSP.

Since the sets Wα are precisely the Sn-orbits for the natural Sn action on length n
words, Theorem 1.2 may be thought of as a “universal sieving result” as follows. A very
similar observation appeared in [BER11, Prop. 3.1].
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Corollary 1.3. Let W be a finite set of length n words closed under the Sn-action. Then,
the triple (

W,Cn,W
maj(q)

)
exhibits the CSP.

In [AS18], the authors introduced a new statistic on words, flex. As an example,
flex(221221) = 2 · 3 = 6 since 221221 is the concatenation of 2 copies of the primitive
word 221 and 221221 is third in lexicographic order amongst its 3 cyclic rotations. See
Definition 2.3 for details. The flex statistic was designed to be “universal” for cyclic rather
than symmetric actions on words in the following sense.

Lemma 1.4. [AS18, Lemma 8.3] Let W be a finite set of length n words closed under the
Cn-action, where Cn acts by cyclic rotations. Then, the triple(

W,Cn,W
flex(q)

)
exhibits the CSP.

A corollary of these universal sieving results is the following equidistribution result. A
more refined statement appeared in [AS18].

Theorem 1.5. [AS18, Theorem 8.4] Let Wn denote the set of length n words, let majn
denote the major index modulo n taking values in {1, . . . , n}, and let cont denote the
content of a word. We then have

Wcont,majn
n (x; q) = Wcont,flex

n (x; q).

In Section 3, we show that the following well-known result of Kraśkiewicz–Weyman is
essentially a corollary of Theorem 1.5. Here χr is the linear representation of the cyclic
group Cn given by χr(σn) = ωrn.

Theorem 1.6. [KW01] We have

chχr↑SnCn =
∑
λ`n

aλ,rsλ(x)

where
aλ,r := #{Q ∈ SYT(λ) : maj(Q) ≡n r}.

Klyachko [Kly74, Prop. 1] showed that the Lie modules Ln and the induced represen-
tations χ1↑SnCn are Schur–Weyl duals. The λ = (n) case of Thrall’s problem thus follows
from Theorem 1.6 when r = 1. More precisely, Klyachko expressed both the characteristic
of χ1↑SnCn and the character of Ln as content generating functions on primitive necklaces of
length n words. We generalize this observation in Section 3 as follows, which also naturally
motivates the flex statistic.
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Theorem 1.7. Let NFDn,r denote the set of necklaces of length n words with frequency
dividing r, Fn,r denote the set of length n words with flex equal to r, and Mn,r(x) denote
the set of length n words with majn equal to r. Then

chχr↑SnCn = NFDcont
n,r (x) = Fcont

n,r (x) = Mcont
n,r (x).

Our new proof of Kraśkiewicz–Weyman’s result reduces the problem of finding a
bijective proof of a well-known symmetry result following from Theorem 1.6 to finding a
bijective proof of the above equidistribution result, Theorem 1.5; see Corollary 3.5. It also
provides a thus far rare example of an instance of cyclic sieving being used to prove other
results rather than vice-versa.

In Section 4, we give a new proof of a result of Stembridge [Ste89] which settled a
conjecture of Stanley describing the irreducible multiplicities of induced representations
χr↑Sn〈σ〉 for arbitrary σ ∈ Sn. The corresponding generalized major index statistics arise
very naturally from the combinatorics of orbits and cyclic sieving.

In Section 5, we prove and generalize a result of Schocker [Sch03] concerning the higher
Lie modules. Thrall’s problem may be reduced to the λ = (ab) case by the Littlewood–
Richardson rule. Bergeron–Bergeron–Garsia [BBG90] identified the Schur–Weyl dual
of L(ab) as a certain induced module χ1,1↑SabCaoSb where Ca o Sb is a wreath product; see
Section 2.7 for details. Schocker gave a formula for the multiplicity of the irreducible V µ

in L(ab), though it involves many subtractions and divisions in general. We generalize
Schocker’s formula to all one-dimensional representations of Ca o Sb. In our approach,
the subtractions and divisions in Schocker’s formula arise naturally from the underlying
combinatorics using Möbius inversion and Burnside’s lemma.

The basic outline of each argument is the same: we obtain an orbit generating function
from an explicit basis of a GL(V )-module, we construct an appropriate necklace generating
function, we use cyclic sieving to rewrite this generating function using words and descent
statistics like the major index, and we finally apply RSK to get a Schur expansion.
Transitioning from an orbit generating function to a necklace generating function where
we can apply cyclic sieving involves various combinatorial techniques.

In Section 6, we discuss applying aspects of our approach to Thrall’s problem in general.
The arguments in the preceding sections strongly suggest attacking Thrall’s problem by
considering all branching rules for the inclusion Ca oSb ↪→ Sab rather than considering only
one such rule. To that end, consider the irreducible representations Sλ of Ca o Sb, which
are indexed by the set of a-tuples λ = (λ(1), . . . , λ(a)) of partitions with

∑a
r=1 |λ(r)| = b.

We first give the following plethystic expression for the corresponding characteristic.

Theorem 1.8. For all integers a, b > 1, we have

chSλ↑SabCaoSb =
a∏
r=1

sλ(r) [NFDcont
a,r (x)].

We then identify the analogues of the flex and majn statistics in this context, which
send words to such a-tuples of partitions. We consequently give the following monomial
expansion of the corresponding graded Frobenius series. See Section 2.7 and Section 6 for
details.

the electronic journal of combinatorics 25(4) (2018), #P4.42 4



Theorem 1.9. Fix integers a, b > 1. We have∑
λ

dimSλ · ch
(
Sλ↑SabCaoSb

)
qλ = W

cont,flexba
ab (x; q)

= W
cont,majba
ab (x; q)

where the sum is over all a-tuples λ = (λ(1), . . . , λ(a)) of partitions with
∑a

r=1 |λ(r)| = b
and the qλ are independent indeterminates.

The rest of the paper is organized as follows. In Section 2, we review combinatorial
and representation-theoretic background. In particular, we summarize work related to
Kraśkiewicz–Weyman’s result, Theorem 1.6, in Section 2.5, and we discuss the current
status of Thrall’s problem in Section 2.6. In Section 3, we present our proof of Kraśkiewicz–
Weyman’s result, Theorem 1.6, using cyclic sieving. In Section 4, we give an analogous
proof of Stembridge’s result, Theorem 4.11. In Section 5, we give generalizations of
Schocker’s result, Theorem 5.11. In Section 6, we define the statistics flexba and majba,
prove Theorem 1.8 and Theorem 1.9, and discuss how the approach could be used to find
the branching rules for Ca o Sb ↪→ Sab.

2 Background

Here we provide background on words, tableaux, Schur–Weyl duality, Kraśkiewicz–
Weyman’s result, Thrall’s problem, and certain wreath products for use in later sections.
All representations will be over C. We write [n] := {1, . . . , n}, #S for the cardinality of a
set S, and (

S

k

)
:= {all k-element subsets of S},((

S

k

))
:= {all k-element multisubsets of S}.

2.1 Words

We now recall standard combinatorial notions on words and fix some notation. A word
w of length n is a sequence w = w1w2 · · ·wn of letters wi ∈ Z>1. The descent set of w is
Des(w) := {1 6 i < n : wi > wi+1}. The major index of w is maj(w) :=

∑
i∈Des(w) i. Let

majn(w) denote maj(w) modulo n taking values in [n].
The content of a word w, written cont(w), is the sequence α = (α1, α2, . . .) where αj is

the number of j’s in w. Such a sequence α is called a (weak) composition of n, written
α � n. For n > 1 and α � n, we write the set of words of length n or content α as

Wn := {w = w1 · · ·wn : wi ∈ Z>1},
Wα := {w ∈Wn : cont(w) = α}.
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The set of all words with letters from Z>1 is a monoid under concatenation. A word is
primitive if it is not a power of a smaller word. Any non-empty word w may be written
uniquely as w = vf for f > 1 with v primitive. The period of w, denoted period(w), is the
length of v. The frequency of w, denoted freq(w), is f .

The symmetric group Sn acts on Wn by permuting the letters according to

σ · w1w2 · · ·wn := wσ−1(1)wσ−1(2) · · ·wσ−1(n) (3)

for all σ ∈ Sn. In particular, letting σn := (1 2 · · · n) ∈ Sn and Cn := 〈σn〉, the cyclic
group Cn acts on Wn by rotation according to

σn · w1w2 · · ·wn := wnw1 · · ·wn−1.

Definition 2.1. An orbit of w ∈ Wn under rotation is a necklace, denoted [w]. Note
that period(w) = #[w] and freq(w) · period(w) = n. Content, primitivity, period, and
frequency are all well-defined on necklaces. For n > 1, we write

Nn := {necklaces of length n words}.

Example 2.2. Consider w = 15531553 ∈ W8. Then, the length of w is 8, Des(w) =
{3, 4, 7}, maj(w) = 14, and cont(w) = (2, 0, 2, 0, 4), so w ∈ W(2,0,2,0,4). Since w =
15531553 = (1553)2 and 1553 is primitive, w is not primitive, period(w) = 4, and
freq(w) = 2. The necklace of w is

[w] = {15531553, 55315531, 53155315, 31553155} ∈ N8 .

We now recall the flex statistic from [AS18].

Definition 2.3. Given w ∈Wn, let lex(w) denote the position at which w appears in the
lexicographic order of its rotations, starting at 1. The flex statistic is given by

flex(w) = freq(w) · lex(w).

Example 2.4. If w = 21132113, its necklace is

[w] = {11321132, 13211321, 21132113, 32113211}

listed in lexicographic order. Since w is in the third position, lex(w) = 3. Here freq(w) = 2,
so flex(w) = 6.

2.2 Generating Functions

In most triples (W,Cn, f(q)) that have been found to exhibit the CSP, f(q) is a statistic
generating function on W for some well-known statistic. Given stat : W → Z>0, we write
the corresponding generating function as

W stat(q) :=
∑
w∈W

qstat(w).
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We use natural multivariable analogues of this notation as well. For example, letting
x = (x1, x2, . . . ),

Wcont,maj
n (x; q) :=

∑
w∈Wn

xcont(w)qmaj(w) ∈ Z>0[[x1, x2, . . .]][q]

where x(α1,...,αm) := xα1
1 · · ·xαmm .

2.3 Tableaux

A partition of n, denoted λ ` n, is a composition of n whose parts weakly decrease.
Write Par for the set of all partitions. The Young diagram of λ is the upper-left justified
collection of cells with λi entries in the ith row starting from the top. We may write
a partition in exponential form as λ = 1m12m2 · · · ` n where mi is the number of parts
of λ of size i. In this case, the number of elements of Sn with cycle type λ is n!

zλ
where

zλ := 1m12m2 · · ·m1!m2! · · · .
A semistandard Young tableau of shape λ is a filling of the Young diagram of λ with

entries from Z>1 which weakly increases along rows and strictly increases along columns.
The set of semistandard Young tableaux of shape λ is denoted SSYT(λ). The content of
P ∈ SSYT(λ), denoted cont(P ), is the composition whose j-th entry is the number of j’s
in P . The set of standard Young tableaux of shape λ, denoted SYT(λ), is the subset of
SSYT(λ) consisting of tableaux of content (1, . . . , 1) � n. The descent set of a tableau
Q ∈ SYT(λ), denoted Des(Q), is the set of all i ∈ [n− 1] such that i + 1 lies in a lower
row of Q than i.

Example 2.5. We draw our tableaux in English notation. The semistandard tableau

P =
1 1 2 3 3 4
2 3 4 4 6
3

∈ SSYT(6, 5, 1)

has cont(P ) = (2, 2, 4, 3, 0, 1). The standard tableau

Q =
1 2 5
3 4
6

∈ SYT(3, 2, 1)

has Des(Q) = {2, 5}, and maj(Q) = 7.

Let x = (x1, x2, . . . ). For a partition λ, the Schur function sλ is the content generating
function on semistandard tableaux of shape λ,

sλ(x) := SSYT(λ)cont(x) :=
∑

P∈SSYT(λ)

xcont(P ).

The Schur functions are symmetric in the sense that they are unchanged under any
permutation of the underlying variables. Two important instances of Schur functions are
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the complete homogeneous symmetric functions

hn(x) := s(n)(x) =
∑

i16···6in

xi1 · · ·xin (4)

and the elementary symmetric functions

en(x) := s(1n)(x) =
∑

i1<···<in

xi1 · · ·xin . (5)

The power-sum symmetric functions are given by

pn(x) := xn1 + xn2 + · · · and p(λ1,...,λk)(x) := pλ1(x) · · · pλk(x).

Definition 2.6. The Robinson–Schensted–Knuth (RSK) correspondence is a bijection

RSK: Wn →
⊔
λ`n

SSYT(λ)× SYT(λ),

w 7→ (P (w), Q(w)).

The shape of w under RSK, denoted sh(w), is the common shape of P (w) and Q(w). Two
well-known properties of the RSK correspondence are

cont(w) = cont(P (w)), Des(w) = Des(Q(w)). (6)

The fact that Des(w) = Des(Q(w)) is originally due to Schützenberger [Sch63, Remarque 2].
See [Sta99, Lemma 7.23.1] for a proof of (6) in the decisive permutation case and [Sta99,
p.404] for further historical remarks. See [Sag01, Chapter 3] for more details on RSK.

We will repeatedly use the RSK correspondence to transition from the monomial to
the Schur basis. These arguments all rely on the following result.

Lemma 2.7. Suppose D ⊂ [n− 1] and let

Wn,D := {w ∈Wn : Des(w) = D}
be the set of length n words with descent set D. For λ ` n, let

aDλ := #{Q ∈ SYT(λ) : Des(Q) = D}.
Then

Wcont
n,D (x) =

∑
λ`n

aDλ sλ(x).

Proof. Using RSK and (6), we have

Wcont
n,D (x) = {w ∈Wn : Des(w) = D}cont(x)

=
∑
λ`n

∑
Q∈SYT(λ)
Des(Q)=D

∑
P∈SSYT(λ)

xcont(P )

=
∑
λ`n

∑
Q∈SYT(λ)
Des(Q)=D

sλ(x)

=
∑
λ`n

aDλ sλ(x).
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2.4 Schur–Weyl Duality

We next summarize a few key points from the representation theory of Sn and GL(Cm).
See [Ful97] for more.

The complex irreducible inequivalent representations of Sn are canonically indexed by
partitions λ ` n and are called Specht modules, written Sλ. The Frobenius characteristic
map ch is defined by chSλ := sλ(x) and is extended additively to all Sn-representations.
Since Schur functions are Z-linearly independent, computing the irreducible decomposition
of an Sn-module M corresponds to computing the Schur expansion of chM .

Let V be a complex vector space of dimension m. Endow V ⊗n with the diagonal left
GL(V )-action and the natural right Sn-action given by permutation of indexes. Given any
Sn-module M , define a corresponding GL(V )-module by

E(M) := V ⊗n ⊗CSn M,

which we call the Schur-Weyl dual of M . The irreducible inequivalent polynomial repre-
sentations of GL(V ) are precisely the Schur Weyl duals of all Sλ where λ is a partition
with at most dim(V ) non-zero parts [Ful97, Thm. 8.2.2].

Let E be a finite-dimensional, polynomial representation of GL(V ) and pick a basis
{v1, . . . , vm} for V . The Schur character of E, denoted chE, is the trace of the action
of diag(x1, . . . , xm) ∈ GL(V ) on E, where the diagonal matrix is with respect to the
basis v1, . . . , vm. Polynomiality of E implies chE ∈ C[x1, . . . , xm]. Moreover, ch(E) is a
symmetric function of x1, . . . , xm. In fact,

chV λ = chE(Sλ) = sλ(x1, . . . , xm, 0, 0, . . .).

Thus, for any Sn-module M , we have

lim
m→∞

chE(M) = chM.

In light of this, we often leave dependence on m or V implicit.

2.5 Kraśkiewicz–Weyman Symmetric Functions

The symmetric functions appearing in Theorem 1.5 have a wealth of important interpreta-
tions. Here we summarize some of these interpretations.

Definition 2.8. For n > 1, let

KWn(x; q) :=
∑
λ`n
r∈[n]

aλ,rsλ(x) qr (7)

where aλ,r := #{Q ∈ SYT(λ) : maj(Q) ≡n r}. We call KWn(x; q) the nth Kraśkiewicz–
Weyman symmetric function.

These symmetric functions are intimately related to the irreducible representations of
certain cyclic groups.
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Definition 2.9. Recall σn := (1 2 · · · n) ∈ Sn and Cn := 〈σn〉 6 Sn be the cyclic group
of order n it generates. Fixing any primitive nth root of unity ωn, write the irreducible
characters of Cn as χ1, . . . , χn where

χr(σn) := ωrn.

We sometimes write χrn if we want to specify the cyclic group Cn as well.

Theorem 1.6 gives our first interpretation of KWn(x; q),

KWn(x; q) =
n∑
r=1

chχr↑SnCnq
r. (8)

Since the regular representation of Cn is ⊕nr=1χ
r, when q = 1 the right-hand side of (8)

is the Frobenius characteristic of the regular representation of Sn, denoted CSn. The
right-hand side of (8) is hence similar to a graded Frobenius series for CSn and tracks
branching rules for the inclusion Cn ↪→ Sn. By Theorem 1.7, we can also write this series
as

KWn(x; q) =
n∑
r=1

NFDcont
n,r (x) qr. (9)

Now consider the action of σn on the Sn-irreducible Sλ. Since σnn = 1 ∈ Sn, the action
of σn on Sλ is diagonal with eigenvalues ωk1n , ω

k2
n , . . . where ωn is a fixed primitive nth root

of unity and 1 6 ki 6 n for each i. Let Pλ(q) := qk1 + qk2 + · · · be the generating function
of the cyclic exponents k1, k2, . . ., which were studied extensively by Stembridge [Ste89].
Using the right-hand side of (8) and Frobenius reciprocity quickly gives the following.

Theorem 2.10 (See [Ste89, Prop. 1.2, Thm. 3.3]). The cyclic exponent generating function
for Sn is given by

KWn(x; q) =
∑
λ`n

Pλ(q)sλ(x). (10)

Next, extend the regular representation CSn to an Sn×Cn-module by letting Sn act on
the left and Cn act on the right. There is a straightforward notion of an Sn×Cn-Frobenius
characteristic map given by sending an irreducible Sλ ⊗ χr to sλ(x)qr where q is an
indeterminate satisfying qn = 1. The following now follows easily using the right-hand
side of (8).

Corollary 2.11. [KW01] The Sn × Cn-Frobenius characteristic of the regular representa-
tion is

KWn(x; q) = chSn×Cn CSn. (11)

It is well-known that the type An−1 coinvariant algebra Rn is a graded Sn-module which
is isomorphic as an ungraded Sn-module to CSn. We may give Rn an Sn × Cn-module
structure by letting Cn act on the kth degree component of Rn by σn · f := ωknf , where ωn
is a fixed primitive nth root of unity. Springer and, independently, Kraśkiewicz–Weyman
showed that CSn and Rn are isomorphic as Sn × Cn-modules. Consequently, from the
right-hand side of (11), we have the following.
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Theorem 2.12 (Springer [Spr74, Prop. 4.5]; cf. [KW01, Thm. 1]). The Sn×Cn-Frobenius
characteristic of the coinvariant algebra Rn is

KWn(x; q) = chSn×Cn Rn. (12)

The graded Frobenius characteristic of the coinvariant algebra is the modified Hall–
Littlewood symmetric function Q̃(1n)(x; q) [GP92, (I.8)]. Consequently, (12) gives

KWn(x; q) ≡ Q̃(1n)(x; q) (mod qn − 1). (13)

See also [Rho10, §3] for a nice summary of this connection.
We may instead use the right-hand side of (7) as a starting point. From Lemma 2.7, it

follows that
KWn(x; q) = Wcont,majn

n (x; q). (14)

From Theorem 1.5 and (14), our final interpretation of KWn(x; q) in this subsection is

KWn(x; q) = Wcont,flex
n (x; q). (15)

2.6 Thrall’s Problem

We next define the Lie modules Lλ and summarize the status of Thrall’s problem. See
[Reu93] for more details.

The tensor algebra of V is T (V ) := ⊕∞n=0V
⊗n, which is naturally a graded GL(V )-

representation. Let L(V ) be the Lie subalgebra of T (V ) generated by V , called the free
Lie algebra on V , so that L(V ) is a graded GL(V )-representation with graded components
Ln(V ) = V ⊗n ∩ L(V ) called Lie modules. The universal enveloping algebra U(L(V )) is
isomorphic to T (V ) itself. By the Poincaré–Birkhoff–Witt Theorem,

U(L(V )) ∼=
⊕

λ=1m12m2 ···

Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · ·

as graded GL(V )-representations, where the sum is over all partitions and Symm(M) is
the mth symmetric power of M [Reu93, Lemma 8.22]. The higher Lie module associated
to λ = 1m12m2 · · · is defined to be

Lλ(V ) := Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · · . (16)

The Lie modules hence yield a GL(V )-module decomposition T (V ) ∼= ⊕λ∈ParLλ(V ).
Thrall’s problem is the determination of the multiplicity of V µ in Lλ(V ), for instance by

counting explicit combinatorial objects. The well-known Littlewood–Richardson rule solves
the analogous problem for V µ ⊗ V ν . It follows from (16) and the Littlewood–Richardson
rule that, for the purposes of Thrall’s problem, we may restrict our attention to the case
when λ = (ab) is a rectangle. Since

L(ab)(V ) = Symb(L(a)(V )), (17)
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the single-row case is particularly fundamental.
Hall [Hal59, Lemma 11.2.1] introduced what is now called the Hall basis for Ln(V ),

which, in the m → ∞ limit, is in content-preserving bijection with primitive necklaces
NFDn,1. For each primitive necklace, Hall associates a bracketing of its elements using
what is now known as the Lyndon factorization [CFL58]. He gives an explicit, though
computationally complex, algorithm to express any bracketing as a linear combination of
the bracketings associated to primitive necklaces. Linear independence of these generators
follows from a dimension count.

Klyachko consequently observed that the Schur character of Ln is the corresponding
content generating function NFDcont

n,1 (x). Taking symmetric powers, it follows that in the
m → ∞ limit, L(ab)(V ) has a basis indexed by multisets of primitive necklaces and the
Schur character is the following content generating function.

Lemma 2.13 (See [Kly74, Proposition 1]). We have, in the m→∞ limit,

chL(a) = NFDcont
a,1 (x) and chL(ab) =

((
NFDa,1

b

)) cont

(x).

One formulation of Thrall’s problem is hence to find the Schur expansion of the expressions
in Lemma 2.13.

While we will not have direct need of it, we would be remiss if we did not mention
the following beautiful and important result of Gessel and Reutenauer [GR93, (2.1)]. The
expansion of chLλ in terms of Gessel’s fundamental quasisymmetric functions is

chLλ =
∑
σ∈Sn

σ has cycle type λ

Fn,Des(σ)(x), (18)

where
Fn,D(x) =

∑
i16...6in

ij<ij+1 if j∈D

xi1 . . . xin .

Gessel and Reutenauer gave an elegant bijective proof of (18) in [GR93] involving multisets
of primitive necklaces as in Lemma 2.13. Another formulation of Thrall’s problem is thus
to convert the right-hand side of (18) to the Schur basis.

Klyachko [Kly74] was the first to observe the intimate connections between Lie modules
and the linear representations χr in Definition 2.9. Klyachko proved the r = 1 case of
Theorem 1.7, that chχ1↑SnCn = NFDcont

n,1 (x). Combining Klyachko’s result, Lemma 2.13, the
r = 1 case of Theorem 1.7, and Kraśkiewicz–Weyman’s result, Theorem 1.6, solves Thrall’s
problem when λ = (n). Recall that if λ ` n, then aλ,r := #{Q ∈ SYT(λ) : maj(Q) ≡n r}.

Corollary 2.14. For all λ ` n > 1, the multiplicity of V λ in L(n) is aλ,1.

Since χr↑SnCn depends up to isomorphism only on n and gcd(n, r), we also have the following
well-known symmetry.

Corollary 2.15. For all λ ` n > 1, we have aλ,r = aλ,gcd(n,r).

the electronic journal of combinatorics 25(4) (2018), #P4.42 12



Remark 2.16. A bijective proof of this symmetry is currently unknown.

Thrall’s problem is an instance of a plethysm problem as we next describe. See [Sta99,
Appendix 2] for more details. Given polynomial representations of general linear groups

ρ : GL(V )→ GL(W ) and τ : GL(W )→ GL(X)

where V,W,X are finite-dimensional complex vector spaces, the plethysm of their Schur
characters is the Schur character of their composite:

(ch τ)[ch ρ] := ch(τ ◦ ρ).

It is easy to see that ch Symb(W ) = hb(x1, . . . , xm) where m = dim(W ). Consequently,
(17) gives

chL(ab) = hb[chLa]. (19)

Yet another formulation of Thrall’s problem is thus to expand hb[chLa] in the Schur basis.
Such plethysm problems are notoriously difficult. However, a combinatorial description
for the Schur expansion of (chLa)[hν ] in terms of the charge statistic was given by
Lascoux–Leclerc–Thibon in [LLT94, Thm. 4.2] and [LLT97, Thm. III.3].

Remark 2.17. At present, Thrall’s problem has only been solved in the following cases:

• when λ = (n) has a single part (see Corollary 2.14);

• when λ = (1n), L(1n) is the trivial representation;

• when λ = (2b), chL(2b) =
∑
sµ where the sum is over µ ` 2b with even column sizes

(see [Mac95, Ex. I.8.6(b), p. 138]).

2.7 Wreath Products

The Schur–Weyl duals of the higher Lie modules Lλ have also been identified in terms of
induced representations of certain wreath products. Here we summarize this connection
as well as some related aspects of the representation theory of wreath products which will
be used in Section 6. Our presentation largely mirrors [Ste89].

Definition 2.18. Given a group G, the wreath product of G with Sn, denoted G o Sn,
is the semidirect product explicitly described as follows. G o Sn is the set Gn × Sn with
multiplication given by

(g1, . . . , gn, σ) · (h1, . . . , hn, τ) := (g1hσ−1(1), . . . , gnhσ−1(n), στ)

for all g1, . . . gn, h1, . . . , hn ∈ G and σ, τ ∈ Sn. Furthermore, given α � n, set G o
∏

i Sαi :=∏
i(G o Sαi), which has a natural inclusion into G o Sn. Roughly speaking, G o Sn can be

considered as the group of n× n “pseudo-permutation” matrices with entries from G.
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Now suppose U is a G-set and V is an Sn-set. There is a natural notion of U o V as a
G o Sn-set. Explicitly, let U o V be the set Un × V with G o Sn-action given by

(g1, . . . , gn, σ) · (u1, . . . , un, v) := (g1 · uσ−1(1), . . . , gn · uσ−1(n), σ · v)

for all g1, . . . , gn ∈ G, σ ∈ Sn, u1, . . . , un ∈ U, v ∈ V . There is an analogous notion if U is
a G-module and V is an Sn-module, namely U o V := U⊗n ⊗ V with G o Sn-action

(g1, . . . , gb, σ) · (u1 ⊗ · · · ⊗ ub ⊗ v) := (g1 · uσ−1(1))⊗ · · · ⊗ (gb · uσ−1(b))⊗ (σ · v)

extended C-linearly.

Since Sa acts naturally and faithfully on [a], [a] o 1b has a natural Sa o Sb-action, where
1b denotes the trivial Sb-set. Identifying [a] o 1b with the set [ab] and noting that the
action remains faithful gives an inclusion Sa o Sb ↪→ Sab. Similarly we have an inclusion
Ca o Sb ↪→ Sab. More concretely, Ca o Sb acts faithfully on [ab] by permuting the b
size-a intervals in [ab] amongst themselves and cyclically rotating each size-a interval
independently.

Remark 2.19. The induction product of two symmetric group representations corresponds
to the product of their Frobenius characteristics, so that if U is an Sa-module and V is an
Sb-module, then [Sta99, Prop. 7.18.2],

ch
(
U ⊗ V ↑Sa+bSa×Sb

)
= (chU)(chV ). (20)

In Section 2.6, we considered the plethysm of Schur characters of general linear group
representations. The corresponding operation for Frobenius characters of symmetric group
representations is less well-known and involves wreath products as follows. Given two
symmetric functions f and g = m1 + m2 + · · · where the mi are all monomials, their
plethysm is given by [Sta99, Def. A2.6]

f [g] := f(m1,m2, . . . ), (21)

which is well-defined since f is symmetric. Then, if U is an Sa-module and V is an
Sb-module, we have (see [Sta99, Thm. A2.8] or [Mac95, Appendix A, (6.2)])

ch
(

(U o V )↑SabSaoSb

)
= ch(V )[ch(U)]. (22)

When G is a finite group, Specht [Spe32] described the complex inequivalent irreducible
representations of G o Sn in terms of those for G and Sn, the conjugacy classes of G, and
wreath products. In the case Ca o Sb, they are indexed by the following objects.
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Theorem 2.20 ([Spe32]; see [Ste89, Thm. 4.1]). The complex inequivalent irreducible
representations of Ca o Sb are indexed by a-tuples λ = (λ(1), . . . , λ(a)) of partitions with∑a

r=1 |λ(r)| = b. In particular, they are given by

Sλ :=
(

(χ1
a o Sλ

(1)

)⊗ · · · ⊗ (χaa o Sλ
(a)

)
)
↑CaoSbCaoSα(λ) , (23)

where

α(λ) := (|λ(1)|, . . . , |λ(a)|) � b,
Sα(λ) := S|λ(1)| × · · · × S|λ(a)|,

χra is as defined in Definition 2.9, and Ca oSα(λ) is viewed naturally as a subgroup of Ca oSb.

One consequence of Theorem 2.20 is

dim(Sλ) =

(
b

α(λ)

) a∏
r=1

# SYT(λ(r)). (24)

Another consequence is an explicit description of the one-dimensional representations of
Ca o Sb, which are as follows.

Definition 2.21. Fix integers a, b > 1. Let

χr,1 := χra o 1b and χr,ε := χra o εb

where r = 1, . . . , a and 1b and εb are the trivial and sign representations of Sb, respectively.
When b = 1, εb = 1b, in which case χr,1 = χr,ε = χra. We sometimes write χr,1

(ab)
or χr,ε

(ab)
if

we want to specify the group Ca o Sb as well.

Bergeron–Bergeron–Garsia [BBG90] extended Klyachko’s observation by showing that
the Schur–Weyl dual of L(ab) is χ1,1↑SabCaoSb . We next give a different argument of this fact
which is straightforward given the preceding background and which uses a lemma we will
require later in Section 6.

Lemma 2.22. We have

chχ1,1↑SabCaoSb =

((
NFDa,1

b

)) cont

(x).

Proof. By Lemma 2.25 below and the fact that Ca o Sb ⊆ Sa o Sb ⊆ Sab, we have

χ1,1↑SabCaoSb = (χ1
a o 1b)↑

Sab
CaoSb

∼= (χ1
a↑SaCa o 1b)↑

Sab
SaoSb . (25)

By (22) and the r = 1 case of Theorem 1.7,

ch(χ1
a↑SaCa o 1b)↑

Sab
SaoSb = (ch 1b)[chχ1

a↑SaCa ] = hb[NFDcont
a,1 (x)], (26)

since ch(1b) = hb(x). Now, hb[NFDcont
a,1 (x)] =

((
NFDa,1

b

)) cont
(x) from the definition of

plethysm, (21), and the definition of hb, (4). The result will be complete once we prove
Lemma 2.25.
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Corollary 2.23 ([BBG90, §4.4]; see also [Reu93, Thm. 8.24]). The Schur–Weyl dual of
L(ab) is χ1

a↑
Sab
CaoSb.

Proof. Combine Lemma 2.13 and Lemma 2.22.

Indeed, the Schur–Weyl duals of general Lλ can be expressed very explicitly in terms
of induced linear representations as follows. Suppose σ ∈ Sn has cycle type λ. Write
Zλ for the centralizer of σ in Sn. When λ = (ab), it is straightforward to see that
Z(ab)

∼= Ca o Sb. Furthermore, when λ = 1b12b2 · · · kbk is written in exponential notation,
we have Zλ ∼= Z(1b1 ) × Z(2b2 ) × · · · × Z(kbk ).

Corollary 2.24 (see [Reu93, Thm. 8.24]). Suppose λ = 1b12b2 · · · kbk ` n. Let χ1,1
λ

denote the linear representation of Zλ 6 Sn given by the (outer) tensor product of the
representations χ1,1

(ibi )
of Ci oSbi for 1 6 i 6 k. Then, the Schur–Weyl dual of Lλ is χ1,1

λ ↑
Sn
Zλ

.

Proof. Using in order (16), multiplicativity of Schur characters under tensor products,
Corollary 2.23, (20), Lemma 2.26 and transitivity of induction, the fact that Zλ ∼=∏k

i=1 Z(ibi ), and the definition of χ1,1
λ , we have

chLλ = ch

(
k⊗
i=1

L(ibi )

)
=

k∏
i=1

chL(ibi ) =
k∏
i=1

chχ1,1

(ibi )
↑SibiZ

(ibi )

= ch

(
k⊗
i=1

χ1,1

(ibi )
↑SibiZ

(ibi )

)
↑SnS1b1

×S2b2
×··· = ch

(
k⊗
i=1

χ1,1

(ibi )

)
↑SnZλ

= chχ1,1
λ ↑

Sn
Zλ

The result will be complete once we prove Lemma 2.26.

Lemma 2.25. Suppose that H is a subgroup of a group G, that U is an H-module, and
that V is an Sn-module. Then

(U o V )↑GoSnHoSn
∼=
(
U↑GH

)
o V

as G o Sn-modules.

Proof. As sets, we have

(U o V )↑GoSnHoSn = C(G o Sn)⊗C(HoSn) (U⊗n ⊗ V ),

(U↑GH) o V = (CG⊗CH U)⊗n ⊗ V.

Define

φ : (U o V )↑GoSnHoSn → (U↑GH) o V,
ψ : (U↑GH) o V → (U o V )↑GoSnHoSn
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by

φ((g1, . . . , gn, τ)⊗ (u1 ⊗ · · · ⊗ un ⊗ v))

:= (g1 ⊗ uτ−1(1))⊗ · · · ⊗ (gn ⊗ uτ−1(n))⊗ (τ · v),

ψ((g1 ⊗ x1)⊗ · · · ⊗ (gn ⊗ xn)⊗ y)

:= (g1, . . . , gn, 1)⊗ (x1 ⊗ · · · ⊗ xn ⊗ y)

extended C-linearly. It is straightforward to check directly that φ and ψ are well-defined,
G o Sn-equivariant, and mutual inverses. Note that showing ψ ◦ φ(x) = x requires using
the relation

(g1, . . . , gn, τ)⊗ z = (g1, . . . , gn, 1)⊗ (τ · z)

in C(G o Sn)⊗C(HoSn) (U⊗n ⊗ V ) for g1, . . . , gn ∈ G, τ ∈ Sn, z ∈ U⊗n ⊗ V .

Lemma 2.26. Suppose that H1, . . . , Hk are subgroups of groups G1, . . . , Gk and that Ui
is an Hi-module for 1 6 i 6 k. Then

(U1 ⊗ · · · ⊗ Uk) ↑G1×···×Gk
H1×···×Hk

∼= U1↑G1
H1
⊗ · · · ⊗ Uk↑GkHk

as G1 × · · · ×Gk-modules.

Proof. Having chosen bases for both sides, there is a natural C-linear map between them.
It is easy to check this is also G1 × · · · ×Gk-equivariant. The details are omitted.

3 Cyclic Sieving and Kraśkiewicz–Weyman’s Result

In this section, we first build on work of Klyachko to prove Theorem 1.7. We then recover
Kraśkiewicz–Weyman’s result, Theorem 1.6, and discuss some benefits of our approach.

Klyachko observed in [Kly74, Prop. 1] that E(χ1↑SnCn), like L(n), also has a basis indexed

by primitive necklaces. Klyachko’s argument may be readily generalized to E(χr↑SnCn) as
follows. Recall from the introduction that

NFDn,r := {N ∈ Nn : freq(N) | r},
Fn,r := {w ∈Wn : flex(w) = r},
Mn,r := {w ∈Wn : majn(w) = r}.

In particular, NFDn,n = Nn, and NFDn,1 is the set of primitive necklaces of length n.

Theorem 3.1. There is a basis for E(χr↑SnCn) indexed by necklaces of length n words with
letters from [m] and with frequency dividing r. Moreover,

chχr↑SnCn = NFDcont
n,r (x). (27)
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Proof. Suppose the underlying vector space V has basis {v1, . . . , vm}. By a slight abuse
of notation, we may view χr as the vector space C with the left Cn-action σn · 1 := ωrn.
Since χr↑SnCn := CSn ⊗CCn χ

r, we have

E(χr↑SnCn) = V ⊗n ⊗CSn CSn ⊗CCn χ
r ∼= V ⊗n ⊗CCn χ

r (28)

where Cn acts on V ⊗n on the right by “rotating” the components of simple tensors. A
spanning set for V ⊗n ⊗CCn χ

r is given by all vi1 ⊗ · · · ⊗ vin ⊗ 1, which we abbreviate as
[i1 · · · in]. Acting by σ−1

n on χr on the left or on V ⊗n on the right gives the relation

[i1 · · · in] = ωrn[i2 · · · in i1]. (29)

This relation shows that [i1 · · · in] is well-defined on the level of necklaces, at least up
to nonzero scalar multiplication, which explains our notation. If the word i1 · · · in has
frequency f and period p, we then find

[i1 · · · in] =
1

n

n−1∑
j=0

ωjrn [ij+1 · · · in i1 · · · ij]

=
1

n

p−1∑
k=0

(
f−1∑
`=0

ω(`p+k)r
n

)
[ik+1 · · · ini1 · · · ik]

=
1

n

(
f−1∑
`=0

ω`prn

)
p−1∑
k=0

ωkrn [ik+1 · · · ini1 · · · ik].

Since ωpn is a primitive n/p = f -th root of unity, the factor
∑f−1

`=0 ω
`pr
n is nonzero if and

only if ωprn = 1, so if and only if f | r. Picking representatives for necklaces with frequency
dividing r thus gives a spanning set for E(χr↑SnCn), and it is easy to see it is in fact a basis.
Diagonal matrices act on this basis via

diag(x1, . . . , xn) · [i1 · · · in] = xcont(i1···in)[i1 · · · in], (30)

from which it follows that the Schur character is the content generating function of
necklaces of length n words with letters from [m] and with frequency dividing r. Letting
m→∞, (27) follows.

Lemma 3.2. We have

NFDcont
n,r (x) = Fcont

n,r (x) = Mcont
n,r (x).

Proof. Consider the map

ι : Fn,r → NFDn,r

ι(w) := [w].
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Since flex(w) = freq(w) lex(w) = r, we have freq(w) | r, so [w] ∈ NFDn,r. Thus, ι is in
fact a map from Fn,r to NFDn,r. Since each necklace in NFDn,r contains exactly one word
with flex equal to r, ι is a content-preserving bijection. Therefore, NFDcont

n,r (x) = Fcont
n,r (x).

Using Theorem 1.5, we have

Wcont,flex
n (x; q) = Wcont,majn

n (x; q),

which means Fcont
n,r (x) = Mcont

n,r (x).

Remark 3.3. From Theorem 3.1 and Lemma 3.2, the Schur character of χr↑SnCn may be
described as a content generating function for certain necklaces or for certain words. This
proves Theorem 1.7 from the introduction.

We may now present our remarkably direct proof of Kraśkiewicz–Weyman’s result,
Theorem 1.6, using cyclic sieving.

Proof (of Theorem 1.6). The argument in Theorem 3.1 exhibited an explicit basis of the
Schur module E(χr↑SnCn), showing that

n∑
r=1

chχr↑SnCnq
r =

n∑
r=1

NFDcont
n,r (x) qr.

From Lemma 3.2, the bijection ι : Fn,r
∼→ NFDn,r given by w 7→ [w] gives

n∑
r=1

NFDcont
n,r (x) qr = Wcont,flex

n (x; q).

Using universal cyclic sieving on words for Sn-orbits and Cn-orbits as described in the
introduction, Theorem 1.5 now gives

Wcont,flex
n (x; q) = Wcont,majn

n (x; q).

Using the RSK algorithm, Lemma 2.7 gives

Wcont,majn
n (x; q) =

∑
λ`n
r∈[n]

aλ,rsλ(x) qr.

Combining all of these equalities and extracting the coefficient of qr gives the result.

Every step of the preceding proof uses an explicit bijection with the exception of the
appeal to cyclic sieving through Theorem 1.5. This suggests the problem of finding a
bijective proof of Theorem 1.5.

Problem 3.4. For each n > 1, find an explicit, content-preserving bijection

φ : Wn →Wn

such that majn(w) = flex(φ(w)).
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Corollary 3.5. A solution to Problem 3.4 would yield an explicit, bijective proof of the
identity ∑

λ`n

aλ,rsλ(x) =
∑
λ`n

aλ,ssλ(x) (31)

for any r, s ∈ Z where gcd(n, r) = gcd(n, s).

Proof. We have content-preserving bijections⊔
λ`n

SSYT(λ)× {Q ∈ SYT(λ) : maj(Q) ≡n r}
RSK→ Mn,r

φ→ Fn,r
ι→ NFDn,r .

Now note that
NFDn,r = NFDn,gcd(n,r) = NFDn,gcd(n,s) = NFDn,s .

We thus have an explicit, content-preserving bijection⊔
λ`n

SSYT(λ)× {Q ∈ SYT(λ) : maj(Q) ≡n r}

∼→
⊔
λ`n

SSYT(λ)× {Q ∈ SYT(λ) : maj(Q) ≡n s}

from which (31) follows.

Remark 3.6. The most difficult step in our proof of Theorem 1.6 is the universal Sn-
cyclic sieving result, Corollary 1.3, or equivalently Theorem 1.2. The proof in [RSW04] of
Theorem 1.2 perhaps unsurprisingly uses several of the interpretations of the Kraśkiewicz–
Weyman symmetric functions from Section 2.5, in particular Theorem 2.12 involving
chSn×Cn Rn. However, both Kraśkiewicz–Weyman’s and Springer’s original proofs of
Theorem 2.12 hinge upon (1). Indeed, Kraśkiewicz–Weyman showed explicitly in [KW01,
Prop. 3] that chSn×Cn CSn = chSn×Cn Rn is easily equivalent to (1). Springer’s argument
proving (1) uses a Molien-style formula, while Kraśkiewicz–Weyman’s argument uses a
recursion involving `-cores and skew hooks.

One may thus ask about the relationship between (1) and the cyclic sieving result,
Theorem 1.2. Using stable principal specializations, one can consider earlier approaches to
have been “in the s-basis” and our approach to have been “in the h-basis” in the following
sense. Let τλ be the Sn-character of 1↑SnSλ , which has ch(1↑SnSλ) = hλ. We have

χλ(σrn) = SYT(λ)maj(ωrn) = (1− q) · · · (1− qn)sλ(1, q, q
2, . . .)|q=ωrn ,

τλ(σrn) = Wmaj
λ (ωrn) = (1− q) · · · (1− qn)hλ(1, q, q

2, . . .)|q=ωrn .

where the first equality is (1), the second is [Sta99, Prop. 7.19.11], the third is Theorem 1.2,
and the fourth is [Sta99, Prop. 7.8.3] and [Mac13, Art. 6]. Our approach suggests that, as
far as the Kraśkiewicz–Weyman theorem is concerned, the h-basis arises more directly.

In [AS18], the authors proved a refinement of Theorem 1.2. Since earlier approaches
to Theorem 1.2 involving representation theory could not readily be adapted to this
refinement, the argument instead uses completely different and highly combinatorial
techniques. Thus, the arguments in [AS18] and the proof of Theorem 1.6 together give an
essentially self-contained proof of Kraśkiewicz–Weyman’s result.

the electronic journal of combinatorics 25(4) (2018), #P4.42 20



4 Induced Representations of Arbitrary Cyclic Subgroups of Sn

We next generalize the discussion in Section 3 to branching rules for general inclusions
〈σ〉 ↪→ Sn, recovering a result of Stembridge, Theorem 4.11. Following the outline of the
previous section, we express the relevant characters in turn as a certain orbit generating
function, Theorem 4.2, a necklace generating function, Lemma 4.6, and a generating
function on words, Lemma 4.7. Two variations on the major index, majν and majν , arise
quite naturally from our argument. The CSP Theorem 1.2 again plays a decisive role.

Throughout this section, let σ ∈ Sn, let C be the cyclic group generated by σ, and
let ` := #C be the order of σ. Fixing a primitive `-th root of unity ω`, let χr : C → C
for r = 1, . . . , ` be the linear C-module given by χr(σ) := ωr` . We begin by updating our
notation for this setting and generalizing Theorem 3.1.

Definition 4.1. In analogy with Definition 2.1, suppose O is an orbit of Wn under the
restricted C-action. The period of O is #O and the frequency of O, written freq(O), is
the stabilizer-order of any element of O, or equivalently freq(O) = `

#O . The set of orbits
of words whose frequency divides r is

OFDC,r := {C-orbits O of Wn : freq(O) | r}.

Theorem 4.2. There is a basis for E(χr↑SnC ) indexed by C-orbits of length n words with
letters from [m] and with frequency dividing r. Moreover,

ch
(
χr↑SnC

)
= OFDcont

C,r (x). (32)

Proof. The proof of Theorem 3.1 goes through verbatim with the C-action replacing the
Cn-action.

Our goal is broadly to replace OFDcont
C,r (x) with a necklace generating function, apply

cyclic sieving to get a major index generating function on words, and then apply RSK to
get a Schur expansion.

Notation 4.3. For the rest of the section, suppose that σ has disjoint cycle decomposition
σ = σ1 · · ·σk with νi := |σi|. Consequently, ` = |〈σ〉| = lcm(ν1, . . . , νk). Further, write

Cν := {σr11 · · · σ
rk
k ∈ Sn : r1, . . . , rk ∈ Z} ∼= Cν1 × · · · × Cνk

where Cνi := 〈σi〉 ⊂ Sn. Thus, we have C ⊂ Cν ⊂ Sn.

In Section 3, we considered the Cn-orbits of Wn, namely necklaces N ∈ Nn. The
frequency of N is the stabilizer-order of N , i.e. freq(N) = # StabCn(N). We may group
together Cn-orbits of Wn according to their stabilizer sizes by letting

NFn,r := {N ∈ Nn : freq(N) = r} (33)

be the set of necklaces of length n words with frequency r. Similarly, NFDn,r consists of
Cn-orbits of Wn whose stabilizer is contained in the common stabilizer of NFn,r.

the electronic journal of combinatorics 25(4) (2018), #P4.42 21



Analogously, the Cν-orbits of Wn can be identified with products of necklaces N1 ×
· · · ×Nk or equivalently with tuples (N1, . . . , Nk) where Nj ∈ Nνj . Since

StabCν (N1 × · · · ×Nk) =
k∏
j=1

StabCνj (Nj),

we may group together Cν-orbits of Wn according to their stabilizers as follows.

Definition 4.4. Given ν = (ν1, . . . , νk) and ρ = (ρ1, . . . , ρk), let

NFν,ρ := NFν1,ρ1 × · · · × NFνk,ρk ,

NFDν,ρ := NFDν1,ρ1 × · · · × NFDνk,ρk .

The elements of NFν,ρ all have the same stabilizer, and the elements of NFDν,ρ are precisely
those whose stabilizer is contained in the common stabilizer of elements of NFν,ρ. We write
ρ | ν to mean that ρi | νi for all i = 1, . . . , r. Note that NFν,ρ 6= ∅ if and only if ρ | ν.

Given a group G acting on a set W and a subgroup H of G, each G-orbit of W is
partitioned into H-orbits. Consequently, Cν-orbits of Wn are unions of C-orbits, which
we exploit as follows.

Lemma 4.5. Let O be a C-orbit of Wn. Let N1 × · · · ×Nk be the Cν-orbit containing O
and suppose N1 × · · · ×Nk ∈ NFν,ρ. Then

#O = lcm

(
ν1

ρ1

, . . . ,
νk
ρk

)
,

which depends only on ν and ρ. In particular,

O ∈ OFDC,r if and only if ` | r · lcm

(
ν1

ρ1

, . . . ,
νk
ρk

)
.

Proof. By assumption, freq(Nj) = ρj and Nj ∈ Nνj , so #Nj = νj/ρj. It follows that O is
in bijection with the group generated by a permutation of cycle type (ν1/ρ1, . . . , νk/ρk),
so that #O = lcm(ν1/ρ1, . . . , νk/ρk). The second claim follows by noting that

O ∈ OFDC,r ⇔ freq(O) | r ⇔ (`/#O) | r ⇔ ` | r ·#O.

Lemma 4.6. We have

OFDcont
C,r (x) =

∑ ∏k
j=1

νj
ρj

lcm
(
ν1
ρ1
, . . . , νk

ρk

) NFcont
ν,ρ (x),

where the sum is over all ρ such that ρ | ν and ` | r · lcm
(
ν1
ρ1
, . . . , νk

ρk

)
.
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Proof. Consider the map

Ω : OFDC,r →
⊔

NFν,ρ

sending O ∈ OFDC,r to the Cν-orbit containing O, where the union is over all ρ such that

ρ | ν and ` | r · lcm
(
ν1
ρ1
, . . . , νk

ρk

)
. By Lemma 4.5, Ω does in fact map OFDC,r into this

union, and Ω is surjective. Also, each Cν-orbit contained in NFν,ρ has size lcm
(
ν1
ρ1
, . . . , νk

ρk

)
,

and #N1 × · · · ×Nk =
∏k

j=1
νj
ρj

, so the fiber of each N1 × · · · ×Nk ∈ NFν,ρ has size

#Ω−1(N1× . . .×Nk) =

∏k
j=1

νj
ρj

lcm
(
ν1
ρ1
, . . . , νk

ρk

) .
The result now follows from Ω being content-preserving.

In Section 3, we used cyclic sieving to turn generating functions involving NFDcont
n,r (x)

into Schur expansions. Thus our next goal is to turn the necklace generating function in
Lemma 4.6 into an analogous generating function over NFDcont

ν,ρ (x). To accomplish this,
one could in principle use Möbius inversion on the lattice of stabilizers of Cν-orbits to
convert from NFcont

ν,ρ (x) to NFDcont
ν,ρ (x). However, the following argument is more direct.

Lemma 4.7. For r = 1, . . . , `,

OFDcont
C,r (x) =

∑
NFDcont

ν,τ (x),

where the sum is over all k-tuples of integers τ ∈ [ν1]×· · ·× [νk] such that
∑k

j=1
`
νj
τj ≡` r.

Proof. We have

NFDcont
ν,τ (x) =

∑
ρ|ν,τ

NFcont
ν,ρ (x),

where ρ | ν, τ means ρj | νj and ρj | τj for all j. Consequently,∑
τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

NFDcont
ν,τ (x) =

∑
ρ|ν

crν,ρ NFcont
ν,ρ (x)

where

crν,ρ := #

{
τ ∈ [ν1]× · · · × [νk] : ρ | τ,

k∑
j=1

`

νj
τj ≡` r

}
.

Since ρj | νj and ρj | τj, write γj :=
νj
ρj
∈ Z>1 and δj :=

τj
ρj
∈ Z>1. Then,

k∑
j=1

`

νj
τj =

k∑
j=1

`

γj
δj,
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so

crν,ρ = #

{
δ ∈ [γ1]× · · · × [γk] :

k∑
j=1

`

γj
δj ≡` r

}
.

Defining a group homomorphism

φ :
k∏
i=1

Z/γj → Z/`

(δ1, . . . , δk) 7→
k∑
j=1

`

γj
δj,

we now have crν,ρ = #φ−1(r). Since `
γ1
Z + · · ·+ `

γk
Z = `

lcm(γ1,...,γk)
Z, it follows that

imφ = {r ∈ Z/` : ` | r · lcm (γ1, . . . , γk)},
# imφ = lcm(γ1, . . . , γk).

For r ∈ imφ, we then have

crν,ρ = #φ−1(r) = # kerφ =
γ1 · · · γk

lcm(γ1, . . . , γk)
.

The result follows from Lemma 4.6.

Our next goal is to convert the necklace expansion in Lemma 4.7 into a Schur expansion.
Recalling from Section 3 that Mn,r := {w ∈Wn : majn(w) = r}, Lemma 3.2 tells us

NFDcont
ν,τ (x) =

k∏
j=1

NFDcont
νj ,τj

(x) =
k∏
j=1

Mcont
νj ,τj

(x). (34)

Interpreting the right-hand side of (34) in terms of words and comparing with the indexing
set in Lemma 4.7 motivates the following variations on the major index.

Definition 4.8. Suppose ν � n, τ ∈ [ν1] × · · · × [νk], and ` = lcm(ν1, . . . , νk). Let
majν : Wn → [ν1] × · · · × [νk] be defined as follows. For w ∈ Wn, write w = w1 · · ·wk
where each wj is a word in Wνj . Set

majν(w) := (majν1(w
1), . . . ,majνk(w

k)).

Furthermore, let majν : Wn → [`] be defined by

majν(w) :=
k∑
j=1

`

νj
majν(w)j (mod `).

Consequently, we have maj(n) = majn. Note that both majν and majν are functions of
Des(w). We may thus define both majν and majν on Q ∈ SYT(n) using only Des(Q) in
the same way. Equivalently, we may set majν(Q) := majν(w) and majν(Q) := majν(w)
for any w such that Q = Q(w).
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Example 4.9. Let ν = (5, 3, 3) and w = 44121361631, so that ` = 15, w1 = 44121,
w2 = 361, and w3 = 631. We have

majν(w) = (maj5(w1),maj3(w2),maj3(w3)) = (1, 2, 3)

and, hence, majν(w) = 15
5
· 1 + 15

3
· 2 + 15

3
· 3 = 13 (mod 15).

Definition 4.10. Suppose ν � n, τ ∈ [ν1]× · · · × [νk]. Let

Mν,τ := {w ∈Wn : majν(w) = τ},

Theorem 4.11. [Ste89, Theorem 3.3] Let C be a cyclic subgroup of Sn generated by an
element of cycle type ν = (ν1, . . . , νk), and let ` = lcm(ν1, . . . , νk). We have

∑̀
r=1

ch
(
χr↑SnC

)
qr = Wcont,majν

n (x; q) =
∑
λ`n
r∈[`]

aνλ,rsλ(x)qr

where aνλ,r := #{Q ∈ SYT(λ) : majν(Q) = r}. In particular, the multiplicity of Sλ in

χr↑SnC is aνλ,r.

Proof. From the definition of majν and Definition 4.4, we have

NFDcont
ν,τ (x) = Mcont

ν,τ (x). (35)

Using Theorem 4.2 and Lemma 4.7, we then have

∑̀
r=1

ch
(
χr↑SnC

)
qr =

∑̀
r=1

∑
τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

NFDcont
ν,τ (x) qr

=
∑̀
r=1

∑
τ∈[ν1]×···×[νk]∑k
j=1

`
νj
τj ≡` r

Mcont
ν,τ (x) qr

=
∑̀
r=1

{w ∈Wn : majν(w) = r}cont(x) qr

= Wcont,majν
n (x; q).

Since majν(w) depends only on Des(w), we can apply the RSK bijection again through
Lemma 2.7 to get

Wcont,majν
n (x; q) =

∑
λ`n
r∈[`]

aνλ,rsλ(x)qr.
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Remark 4.12. Stembridge showed the equality of the first and third terms in Theorem 4.11
using the skew analogue of (1) and branching rules along Young subgroups of Sn. By
contrast, Wcont,majν

n (x; q) played a key role in our approach.

Since the isomorphism type of χr↑SnC , or equivalently the Schur expansion of OFDcont
C,r (x),

depends only on ν, the cycle type of a generator of C, and gcd(`, r), we have the following
generalization of Corollary 2.15.

Corollary 4.13. For all n > 1 and λ, ν ` n, we have aνλ,r = aνλ,gcd(`,r), where ` =

lcm(ν1, ν2, . . .).

For use in the next section, we record the Schur expansion of Mcont
ν,τ (x). The proof is

analogous to the last step of the proof of Theorem 4.11 using Lemma 2.7.

Corollary 4.14. If ν, τ � n, then

Mcont
ν,τ (x) =

∑
λ`n

aνλ,τsλ(x)

where
aνλ,τ := #{Q ∈ SYT(λ) : majν(Q) = τ}.

We also have a corresponding symmetry result. Contrast it with Corollary 2.15.

Corollary 4.15. Suppose ν = (ν1, . . . , νk) is the cycle type of some σ ∈ Sn, τ ∈ [ν1] ×
· · · × [νk], π ∈ Sk, and λ ` n. Then, aνλ,τ = aπ·νλ,π·τ .

Proof. Since reordering does not affect contents, we have

NFDcont
ν,τ (x) = NFDcont

π·ν,π·τ (x).

Now apply Corollary 4.14 and equate coefficients of sλ(x).

Remark 4.16. Finally, in the spirit of Section 3, we sketch how to reinterpret Theorem 4.11
as a cyclic sieving result for the majν statistic. First define flexν : Wn → [`] exactly
as before, namely lexicographically order the C-orbit of w ∈ Wn to compute lexν(w)
starting at 1, let freqν(w) denote the stabilizer-order of w under the C-action, and let
flexν(w) = freqν(w) · lexν(w). Exactly as in Lemma 3.2, each O ∈ OFDn,r contains a
unique element with flexν(w) = r, so that Theorem 4.2 gives∑̀

r=1

chχr↑SnCnq
r =

∑̀
r=1

OFDcont
n,r (x)qr = Wcont;flexν

n (x; q).

Using Theorem 4.11, it follows that

Wcont;flexν
n (x; q) = Wcont;majν

n (x; q).

Equivalently, majν and flexν are equidistributed on each Wα. The analogue of the
“universal” flex sieving result for Cn-actions on Wn, Lemma 1.4, holds for flexν and C-
actions on Wn for the same straightforward reasons. Putting it all together, we find that
(Wα, C,W

majν
α (q)) exhibits the CSP. In this sense, flexν ,majν are universal sieving statistics

for the C-action on Wn on C-closed sets and Sn-closed sets, respectively, generalizing
Lemma 1.4 and Corollary 1.3 and from the introduction.
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5 Inducing 1-dimensional Representations from Ca o Sb to Sab

We next apply the approach of Section 3 and Section 4 to prove a generalization of a
formula due to Schocker [Sch03] for the Schur expansion of L(ab). In particular, we give
Schur expansions of the characteristics of

Lr,1
(ab)

:= χr,1↑SabCaoSb and Lr,ε
(ab)

:= χr,ε↑SabCaoSb .

Note that chL(ab) = chL1,1
(ab)

by Corollary 2.23.

The argument in Corollary 2.23 and the fact that ch(εb) = eb(x) immediately yield
the following more general result, which also follows from an appropriate modification of
Theorem 3.1.

Lemma 5.1. We have

Lr,1
(ab)

=

((
NFDa,r

b

)) cont

(x) and Lr,ε
(ab)

=

(
NFDa,r

b

)cont

(x).

Our first goal is to manipulate the necklace generating functions in Lemma 5.1 in such
a way that we may apply cyclic sieving. We use Burnside’s lemma and a sign-reversing
involution to unravel these multiset and subset generating functions, respectively.

Lemma 5.2. We have((
NFDa,r

b

)) cont

(x1, x2, . . .) =
∑
ν`b

1

zν

`(ν)∏
j=1

NFDcont
a,r (x

νj
1 , x

νj
2 , . . .).

Proof. Multisets of b necklaces from NFDa,r can be thought of as Sb-orbits of length-b
tuples (N1, . . . , Nb) of necklaces Ni ∈ NFDa,r under the natural Sb-action. The tuples
(N1, . . . , Nb) fixed by an element σ ∈ Sb are those tuples which are constant on blocks
corresponding to cycles of σ. It follows that if σ has cycle type ν ` b,

{T ∈ NFDb
a,r : σ · T = T}cont(x1, x2, . . .) =

`(ν)∏
j=1

NFDcont
a,r (x

νj
1 , x

νj
2 , . . .). (36)

By Burnside’s lemma, we may count Sb-orbits of necklaces (N1, . . . , Nb) of fixed content
by averaging the number of σ-fixed tuples of fixed content over all σ ∈ Sb. The result
follows by grouping together permutations of a given cycle type.

Lemma 5.3. We have(
NFDa,r

b

)cont

(x) =
∑
ν`b

(−1)b−`(ν)

zν

`(ν)∏
j=1

NFDcont
a,r (x

νj
1 , x

νj
2 , . . .).
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Proof. Multiplying both sides by b!, using (36) and the fact sgn(σ) = (−1)b−`(ν) for σ ∈ Sb
with cycle type ν, the result is equivalent to

{(N1, . . . , Nb) ∈ NFDb
a,r : (N1, . . . , Nb) are distinct}cont(x)

=
∑
σ∈Sb

sgn(σ){T ∈ NFDb
a,r : σ · T = T}cont(x). (37)

On the right-hand side of (37), each b-tuple (N1, . . . , Nb) is counted

wt(N1, . . . , Nb) :=
∑
σ∈Sb

s.t. σ·(N1,...,Nb)=(N1,...,Nb)

sgn(σ)

times. If N1, . . . , Nb are distinct, then only σ = id contributes, so wt(N1, . . . , Nb) = 1.
If N1, . . . , Nb are not distinct, then without loss of generality, suppose N1 = N2. Then,
modifying the cycle(s) containing 1 and 2 as in

(1 · · · )(2 · · · )↔ (1 · · · 2 · · · )

gives a sign-reversing involution on {σ ∈ Sb : σ · (N1, . . . , Nb) = (N1, . . . , Nb)}, meaning
wt(N1, . . . , Nb) = 0. This proves (37).

Remark 5.4. Using standard properties of plethysm (see e.g. [Mac95, §I.8])) and the
power-sum expansions of eb and hb (see [Sta99, (7.22)-(7.23)]), Lemma 5.2 and Lemma 5.3
are equivalent to

chLr,1
(ab)

= hb[chχr↑SaCa ] =
∑
ν`b

1

zν
pν [chχr↑SaCa ], (38)

chLr,ε
(ab)

= eb[chχr↑SaCa ] =
∑
ν`b

(−1)b−`(ν)

zν
pν [chχr↑SaCa ]. (39)

Consequently, one may replace the combinatorial manipulations in Lemma 5.2 and
Lemma 5.3 with symmetric function manipulations. In the next section, we will prove
Theorem 1.8, which generalizes the first equalities in (38) and (39).

Remark 5.5. Let ω be the involution on the algebra of symmetric functions defined by
ω(sλ(x)) = sλ′(x) where λ′ is the conjugate of λ, obtained by reflecting λ through the line
y = −x. One may show in a variety of ways that

ω
(
chχr↑SnCn

)
= chχs↑SnCn where s =

(
n

2

)
− r. (40)

For instance, we can prove (40) using Theorem 1.6 as follows. Since conjugation
Q 7→ Q′ satisfies Des(Q′) = [n− 1] \Des(Q), we have

aλ′,r = #{Q ∈ SYT(λ′) : maj(Q) ≡n r}

= #

{
Q′ ∈ SYT(λ) : maj(Q′) ≡n

(
n

2

)
− r
}

= aλ,(n2)−r
.

(41)
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Therefore, by Theorem 1.6, letting s =
(
n
2

)
− r,

ω
(
chχr↑SnCn

)
= ω

(∑
λ`n

aλ,rsλ(x)

)
=
∑
λ`n

aλ′,rsλ(x) =
∑
λ`n

aλ,ssλ(x) = χs↑SnCn .

From the symmetry result Corollary 2.15, it follows that chχr↑SnCn is fixed under ω

when n is odd. When n is even, chχr↑SnCn may or may not be fixed. For instance, when
r = 1, we find

ω (chLn) = ω
(
chχ1↑CnSn

)
=

{
chL(2)

n = chχ2↑CnSn if n/2 is odd,

chLn = chχ1↑CnSn otherwise.

Here L(2)
n is the deformation of Ln recently studied by Sundaram [Sun18]. Further standard

properties of plethysm together with (38) and (39) give

ω
(

chLr,1
(ab)

)
= chLr,ε

(ab)
for a odd, and

ω
(

chLr,1
(ab)

)
= chLs,1

(ab)

ω
(

chLr,ε
(ab)

)
= chLs,ε

(ab)

 for a even, where s =

(
a

2

)
− r.

Consequently, one may obtain the Schur expansion of chLr,ε
(ab)

from the Schur expansion of

chLr,1
(ab)

simply by applying the ω map if and only if a is odd. When a is even, these two

cases are more fundamentally different.

Next, we convert NFDcont
a,r (x

νj
1 , x

νj
2 , . . .) into a linear combination of NFcont

k,s (x)’s and
then apply Mobius inversion to convert to a linear combination of NFDcont

k,s (x)’s. We will
need the following variation on the number-theoretic Möbius function µ.

Definition 5.6. Suppose d | e and f | e. Set

µf (d, e) :=
∑
g

s.t. lcm(f,d)|g|e

µ

(
g

f

)
.

This expression simplifies considerably as follows. Let rad(m) denote the squarefree
positive integer with the same prime divisors as m.

Lemma 5.7. Suppose d | e and f | e. Then

µf (d, e) =

{
µ
(

lcm(f,d)
f

)
if rad

(
e
f

)
= rad

(
lcm(f,d)

f

)
= lcm(f,d)

f
,

0 otherwise.
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Proof. We see

µf (d, e) =
∑
g

s.t. lcm(f,d)|g|e

µ

(
g

f

)
=

∑
h

s.t.
lcm(f,d)

f
|h| e

f

µ(h)

Since µ(h) 6= 0 only when h is radical, µ(h) 6= 0 only when lcm(f,d)
f

is radical and h | rad(e/f).

Restricting to this case, we can write rad(e/f) = k lcm(f, d)/f for some integer k. Since k
and lcm(f, d)/f must be relatively prime, we have

µf (d, e) =
∑
h

s.t.
lcm(f,d)

f
|h| k·lcm(f,d)

f

µ(h)

=
∑
s|k

µ

((
lcm(f, d)

f

)
s

)

= µ

(
lcm(f, d)

f

)∑
s|k

µ(s)

=

{
µ
(

lcm(f,d)
f

)
if k = 1,

0 otherwise,

giving the result.

Lemma 5.8. We have

NFDcont
a,r (xk1, x

k
2, . . .) =

∑
s|rk

µs(k, rk) NFDcont
ak,s(x1, x2, . . .).

Proof. The left-hand side is the content generating function for k-tuples of length a
necklaces with frequency dividing r of the form (N, . . . , N), repeating the same necklace k
times. By concatenation, we may equivalently view such tuples as length ak necklaces
whose frequency f satisfies k | f | rk. Consequently,

NFDcont
a,r (xk1, x

k
2, . . .) =

∑
f

s.t. k|f |rk

NFcont
ak,f (x1, x2, . . .), (42)

recalling NFn,f := {N ∈ Nn : freq(N) = f}. Applying Möbius inversion to the identity
NFDcont

ak,f (x) =
∑

s|f NFcont
ak,s(x) gives

NFcont
ak,f (x) =

∑
s|f

µ

(
f

s

)
NFDcont

ak,s(x). (43)
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Thus, by (43), (42) becomes

NFDcont
a,r (xk1, x

k
2, . . .) =

∑
f

s.t. k|f |rk

∑
s|f

µ

(
f

s

)
NFDcont

ak,s(x1, x2, . . .)

=
∑
s|rk

 ∑
f

s.t. lcm(k,s)|f |rk

µ

(
f

s

)NFDcont
ak,s(x1, x2, . . .)

=
∑
s|rk

µs(k, rk) NFDcont
ak,s(x1, x2, . . .).

by Definition 5.6.

Notation 5.9. Given a sequence ν = (ν1, . . . , νk) ∈ Zk>1 and an integer r ∈ Z>1, let

r ∗ ν := (rν1, . . . , rνk).

Given another sequence τ = (τ1, . . . , τk), recall that τ | ν means τj | νj for all j. Further
recall

NFDν,τ = NFDνj ,τj × · · · × NFDνk,τk

from Definition 4.4. Finally, extend µf (d, e) to sequences multiplicatively:

µ(f1,...,fk)((d1, . . . , dk), (e1, . . . , ek)) :=
k∏
j=1

µfj(dj, ej).

Corollary 5.10. We have

chLr,1
(ab)

=
∑
ν`b

1

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν) NFDcont
a∗ν,τ (x),

chLr,ε
(ab)

=
∑
ν`b

(−1)b−`(ν)

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν) NFDcont
a∗ν,τ (x).

Proof. Combine Lemma 5.1, Lemma 5.2 or Lemma 5.3, and Lemma 5.8.

We may now state and generalize Schocker’s formula for chL(ab) = chL1,1
(ab)

.

Theorem 5.11 (See [Sch03, Thm. 3.1]). For all a, b > 1 and r = 1, . . . , a, we have

chLr,1
(ab)

=
∑
λ`ab

∑
ν`b

1

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν)aa∗νλ,τ

 sλ(x) and

chLr,ε
(ab)

=
∑
λ`ab

∑
ν`b

(−1)b−`(ν)

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν)aa∗νλ,τ

 sλ(x),

where, recalling the definition of maja∗ν from Definition 4.8,

aa∗νλ,τ := #{Q ∈ SYT(λ) : maja∗ν(Q) = τ}.
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Proof. Combine Corollary 4.14 and Corollary 5.10.

Remark 5.12. Schocker’s approach to [Sch03, Thm. 3.1] is based on Jöllenbeck’s non-
commutative character theory and involved manipulations with Klyachko’s idempotents
and Ramanujan sums. Much of Schocker’s argument generalizes immediately to all r.
The argument presented above is comparatively self-contained and direct. Two perhaps
mysterious aspects of the formula, the appearance of Möbius functions and the average over
Sb, arose naturally from Burnside’s lemma and a change of basis using Möbius inversion.
Our argument uses explicit bijections at each step except for the appeal to Burnside’s
lemma and the use of Lemma 5.3.

6 Higher Lie Modules and Branching Rules

The argument in Section 3 solves Thrall’s problem for λ = (n) by considering all branching
rules for Cn ↪→ Sn simultaneously and using cyclic sieving and RSK to convert from the
monomial to the Schur basis. We now turn to analogous considerations for the higher Lie
modules and more generally branching rules for Ca o Sb ↪→ Sab. We give an analogue of the
flex statistic and the monomial basis expansion for such branching rules from Section 2.5.
We then show how to convert from the monomial to the Schur basis assuming the existence
of a certain statistic on words we call mash which interpolates between majn and the
shape under RSK.

We now recall and prove Theorem 1.8 from the introduction, after introducing some
notation.

Definition 6.1. Fix integers a, b > 1. Define

Pb
a :=

{
λ = (λ(1), . . . , λ(a)) : λ(1), . . . , λ(a) are partitions ,

a∑
r=1

|λ(r)| = b

}
,

which indexes the irreducible Ca o Sb-representations by Theorem 2.20.

Theorem. For all a, b > 1 and λ = (λ(1), . . . , λ(a)) ∈ Pb
a, we have

chSλ↑SabCaoSb =
a∏
r=1

sλ(r) [NFDcont
a,r (x)].

Proof of Theorem 1.8. We have

Sλ↑SabCaoSb =

[
a⊗
r=1

(χra o Sλ
(r)

)

]
↑SabCaoSα(λ)

∼=

[
a⊗
r=1

(χra o Sλ
(r)

)

]
↑Sa∗α(λ)CaoSα(λ)↑

Sab
Sa∗α(λ)

∼=

[
a⊗
r=1

(χra o Sλ
(r)

)↑
S
a|λ(r)|
CaoS|λ(r)|

]
↑SabSa∗α(λ)
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∼=

[
a⊗
r=1

(χra o Sλ
(r)

)↑
SaoS|λ(r)|
CaoS|λ(r)|

↑
S
a|λ(r)|
SaoS|λ(r)|

]
↑SabSa∗α(λ)

∼=

[
a⊗
r=1

(χra↑SaCa o S
λ(r))↑

S
a|λ(r)|
SaoS|λ(r)|

]
↑SabSa∗α(λ)

,

where the first and third isomorphisms use transitivity of induction, the second isomorphism
uses Lemma 2.26, and the fourth isomorphism uses Lemma 2.25. Consequently, using (20),
(22), and Theorem 3.1, we have

chSλ↑SabCaoSb =
a∏
r=1

ch
(
χra↑SaCa o S

λ(r)
)
↑
S
a|λ(r)|
SaoS|λ(r)|

=
a∏
r=1

(chSλ
(r)

)[chχra↑SaCa ]

=
a∏
r=1

sλ(r) [NFDcont
a,r (x)].

Recall from Section 2.3 that given a word w, the shape of w, denoted sh(w), is the
common shape of P (w) and Q(w) under RSK.

Definition 6.2. Fix a, b > 1. Construct statistics

flexba,majba : Wab → Pb
a

as follows. Given w ∈Wab, write w = w1 · · ·wb where wj ∈Wa. In this way, consider w
as a word of size b whose letters are in Wa. For each r ∈ [a], let w(r) denote the subword
of w whose letters are those wj such that flex(wj) = r. Totally order Wa lexicographically,
so that RSK is well-defined for words with letters from Wa. Set

flexba(w) := (sh(w(1)), . . . , sh(w(a))).

Define majba in the same way but with flex replaced by maja. Consequently, maj1n(w) is
the n-tuple of partitions whose only non-empty entry is a single cell at position majn(w).

Example 6.3. Let w = 212023101241 and suppose a = 3, b = 4. Write

w = (212)(023)(101)(241).

The parenthesized terms have flex statistics 2, 1, 2, 2 and maj3 statistics 1, 3, 1, 2, respec-
tively. When computing flex4

3(w), we then have w(1) = (023), w(2) = (212)(101)(241), w(3) =
∅. Since (101) <lex (212) <lex (241), sh(w(2)) = sh(213) = (2, 1). Consequently,

flex4
3(212023101241) = ((1), (2, 1),∅).

When computing maj43(w), we have w(1) = (212)(101), w(2) = (241), w(3) = (023). Since
(101) <lex (212), sh(w(1)) = sh(21) = (1, 1). Hence

maj43(212023101241) = ((1, 1), (1), (1)).
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We now recall and prove Theorem 1.9 from the introduction.

Theorem. Fix a, b > 1. We have∑
λ∈Pba

dimSλ · ch
(
Sλ↑SabCaoSb

)
qλ = W

cont,flexba
ab (x; q)

= W
cont,majba
ab (x; q)

where the Sλ are irreducible representations of Ca o Sb and the qλ are independent indeter-
minates.

Proof of Theorem 1.9. Fix λ ∈ Pb
a. For the left-hand side, using Theorem 1.8 and (24),

dimSλ · ch
(
Sλ↑SabCaoSb

)
=

(
b

α(λ)

) a∏
r=1

# SYT(λ(r)) · sλ(r) [NFDcont
a,r (x)]. (44)

For the right-hand side, we have

W
cont,flexba
ab (x; q)

∣∣∣
qλ

= {w ∈Wab : flexba(w) = λ}cont(x).

Say α(λ) = (α1, . . . , αa). In order for w ∈ Wab to have flexba(w) = λ, we must have
sh(w(r)) = λ(r) for each r ∈ [a]. Recalling Fa,r := {w ∈ Wa : flex(w) = r}, we may thus
choose each w(r) ∈ (Fa,r)

αr with sh(w(r)) = λ(r) independently and then shuffle them in(
b

α(λ)

)
ways to form w. Consequently,

{w ∈Wab : flexba(w) = λ}cont(x)

=

(
b

α(λ)

) a∏
r=1

{w(r) ∈ (Fa,r)
αr : sh(w(r)) = λ(r)}cont(x).

(45)

The content generating function for words with a given shape µ ` n under RSK is given by

{w ∈Wn : sh(w) = µ}cont(x) = # SYT(µ) sµ(x), (46)

since the number of possible Q-tableaux is # SYT(µ) and the content generating function
for P -tableaux is sλ(x). Changing the alphabet from Z>1 to Fa,r and using Lemma 3.2
gives

{w(r) ∈ (Fa,r)
αr : sh(wr) = λ(r)}cont(x) = # SYT(λ(r))sλ(r) [F

cont
a,r (x)]

= # SYT(λ(r))sλ(r) [NFDcont
a,r (x)].

(47)

The first equality in Theorem 1.9 now follows from combining (45) and (47) with (44).
The second equality in Theorem 1.9 follows similarly.
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While Theorem 1.9 determines the monomial expansion of the graded Frobenius series
tracking branching rules for Ca oSb ↪→ Sab, we are ultimately interested in the corresponding
Schur expansion. We next describe how the approach in the preceding sections might be
used to find this Schur expansion. The key properties used in the proof of Theorem 1.6
converting from the monomial basis to the Schur basis were that majn is equidistributed
with flex on each Wα and majn(w) depends only on Q(w). In order to apply a similar
argument for ch(Sλ↑SabCaoSb), we need a statistic as follows.

Problem 6.4. Fix a, b > 1. Find a statistic

mashba : Wab → Pb
a

with the following properties.

(i) For all α � ab, majba (or equivalently flexba) and mashba are equidistributed on Wα.

(ii) If v, w ∈Wab satisfy Q(v) = Q(w), then mashba(v) = mashba(w).

Finding such a statistic mashba would determine the Schur decomposition of ch(Sλ↑SabCaoSb)
as follows.

Corollary 6.5. Suppose mashba satisfies Properties (i) and (ii) in Problem 6.4. Then

ch(Sλ↑SabCaoSb) =
∑
ν`ab

#{Q ∈ SYT(ν) : mashba(Q) = λ}
dim(Sλ)

sν(x),

where mashba(Q) := mashba(w) for any w ∈Wab with Q(w) = Q.

Proof. We use, in order, Theorem 1.9, Property (i), RSK, and Property (ii) to compute∑
λ∈Pba

dim(Sλ) ch(Sλ↑SabCaoSb))q
λ = W

cont,majba
ab (x; q)

=
∑
α�ab

Wmajba
α (q) xα

=
∑
α�ab

Wmashba
α (q) xα

= W
cont,mashba
ab (x; q)

=
∑
ν`ab

(SSYT(ν)× SYT(ν))cont,mashba(x; q)

=
∑
ν`ab

SSYT(ν)cont(x) SYT(ν)mashba(q)

=
∑
ν`ab

SYT(ν)mashba(q)sν(x).

The result follows by equating coefficients of qλ.
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Remark 6.6. When a = 1 and b = n, we may replace λ with λ ` n. Under this
identification, majn1 (w) = sh(w), which clearly satisfies Properties (i) and (ii). When
a = n and b = 1, we may replace λ with an element r ∈ [n]. Under this identification, we
may set mash1

n(w) = majn(w), which satisfies Properties (i) and (ii). In this sense mashba
interpolates between the major index majn and the shape under RSK, hence the name.

While majba trivially satisfies Property (i), it fails Property (ii) already when a = b = 2,
as in the following example.

Example 6.7. Let v = 2314 and w = 1423. Then,

Q(v) = Q(w) = 1 2 4
3

while

maj22(v) = (∅, (1, 1))

maj22(w) = (∅, (2)).

Remark 6.8. When defining flexba and majba, we somewhat arbitrarily chose the lexico-
graphic order on Wa. Any other total order would work just as well. However, majba
continues to fail Property (ii) using any other total order when a = b = 2 in Example 6.7
since either 14 < 23 or 23 < 14.
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