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Abstract

This paper introduces a new class of graphs, the clique paths (or the CP graphs),
and shows that their distance determinant and distance inertia are independent of
their structures. The CP graphs include the family of linear 2-trees. When a graph
is attached to a CP graph, it is shown that the distance determinant and the distance
inertia are also independent of the structure of the CP graph. Applications to the
addressing problem proposed by Graham and Pollak in 1971 are given.

Mathematics Subject Classifications: 05C50, 05C12, 15A15

1 Introduction

On a simple connected graph G, the distance between two vertices i and j is the length
of the shortest path between them, denoted as distG(i, j). The distance matrix of a
connected graph G is

D(G) =
[
distG(i, j)

]
.

Various properties of the distance matrix of a graph have been studied intensively; see [1]
for a survey and the references therein.

Suppose A is an n × n symmetric matrix. The inertia inertia(A) of A is the triple
(n+, n−, n0), where n+, n−, and n0 are the number of positive, negative, and zero eigen-
values of A, respectively. The i, j-cofactor of A is (−1)i+j det(A(i|j)), where A(i|j) is the
matrix obtained from A by removing the i-th row and the j-th column. Let cof(A) be
the sum of all cofactors. That is,

cof(A) =
n∑
i=1

n∑
j=1

(−1)i+j det(A(i|j)).

∗Corresponding author.
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When A is invertible, cof(A) = det(A)(1>A−11), where 1 is the all-ones vector. For
convenience, we write detD(G) = det(D(G)), inertiaD(G) = inertia(D(G)), and cofD(G) =
cof(D(G)).

In 1971, Graham and Pollak [6] proved that detD(T ) = (−1)n−1(n − 1)2n−2 for any
tree T on n vertices, so the distance determinant is independent of the structure of
the tree. (In 2006, a simple proof of this result was given in [10].) Graham, Hoffman,
and Hosoya [5] then gave a generalization by showing both detD(G) and cofD(G) are
determined by detD(Gi) and cofD(Gi) for i = 1, . . . , k, where Gi’s are the blocks of G.
(A block of a graph is a maximal induced subgraph of G without a cut-vertex.) This
means detD(G) and cofD(G) are independent of how the blocks are attached to each
other. Several variants of the distance matrices were considered, such as the weighted
distance matrix [3], the q-analog and the q-exponential distance matrix [4, 11], and the
determinant of these matrices of a tree are shown to be independent of the structure of
the tree. These results gave elegant formulas for various types the distance matrices of
a tree, or graphs with cut-vertices. A natural question is: Can the distance determinant
be a constant for other families of graphs with tree-like structure, or graphs without a
cut-vertex?

G1 G2 G3

Figure 1: Three 2-trees

The family of k-trees is an immediate candidate to answer the question. A k-tree
on n vertices is constructed by the following process: Start with a k-clique on vertices
{1, . . . , k}. For j = k+ 1, . . . , n, add a new vertex j and join it with an existing k-clique.
A linear k-tree is a k-tree where each added vertex j is joined with an existing k-clique
that contains vertex j − 1. Note that a 1-tree is a tree, and a linear 1-tree is a path.
Figure 1 shows three 2-trees G1, G2, and G3 of the same order. By direct computation,
detD(G1) = −8 and detD(G2) = detD(G3) = −9. It seems giving a negative answer
to the questions. However, it also suggests that the family of linear 2-trees is probably
promising.

Indeed, Corollary 31 shows every linear 2-tree on n vertices has the same distance
determinant. (Example 32 shows that the same behavior does not occur for linear 3-
trees.) Section 4 defines a 2-clique path, which is obtained by gluing the edges from
several cliques into a path-like structure; the family of linear 2-trees is a special case of
the family of 2-clique paths. Theorem 28 shows the distance determinant only depends
on the size of each clique. In fact, the 2-clique paths belong to a bigger family of graphs,
the clique paths (or the CP graphs); see Figure 2 for some examples of the CP graphs.
Section 2 defines the CP graphs and shows that the distance determinant of the CP
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graphs only depends on the input parameters; the distance inertia and cofD(G) are also
considered. Section 3 shows gluing the initial edges of two different CP graphs to any
given connected graph will give two new graphs with the same distance determinant.

Finally, we turn our attention to the addressing problem. Graham and Pollak [6]
proposed an addressing scheme on a graph G as an assignment of strings in {0, 1, ∗} of
length d to each vertex such that the distance between any pair of vertices is equal to the
Hamming distance of their strings, ignoring the digits of ∗. Let N(G) be the minimum d
so that there is an addressing scheme on G. In [6], it was shown that

N(G) > max{n+, n−},

where inertiaD(G) = (n+, n−, n0), and was conjectured that N(G) 6 n− 1 for any graph
of order n. This conjecture was then proved by Winkler [9] in 1983. If G is a tree or a
clique tree on n > 2 vertices, then it is known [6,8] that n− = N(G) = n−1. Here a clique
tree (or a block graph in some literature) is a graph whose blocks are cliques. Section 5
shows that inertiaD(G) = (1, n − 1, 0) and N(G) = n − 1 for any graph G whose blocks
are 2-clique paths, generalizing the known results.

For convenience, we use weighted graphs to record matrices. A weighted graph is a
simple graph whose vertices and edges are associated with weights. The weight w(i, j)
of an edge {i, j} is nonzero, and the weight w(i) of a vertex can possibly be zero. The
weighted adjacency matrix of a weighted graph is

[
ai,j
]

with{
ai,j = w(i, j) if i 6= j,

ai,j = w(i) if i = j.

The notation {ei}ni=1 stands for the standard basis of Rn. Define [n] = {1, . . . , n} and
[a, b] = {a, a+ 1, . . . , b}. When a > b, [a, b] = ∅.

2 The CP graphs and their distance matrices

A sequence of integers q1, . . . , qn (n > 2) is called non-leaping if q1 = 0, q2 = 1, and
2 6 qk 6 qk−1 + 1 for any k = 3, . . . , n. (So q3 = 2 if n > 3.) For a given non-leaping
sequence, a neighborhood sequence is a sequence of sets W1, . . . ,Wn with the following
properties:

1. W1 = ∅;

2. W2 = {1};

3. for each k > 3, |Wk| = qk and Wk = {ak} ∪ [bk, k − 1], where bk = k − qk + 1 and
ak ∈ Wk−1 with ak < bk.

We vacuously define a2 = 1 and b2 = 2. Note that each bk is determined by the given
non-leaping sequence, yet the neighborhood sequences may vary by the choices of ak.
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Therefore, each set Wk contains qk elements, while qk − 1 of them are fixed with respect
to the non-leaping sequence.

A neighborhood sequence gives the construction of a graph: Start with vertex 1.
For k = 2, . . . , n, add vertex k and join it to every vertex in Wk. In other words, a
neighborhood sequence describes the “backward” neighborhoods of its graph. Note that
a non-leaping sequence may lead to more than one neighborhood sequence, depending on
the choices of ak, but the neighborhood sequence uniquely determines the graph.

Observation 1. By the definition of a non-leaping sequence, qk 6 qk−1+1 and bk > bk−1.
Therefore, Wk \ {k − 1} = {ak} ∪ [bk, k − 2] ⊆ Wk−1 by the definition of a neighborhood
sequence. As a result, if G is the graph constructed by a neighborhood sequence, then
Wk ∪ {k} forms a clique in G for each k.

Definition 2. Given a non-leaping sequence q1, . . . , qn, the family CPq1,...,qn consists of
the graphs of any possible neighborhood sequences of q1, . . . , qn. Graphs in CPq1,...,qn for
any non-leaping sequence are called CP graphs. The family of all CP graphs is denoted
as CP .

Note that when s = 0, 1, 2, . . . , 2 with m copies of 2, the family CPs is exactly the
family of linear 2-trees on m+ 2 vertices.

Definition 3. The reduced graph of a non-leaping sequence q1, . . . , qn is a weighted graph
on n vertices whose edges are {1, 2} with weight 1 and

{bk−1, k} with weight 1,

{bk, k} with weight − 1,

{k − 1, k} with weight 1

for k = 3, . . . , n. For each k, if any edges of the three edges above are the same, then they
merge as an edge and the weight is the sum of the weight of each edge; when the sum of
the weights is zero, the edge degenerates as a nonedge. Finally, the weight for vertices 1
and 2 are 0 while the weight of all other vertices is −2.

Here we elaborate all cases of Definition 3. First observe that bk−1 6 bk 6 k − 1 for
k > 3 by definition. Then note that bk−1 = bk if and only if qk = qk−1 + 1; also, bk = k− 1
if and only if qk = 2. Therefore, the case bk−1 = bk = k − 1 happens only when k = 3; in
this case, the three edges merge together as a single edge {2, 3} with weight 1−1 + 1 = 1.
Now consider the cases when k > 4. When qk = 2, the edges {bk, k} and {k− 1, k} cancel
with each other since the weight is −1 + 1 = 0; similarly, when qk = qk−1 + 1, the edges
{bk−1, k} and {bk, k} cancel with each other.

Remark 4. In the reduced graph, for any k = 3, . . . , n, if qk = 2, then the only neighbor
of k in [1, k− 1] is bk−1; if qk = qk−1 + 1, then the only neighbor of k in [1, k− 1] is k− 1;
otherwise, each k has three neighbors in [1, k − 1].

the electronic journal of combinatorics 25(4) (2018), #P4.45 4



1 3 5 7

2 4 6 8

G1

1
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3 4

5

67
8

G2

Figure 2: Two graphs G1 and G2 in CP0,1,2,2,2,2,3,3

Example 5. Let s = 0, 1, 2, 2, 2, 2, 3, 3 be a non-leaping sequence. The two cases below
are both neighborhood sequences of s.

W1 W2 W3 W4 W5 W6 W7 W8

G1 ∅ {1} {1, 2} {2, 3} {3, 4} {4, 5} {4, 5, 6} {5, 6, 7}
G2 ∅ {1} {1, 2} {1, 3} {1, 4} {1, 5} {1, 5, 6} {1, 6, 7}

The graphs G1 and G2 are shown in Figure 2, and both of them are in CPs.
Notice that ak is always the minimum element in Wk and bk is the next element after

ak for any k = 3, . . . , n. Therefore, the values of bk are invariants of s as shown below.

b2 b3 b4 b5 b6 b7 b8
2 2 3 4 5 5 6

Figure 3 shows the reduced graph of s. In general, each vertex k with k > 3 is adjacent to
three vertices in [1, k − 1]; e.g., k = 8. However, these three edges might merge together.
If qk = 2, then bk = k−1 and {bk, k} cancels {k−1, k}; e.g., k = 3, 4, 5, 6. If qk = qk−1+1,
then bk−1 = bk and {bk−1, k} cancels with {bk, k}; e.g., k = 7.

0

1
−2

3
−2

5
−2

7

0

2

−2

4

−2

6

−2

8

Figure 3: The reduced graph of the sequence 0, 1, 2, 2, 2, 2, 3, 3, where each solid edge has
weight 1 and each dashed edge has weight −1

Definition 6. Let s be a non-leaping sequence and W1, . . . ,Wn a corresponding neigh-
borhood sequence. Define the reducing matrix E as an n× n matrix whose k-th column
is {

ek if k ∈ {1, 2},
ek − eak − ek−1 + eak−1

if k > 3.
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Example 7. Let G1 and G2 be the graphs shown in Figure 2. The reducing matrix
depends on the choice of the neighborhood sequence. For i ∈ {1, 2}, the distance matrix
Di and the corresponding reducing matrix Ei of Gi are shown below.

D1 =



0 1 1 2 2 3 3 3
1 0 1 1 2 2 2 3
1 1 0 1 1 2 2 2
2 1 1 0 1 1 1 2
2 2 1 1 0 1 1 1
3 2 2 1 1 0 1 1
3 2 2 1 1 1 0 1
3 3 2 2 1 1 1 0


, E1 =



1 0 0 1 0 0 0 0
0 1 −1 −1 1 0 0 0
0 0 1 −1 −1 1 0 0
0 0 0 1 −1 −1 0 1
0 0 0 0 1 −1 0 −1
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1



D2 =



0 1 1 1 1 1 1 1
1 0 1 2 2 2 2 2
1 1 0 1 2 2 2 2
1 2 1 0 1 2 2 2
1 2 2 1 0 1 1 2
1 2 2 2 1 0 1 1
1 2 2 2 1 1 0 1
1 2 2 2 2 1 1 0


, E2 =



1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


Notice that the distance matrix and the reducing matrix depends on the choice of ak.
However, by direct computation we will see that

E>1 D1E1 = E>2 D2E2 =



0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 −2 0 1 0 0 0
0 1 0 −2 0 1 0 0
0 0 1 0 −2 0 0 1
0 0 0 1 0 −2 1 −1
0 0 0 0 0 1 −2 1
0 0 0 0 1 −1 1 −2


,

which is the weighted adjacency matrix of the reduced graph as shown in Figure 3.

Example 7 illustrates the main result Theorem 13: Given a non-leaping sequence s,
for any graph G ∈ CPs, its distance matrix D and its reducing matrix E always have
E>DE equal to the weighted adjacency matrix of the reduced graph. Before showing
Theorem 13, we need some lemmas.

Lemma 8. Suppose G is a CP graph. If {a, b} ∈ E(G) with a < b, then a is adjacent to
any c with a < c < b.

Proof. By Observation 1, Wb \ {b− 1} ⊆ Wb−1. Therefore, {a, b} ∈ E(G) implies {a, b−
1} ∈ E(G) if a < b− 1. Inductively, a is adjacent to any c with a < c < b.
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Corollary 9. Suppose G is a CP graph. For any two vertices a < b, each vertex k on
any shortest path a to b has k 6 b.

Proof. Suppose a = v1, . . . , vd = b is a shortest path from a to b. Suppose vi < b < vi+1

for some i. Then vi is adjacent to b by Lemma 8, giving a shorter path from a to b.

· · · · · · · · ·
1 · · · ak − 1 ak ak + 1 · · · bk − 1 bk · · · k − 1 k

x1 · · · xak−1 1 2 · · · 2 1 · · · 1 0

x1 − 1 · · · xak−1 − 1 0 1 · · · 1 1 · · · 1 1

1 · · · 1 1 1 · · · 1 0 · · · 0 −1

distance
to k

distance
to ak

difference

Figure 4: An illustration of Lemma 10

Lemma 10. Let s be a non-leaping sequence and G ∈ CPs with distance matrix D. For
k > 2, let d = D(ek − eak). Then the h-th entry of d with h 6 k is

dh =


1 if h < bk,

0 if bk 6 h < k,

−1 if h = k.

Proof. It is sufficient to verify the distances given in Figure 4. By definition, a2 = 1 and
b2 = 2, so the result holds for k = 2. For the following, we assume k > 3.

Suppose h is a vertex with h < ak. Pick a shortest path from h to k, and let b be the
last vertex on the path before reaching k and a the previous vertex of b. By Corollary 9,
b ∈ Wk ⊆ [ak, k − 1]. If b = ak, then we found a shortest path from h to k through ak.
Suppose b > ak. If a < ak, then a is adjacent to ak by Lemma 8 since {a, b} ∈ E(G)
and a < ak < b; if a > ak, then a is adjacent to ak by Lemma 8 since {ak, k} ∈ E(G)
and ak < a < k. In either cases, we can replace b by ak, and then ak is adjacent to k. It
follows that every vertex h with h < ak has a shortest path from h to k through ak, so

distG(h, k) = distG(h, ak) + 1.

Suppose h is a vertex with ak < h < bk. Then ak is adjacent to h by Lemma 8 since
{ak, k} ∈ E(G) and ak < h < k. Therefore, distG(h, k) = 2 and distG(h, ak) = 1.

Other cases are straightforward.
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Corollary 11. Let s be a non-leaping sequence and G ∈ CPs with distance matrix D.
For k > 3, let d = D(ek−1 − eak−1

). Then the h-th entry of d with h 6 k is

dh =



1 if h < bk−1,

0 if bk−1 6 h < k − 1,

−1 if h = k − 1,

0 if h = k, ak−1 = ak,

−1 if h = k, ak−1 < ak.

Proof. The cases with h 6 k − 1 follow from Lemma 10. If ak−1 = ak, then

distG(k, k − 1) = 1 = distG(k, ak−1)

and dk = 0. If ak−1 < ak, then

distG(k, k − 1) = 1 and distG(k, ak−1) = 2,

so dk = −1.

Corollary 12. Let s be a non-leaping sequence and G ∈ CPs with distance matrix D.
For k > 3, let b = D(ek − eak − ek−1 + eak−1

). Then the h-th entry of b with h 6 k is

bh =



0 if h < bk−1,

1 if bk−1 6 h < bk,

0 if bk 6 h < k − 1,

1 if h = k − 1,

−1 if h = k, ak−1 = ak,

0 if h = k, ak−1 < ak.

Proof. Let d(k) = D(ek − eak) and d(k−1) = D(ek−1 − eak−1
). By definition,

b = D(ek − eak)−D(ek−1 − eak−1
) = d(k) − d(k−1),

so the result follows directly from Lemma 10 and Corollary 11. For convenience, we align
the results from Lemma 10 and Corollary 11 together.

d
(k)
h =



1 if h < bk−1,

1 if bk−1 6 h < bk,

0 if bk 6 h < k − 1,

0 if h = k − 1,

−1 if h = k, ak−1 = ak,

−1 if h = k, ak−1 < ak.

d
(k−1)
h =



1 if h < bk−1,

0 if bk−1 6 h < bk,

0 if bk 6 h < k − 1,

−1 if h = k − 1,

0 if h = k, ak−1 = ak,

−1 if h = k, ak−1 < ak.

By taking the differences of the corresponding terms, this completes the proof.
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Theorem 13. Let s be a non-leaping sequence with the reduced graph H. If G is in CPs
with D = D(G) and E is the reducing matrix for G, then E>DE is the weighted adjacency
matrix of H.

Proof. Let R = E>DE =
[
ri,j
]
. Since R is a symmetric matrix, it is sufficient to show

that R is the same as the weighted adjacency matrix of H for the i, j-entry with i 6 j.

Since the principal submatrix of R on the first two columns and rows is

[
0 1
1 0

]
, which

agrees with H, we assume j > 3.
Let φi,j =

∑j
h=i eh, which is defined as a zero vector when j < i. By Corollary 12,

DEej = φbj−1,bj−1 + ej−1 − sej + y,

where s = 1, 0 depending on aj−1 = aj or not and y is a vector that vanishes on all entries
from 1 to j.

First, we examine the diagonal entries. For i = j and i, j > 3,

rj,j = e>j E
>DEej

= (ej − eaj − ej−1 + eaj−1
)>(φbj−1,bj−1 + ej−1 − sej + y)

= (ej − eaj − ej−1)
>(φbj−1,bj−1 + ej−1 − sej)

=

{
(ej − ej−1)

>(φbj−1,bj−1 + ej−1 − ej) if aj−1 = aj

(ej − eaj − ej−1)
>(φbj−1,bj−1 + ej−1) if aj−1 < aj

= −2.

Here we use the fact that aj−1 = aj implies aj < bj−1, and aj−1 < aj implies bj−1 6 aj 6
bj − 1.

If j > i > 3, then ai, ai−1 < bj−1. Thus,

ri,j = e>i E
>DEej

= (ei − eai − ei−1 + eai−1
)>(φbj−1,bj−1 + ej−1 − sej + y)

= (ei − ei−1)
>(φbj−1,bj−1 + ej−1)

= e>i ej−1 + e>i φbj−1,bj−1 − e>i−1φbj−1,bj−1

= e>i ej−1 + e>i φbj−1,bj−1 − e>i φbj−1+1,bj .

In fact, this formula holds also for i = 1, 2 and j > 3. When i = 1, 2,

ri,j = e>i E
>DEej

= e>i (φbj−1,bj−1 + ej−1 − sej + y)

= e>i (φbj−1,bj−1 + ej−1)

= e>i ej−1 + e>i φbj−1,bj−1.

The two formulas agree since bj−1 > 2 for any j and e>i φbj−1+1,bj+1 vanishes when i = 1, 2.
Therefore, for j > 3 and i < j,

ri,j = e>i (ej−1 + φbj−1,bj−1 − φbj−1+1,bj).
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In other words,
E>DEej = ej−1 + φbj−1,bj−1 − φbj−1+1,bj + y′

= ej−1 − ebj + ebj−1
+ y′,

where y′ is a vector that vanishes on entries from 1 to j− 1. Therefore, R is the weighted
adjacency matrix of H.

Corollary 14. Let s be a non-leaping sequence with the reduced graph H and A the
weighted adjacency matrix of H. If G is in CPs, then

detD(G) = det(A) and inertiaD(G) = inertia(A).

Proof. Let D be the distance matrix of G. By Theorem 13, A = E>DE, where E is the
reducing matrix corresponding to G. Since E is an upper triangular matrix with diagonal
entries equal to 1, det(D) = det(A). Since D is congruent to A, the inertia of D is the
same as the inertia of A.

Let Jk be the k× k all-ones matrix. Let Jk,n be the matrix obtained by embedding Jk
to the top-left corner of the n× n zero matrix.

Corollary 15. Let s be a non-leaping sequence of length n with the reduced graph H and A
the weighted adjacency matrix of H. If G is in CPs, then cofD(G) = det(A+J2,n)−det(A).

Proof. Let D be the distance matrix of G. By Theorem 13, A = E>DE, where E is the
reducing matrix corresponding to G. Notice that E has column sums zero except for the
first and the second columns. Therefore,

E>(D + J)E = A+ J2,n.

By [2, Lemma 9.3],
cofD(G) = det(D + Jn)− det(D)

= det(E>(D + Jn)E)− det(A)

= det(A+ J2,n)− det(A).

Therefore, the value cofD(G) is determined by s.

3 Attaching the CP graphs

For any connected graph G0 with an edge e = {v1, v2} and for any G ∈ CP , define
G0 ⊕e G as the graph obtained from G0 ∪̇ G by identifying the edges {v1, v2} ∈ E(G0)
and {1, 2} ∈ E(G) with v1 to 1 and v2 to 2.

Example 16. Let C5 be the five cycle and G1, G2 the two graphs shown in Figure 2. Let
e be an edge on C5. Then the two graphs C5 ⊕e G1 and C5 ⊕e G2 are shown in Figure 5.
Theorem 20 will show that detD(C5 ⊕e G1) = detD(C5 ⊕e G2).
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C5 ⊕e G2

Figure 5: Two graphs C5 ⊕e G1 and C5 ⊕e G2 with G1, G2 ∈ CP0,1,2,2,2,2,3,3

Observation 17. If G0 is a connected graph with an edge e = {v1, v2} and G ∈ CP , then

(i) distG0⊕eG(x, y) = distG0(x, y) for x, y ∈ V (G0),

(ii) distG0⊕eG(i, j) = distG(i, j) for i, j ∈ V (G),

(iii) for any x ∈ V (G0), distG0⊕eG(x, 3) is independent of the choice of G.

Lemma 18. Let G0 be a connected graph with an edge e = {v1, v2} and G ∈ CP . For
x ∈ V (G0) \ {v1, v2} and k ∈ V (G) \ {1, 2},

distG0⊕eG(x, k) = distG0⊕eG(x, ak) + 1

if k is not adjacent to 1 and 2 simultaneously.

Proof. Pick a shortest path from x to k. Let b be the last vertex on the path before
reaching k and a the previous vertex. Since k > 3, b ∈ Wk ⊆ [ak, k − 1]. If b = ak, then
we found a shortest path from x to k through ak, so assume b > ak. If a /∈ V (G), then
b ∈ {1, 2}; by the assumption that k is not adjacent to both 1 and 2, the only neighbor
of k in {1, 2} is ak = b, a contradiction. Suppose a ∈ V (G) and b > ak. Either a < ak < b
with {a, b} ∈ E(G) or ak < a < k with {ak, k} ∈ E(G). By Lemma 8, a is adjacent to
ak, and we may replace the vertex b by ak and then ak is adjacent to k. Therefore, every
vertex x ∈ V (G0) \ {v1, v2} has a shortest path from x to k through ak, so

distG0⊕eG(x, k) = distG0⊕eG(x, ak) + 1.

This completes the proof.

Lemma 19. Let G0 be a connected graph with an edge e = {v1, v2} and G ∈ CP . For
x ∈ V (G0) \ {v1, v2} and k ∈ V (G) \ {1, 2},

distG0⊕eG(x, k) = distG0⊕eG(x, k − 1)

if k > 4 is adjacent to 1 and 2.
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Proof. Since k is adjacent to 1, a3 = · · · = ak = 1. With this assumption, b3 = · · · = bk =
2 since k is adjacent to 2. Therefore, {1, 2, . . . , k} forms a clique from the definition of
CP graphs, and

distG0⊕eG(x, k) = distG0⊕eG(x, k − 1)

= min{distG0⊕eG(x, 1), distG0⊕eG(x, 2)}+ 1

whenever k − 1 > 3.

Theorem 20. Let s = q1, . . . , qn be a non-leaping sequence. If G0 is a connected graph
with an edge e = {v1, v2} and G ∈ CPs, then for Ĝ = G0 ⊕e G, each of detD(Ĝ),
inertiaD(Ĝ), and cofD(Ĝ) is independent of the choice of G.

Proof. Let Ĝ = G0 ⊕e G. By Observation 17, we may write D(Ĝ) as the form[
D(G0 − {v1, v2}) A12

A>12 D(G)

]
.

Let

F =

[
I|V (G0)|−2 O

O E

]
,

where E is the reducing matrix corresponding to G. Then

F>D(Ĝ)F =

[
D(G0 − {v1, v2}) A12E

E>A>12 E>D(G)E

]
.

We know that D(G0−{v1, v2}) is independent of the choice of G, and so is ETD(G)E by
Theorem 13. It remains to show that A12E is independent of the choice of G. Let t > 4
be the first vertex such that qt 6= t− 1. Then t is not adjacent to 1 and 2 simultaneously.
Likewise, k is not adjacent to both 1 and 2 for each k > t since Wk − {k − 1} ⊆ Wk−1.
By Lemma 18,

A12Eek = A12(ek − eak − ek−1 + eak−1
)

= A12(ek − eak)− A12(ek−1 − eak−1
) = 1− 1 = 0

if k > t+ 1. When k = t,

A12Eek = A12(ek − eak − ek−1 + eak−1
)

= A12(ek − eak)− A12(ek−1 − eak−1
)

= 1− A12(ek−1 − eak−1
)

= 1− A12(e3 − e1)

since A12ek−1 = A12e3 by Lemma 19 and ak−1 = 1.
When k ∈ [4, t− 1], ak = ak−1 = 1 and k is adjacent to both 1 and 2, so

A12Eek = A12(ek − eak − ek−1 + eak−1
)

= A12(ek − ek−1) = 0
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by Lemma 19. For k = 3, A12Eek = A12(e3 − e2). Therefore,

A12E =
[
A12e1 A12e2 A12(e3 − e2) O 1− A12(e3 − e1) O

]
,

where the first O is a zero matrix with t − 4 columns and the second O has |V (G)| − t
columns. Note that A12e1 and A12e2 are determined by D(G0), which is independent of
the choice of G. Also, A12e3 is independent of the choice of G by Observation 17. And t
is determined only by s. In conclusion, detD(Ĝ) and inertiaD(Ĝ) are independent of the
choice of G ∈ CPs. Also, let D = D(Ĝ), c = |V (G0)|, and d = |V (Ĝ)| = c+ n− 2. Then

cofD(Ĝ) = det(D + Jd)− det(D)

= det(F>(D + Jd)F )− det(F>DF )

= det(F>DF + Jc,d)− det(F>DF ),

which is independent of the choice of G ∈ CPs.

Let e1, . . . , ek be edges of a connected graph G0. Let G1, . . . , Gk be CP graphs (not
necessarily from the same non-leaping sequence). Define G0 ⊕e1 G1 ⊕e2 · · · ⊕ek Gk as
((G0 ⊕e1 G1)⊕e2 · · · )⊕ek Gk. Note that

G0 ⊕e1 G1 ⊕e2 · · · ⊕ek Gk = G0 ⊕eπ1 Gπ1 ⊕eπ2 · · · ⊕eπk Gπk

for any permutation π = (π1, π2, . . . , πk) of (1, 2, . . . , k).

Corollary 21. Let G0 be a connected graph, s(i) a non-leaping sequence, and ei =
{v(i)1 , v

(i)
2 } an edge of G0 for i = 1, . . . , k. If Gi ∈ CPs(i) for each i and Ĝ = G0 ⊕e1

G1⊕e2 · · · ⊕ek Gk, then each of detD(Ĝ), inertiaD(Ĝ), and cofD(Ĝ) is independent of the
choice of G1, . . . , Gk.

Proof. Let Gi, G
′
i ∈ CPs(i) for 1 6 i 6 k. Then

detD((G0 ⊕e2 G2 ⊕e3 · · · ⊕ek Gk)⊕e1 G1)

= detD((G0 ⊕e2 G2 ⊕e3 · · · ⊕ek Gk)⊕e1 G′1)

by Theorem 20. So

detD(G0 ⊕e1 G1 ⊕e2 · · · ⊕ek Gk)

= detD((G0 ⊕e2 G2 ⊕e3 · · · ⊕ek Gk)⊕e1 G1)

= detD((G0 ⊕e2 G2 ⊕e3 · · · ⊕ek Gk)⊕e1 G′1)
= detD(G0 ⊕e1 G′1 ⊕e2 G2 ⊕ · · · ⊕ek Gk).

Inductively,
detD(G0 ⊕e1 G1 ⊕e2 G2 ⊕ · · · ⊕ek Gk)

= detD(G0 ⊕e1 G′1 ⊕e2 G2 ⊕ · · · ⊕ek Gk)

= detD(G0 ⊕e1 G′1 ⊕e2 G′2 ⊕ · · · ⊕ek Gk)

= · · ·
= detD(G0 ⊕e1 G′1 ⊕e2 G′2 ⊕ · · · ⊕ek G′k).
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1
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G1

1

2 3

G2

Figure 6: Graphs obtained from K3 by attaching three linear 2-trees

This completes the proof for detD(Ĝ), and the arguments for inertiaD(Ĝ) and cofD(Ĝ)
are similar.

Example 22. Both G1 and G2 in Figure 6 are obtained from K3 induced on vertices
{1, 2, 3} by attaching three linear 2-trees. By Corollary 21, detD(G1) = detD(G2).

4 The 2-clique paths

Consider the set [2, b] as an increasing sequence 2, . . . , b. A special family of non-leaping
sequences is of the form

0, 1, [2, p1 − 1], [2, p2 − 1], . . . , [2, pm − 1],

where p1, . . . , pm are integers at least 3. Such a sequence is abbreviated as 2 : p1, . . . , pm.
It is possible that m = 0, in which case the sequence is 0, 1 and CP0,1 = {K2}.

1 2

3

4

5

6
7

8

G

01

0
2

−2

3
−2

4
−2

5
−2

6
−2

7
−2

8

H

Figure 7: A graph G in CP2:3,4,3,4 and its reduced graph H

Example 23. Let p1, p2, p3, p4 = 3, 4, 3, 4. The sequence s = 2 : 3, 4, 3, 4 stands for

0, 1, 2, 2, 3, 2, 2, 3.
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Let this sequence be q1, . . . , q8. Figure 7 shows a graph G from CPs and its reduced
subgraph. The graph is obtained from a disjoint union of four cliques Kp1 , Kp2 , Kp3 , and
Kp4 by gluing an edge from each of two consecutive cliques.

By Remark 4, the reduced graph is a weighted graph on 8 vertices such that

• vertices 1 and 2 are adjacent and with weight 0;

• for k = 3, . . . , 8, vertex k is adjacent to k − 1 if qk = qk−1 + 1, and is adjacent to
bk−1 if qk = 2;

• each edge has weight 1, and every vertex except for 1 and 2 has weight −2.

Therefore, on the reduced graph H, vertices 3 and 6 form a path of length (p1−2)+(p3−2),
and vertices 4, 5, 7, 8 form another path of length (p2 − 2) + (p4 − 2).

Any graph from CP2:p1,...,pm is obtained from a disjoint union of Kp1 , Kp2 , . . ., Kpm by
gluing an edge of Kpi to an edge of Kpi+1

while an edge cannot be glued twice.

Definition 24. A graph is called a 2-clique paths if it is in CP2:p1,...,pm for some integers
p1, . . . , pm > 3 and m > 0.

When p1 = p2 = · · · = pm = 3, CP2:p1,...,pm is the family of linear 2-trees on m + 2
vertices.

Definition 25. Define P−2n as a weighted path on n vertices such that each vertex has
weight −2 and each edge has weight 1. The seesaw graph S`,r is a weighted graph on
n = 2 + `+ r vertices constructed by the following process:

• Start with two adjacent vertices 1 and 2, each with weight 0;

• join an endpoint of P−2` to vertex 2 by an edge;

• join an endpoint of P−2r to vertex 2 by an edge; and

• every edge has weight 1.

Observation 26. Let 2 : p1, . . . , pm be a non-leaping sequence. Let

` =
∑
k odd

(pk − 2) and r =
∑
k even

(pk − 2).

Then the reduced graph of 2 : p1, . . . , pm is isomorphic to the seesaw graph S`,r.

Lemma 27. Let A(P−2n ) be the weighted adjacency matrix of the P−2n . Then

det(A(P−2n )) = (−1)n(n+ 1) and inertia(A(P−2n )) = (0, n, 0).
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Proof. We use induction on n. For the base step,

det
[
−2
]

= −2 = (−1)1(1 + 1) and

det

[
−2 1
1 −2

]
= 3 = (−1)2(2 + 1),

so the statement is true for n = 1, 2.
Suppose n > 3. Label the vertices of P−2n with 1, 2, . . . , n according to the path order.

Then the first row of A(P−2n ) has only two nonzero entries, namely, [A(P−2n )]1,1 = −2 and
[A(P−2n )]1,2 = 1. By Laplace expansion,

det(A(P−2n )) = −2 det(A(P−2n−1))− det(A(P−2n−2))

= −2(−1)n−1(n)− (−1)n−2(n− 1)

= (−1)n−2(2n− n+ 1) = (−1)n(n+ 1).

By the Gershgorin circles of A(P−2n ), the matrix does not have any positive eigenvalues.
Since the determinant is not zero, A(P−2n ) is a negative definite matrix.

Theorem 28. Let G ∈ CP2:p1,...,pm and n = |V (G)|. Then

detD(G) = (−1)n−1

(
1 +

∑
k odd

(pk − 2)

)(
1 +

∑
k even

(pk − 2)

)

and inertiaD(G) = (1, n− 1, 0).

Proof. Let H be the reduced graph of 2 : p1, . . . , pm and A its weighted adjacency matrix.
By Corollary 14, detD(G) = det(A) and inertiaD(G) = inertia(A) for any G ∈ CP2:p1,...,pm ,
so it is enough to find the determinant and the inertia of A.

Let
` =

∑
k odd

(pk − 2) and r =
∑
k even

(pk − 2).

By Observation 26, the reduced graph H is isomorphic to S`,r. Thus, up to permutation
similarity, we may write A as

0 1 0 0> 0 0>

1 0 1 0> 1 0>

0 1
0 0

A(P−2` ) O

0 1
0 0

O A(P−2r )

 .

By using the first row and column to eliminate the ones on the second column and row,
there is a matrix M with det(M) = ±1 such that

M>AM =

[
0 1
1 0

]
⊕ A(P−2` )⊕ A(P−2r ).
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By Lemma 27,

detD(G) = det(A) = det

[
0 1
1 0

]
· det(A(P−2` )) · det(A(P−2r ))

= (−1)(−1)`(1 + `)(−1)r(1 + r)

= (−1)1+`+r(1 + `)(1 + r).

Since n = 2 + ` + r, it follows that detD(G) = (−1)n−1(1 + `)(1 + r). Also, since

inertia

[
0 1
1 0

]
= (1, 1, 0) and both A(P−2` ) and A(P−2r ) are negative definite matrices,

inertiaD(G) = inertia(A) = (1, n− 1, 0).

Theorem 29. Let G be a 2-clique path on n vertices. Then

cofD(G) = (−1)n−1n.

Proof. Suppose G ∈ CP2:p1,...,pm is a 2-clique path. Let H be the reduced graph of
2 : p1, . . . , pm and A its weighted adjacency matrix. By Corollary 15,

cofD(G) = det(A+ J2,n)− det(A)

for any G ∈ CP2:p1,...,pm .
Let

` =
∑
k odd

(pk − 2) and r =
∑
k even

(pk − 2).

By Observation 26, up to permutation similarity, the matrix A+ J2,n can be written as
1 2 0 0> 0 0>

2 1 1 0> 1 0>

0 1
0 0

A(P−2` ) O

0 1
0 0

O A(P−2r )

 , which leads to


1 0 0 0> 0 0>

0 −3 1 0> 1 0>

0 1
0 0

A(P−2` ) O

0 1
0 0

O A(P−2r )


by applying the Schur complement to the 1, 1-entry; that is, subtract twice of the first
column from the second column and then do the same for rows. Since[

−3 1 0> 1 0>
]

=
[
−2 1 0> 1 0>

]
+
[
−1 0 0> 0 0>

]
,

it follows that

det(A+ J2,n) = det(A(P−2`+r+1))− det(A(P−2` )) det(A(P−2r ))

= det(A(P−2n−1)) + detD(G)

= (−1)n−1n+ detD(G).

Here the second equality follows from Lemma 27 and Theorem 28, while the third equality
follows from Lemma 27. As a consequence, cofD(G) = det(A+J2,n)−detD(G) = (−1)n−1n.
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Remark 30. Let s = 2 : p1, . . . , pm. According to Theorem 28, the distance determinant
of a graph in CPs only depends on the sum of the odd terms and the sum of the even
terms. Therefore, applying any permutation to the odd terms and any permutation to
the even terms of s will not change the distance determinant.

Corollary 31. Let G be a linear 2-tree on n vertices. Then

detD(G) = (−1)n−1
(

1 +

⌊
n− 2

2

⌋)(
1 +

⌈
n− 2

2

⌉)
,

inertiaD(G) = (1, n− 1, 0), and cofD(G) = (−1)n−1n.

Proof. The family of linear 2-trees on n vertices is the graphs in CP2:p1,...,pn−2 , where
p1 = · · · = pn−2 = 3. Then the results follow from Theorems 28 and 29.

G1 G2

Figure 8: Two linear 3-trees with different distance determinants

Example 32. The linear 2-trees are special cases of the CP graphs. However, not every
linear 3-tree is a CP graph. For example, let G1 and G2 be the two graphs shown in
Figure 8. By labeling the vertices with 1, . . . , 7 from left to right, G1 is a CP graph in
CP0,1,2,3,3,3,3, while G2 is not a CP graph. Indeed, their distance determinants are different
with detD(G1) = 4 and detD(G2) = 6.

5 Applications to the addressing problem

In this section we will study the applications of our results to the addressing problem and
show that N(G) = |V (G)| − 1 for graphs each of whose blocks are 2-clique paths.

The following lemma is from [5].

Lemma 33. [5] If G is a connected graph with blocks G1, . . . , Gr, then

cofD(G) =
r∏
i=1

cofD(Gi)

detD(G) =
r∑
i=1

detD(Gi)
∏
j 6=i

cofD(Gj).

For any real number x, define sign(x) as 1, 0, or −1 when x is positive, zero, or
negative, respectively. Then we have the following lemma about sign(detD(G)).
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Lemma 34. Let G be a connected graph of order n with r blocks G1, . . . , Gr of order
n1, . . . , nr, respectively. If

sign(detD(Gi)) = sign(cofD(Gi)) = (−1)ni−1

for 1 6 i 6 r, then

sign(detD(G)) = sign(cofD(G)) = (−1)n−1.

Proof. By Lemma 33,

sign(cofD(G)) =
r∏
i=1

sign(cofD(Gi))

= (−1)
∑r
i=1(ni−1) = (−1)n−1.

Similarly,

sign(detD(Gi)
∏
j 6=i

cofD(Gj)) = (−1)
∑r
i=1(ni−1) = (−1)n−1

and sign(detD(G)) = (−1)n−1.

Corollary 35. If G is a connected graph of order n whose blocks are 2-clique paths, then
sign(detD(G)) = sign(cofD(G)) = (−1)n−1.

Proof. Let the blocks of G be G1, . . . , Gr of order n1, . . . , nr, respectively. By Theorems 28
and 29,

sign(detD(Gi)) = sign(cofD(Gi)) = (−1)ni−1

for 1 6 i 6 r. By Lemma 34, sign(detD(G)) = sign(cofD(G)) = (−1)n−1.

In 1950, Jones [7] gave an approach to get the inertia of a symmetric matrix from its
principal leading minors. Lemma 36 states Theorem 4 in [7].

Lemma 36. [7] Let A be a nonsingular symmetric n × n matrix with principal leading
minors D1, . . . , Dn. If there is no consecutive two zeros in the sequence D1, . . . , Dn, then
n− is the number of sign changes in the sequence 1, D1, . . . , Dn, ignoring the zeros in the
sequence.

Remark 37. The original statement of [7, Theorem 4] says that n− is the number of sign
changes in the sequence 1, D1, . . . , Dn, where any zero Di may be given arbitrary sign. It
was also shown that every zero is guaranteed to appear between a ‘+’ and a ‘−’ under
the assumption; therefore, ignoring the zeros leads to the same number of sign changes.

Theorem 38. If G is a connected graph of order n whose blocks are 2-clique paths, then

inertiaD(G) = (1, n− 1, 0).
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Proof. We will show that there is an ordering of the vertices v1, . . . , vn such that the
induced subgraph G[{v1, . . . , vk}] is also a connected graph whose blocks are 2-clique
paths for any k > 2.

First we claim that if H is a 2-clique path with |V (H)| > 3, then there exists at
least two vertices u and v such that both H − u and H − v are a 2-clique path. Let
H ∈ CP2:p1,...,pm . Then H is obtained by gluing the cliques Kp1 , . . . , Kpm into a path-like
structure. If m > 2, then we may pick a vertex from each of the two ending cliques so
that the vertex was not used for gluing. If m = 1, then H is a complete graph with
|V (H)| > 3, so removing any vertex from H gives a smaller complete graph. In either
cases, we found two vertices with the desired property.

If G itself is a block with |V (G)| > 3, then by the previous claim we can find a vertex
vn such that G − vn is still a 2-clique path. If G has more than one block, then there is
a pendent block B, which is incident to only one cut-vertex x. If B = K2, then let vn
be the vertex in B other than x. If B has more than three vertices, then there are two
vertices u and v such that B − u and B − v are still 2-clique paths, so we may pick vn as
one of u and v that is different from x. In either cases, G−vn is still a graph whose blocks
are 2-clique paths. Inductively, keep removing a vertex while preserving the structure,
and name the removed vertices as vn, . . . , v3. This process will stop when the remaining
graph is K2. At this point, name the remaining two vertices as v2 and v1 in any order.

Thus, we find an ordering of the vertices v1, . . . , vn such that the induced subgraph
G[{v1, . . . , vk}] is also a connected graph whose blocks are 2-clique paths for any k > 2.
Note that by the way we choose vn, removing vn does not change the distance of any pair
of vertices in the remaining graph. Therefore,

D(G[{v1, . . . , vk}]) = D(G)[{v1, . . . , vk}],

where on the right hand side is the principal submatrix of D(G) induced on {v1, . . . , vk}.
Let Dk = det(D(G[{v1, . . . , vk}])). Then D1, . . . , Dn are the principal leading minors by
the order v1, . . . , vn. By Corollary 35,

sign(Dk) =

{
0 if k = 1,

(−1)k−1 if k > 2.

There are n− 1 sign changes in the sequence 1, D1, . . . , Dn, so inertiaD(G) = (1, n− 1, 0)
by Lemma 36.

Corollary 39. If G is a connected graph of order n whose blocks are 2-clique paths, then
N(G) = n− 1.

Note that the set of graphs considered in Theorem 38 or Corollary 39 contains complete
graphs, trees, clique trees, and 2-clique paths, so they generalize several known results;
see, e.g., [6, 8].
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