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1. Moore Graphs

We define a Moore Graph to be a graph with diameter d and girth 2d + 1. Somewhat
surprisingly, any such graph must necessarily be regular (see [42]) and, given this, it is not
hard to show that any Moore graph is distance regular. The complete graphs and odd
cycles are trivial examples of Moore graphs. The Petersen and Hoffman-Singleton graphs
are non-trivial examples. These examples were found by Hoffman and Singleton [23], where
they showed that if X is a k-regular Moore graph with diameter two then k ∈ {2, 3, 7, 57}.
This immediately raises the following question:

1 Support from grant OGP0093041 of the National Sciences and Engineering Council
of Canada is gratefully acknowledged.
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1.1 Problem. Is there a regular graph with valency 57, diameter two and girth five?

We summarise what is known. Bannai and Ito [4] and, independently, Damerell [12]
showed that a Moore graph has diameter at most two. (For an exposition of this, see
Chapter 23 in Biggs [7].) Aschbacher [2] proved that a Moore graph with valency 57 could
not be distance transitive and G. Higman (see [9]) proved that it could not even be vertex
transitive.

By either a square-counting or an interlacing argument, one can show that the max-
imum number of vertices in an independent set in the Hoffman-Singleton graph is 15. If
S is an independent set of size 15 in this graph then each vertex not in S is adjacent to
exactly three vertices in S, and so the graph induced by the vertices not in S is 4-regular.
This leads to a construction of the Hoffman-Singleton graph. Let G be the graph formed
by the 35 triples from a set of seven points, with two triples adjacent if they are disjoint.
(This is the odd graph O(4), with diameter three.) Call a set of seven triples such that
any pair meet in exactly one point a heptad. It is not too hard to show that there are
exactly 30 heptads, all equivalent under the action of Sym(7) and falling into two orbits of
length 15 under Alt(7). Choose one of these two orbits and then extend G to a graph H

by adding 15 new vertices, each adjacent to all seven vertices in a heptad in the selected
orbit. Then H is the Hoffman-Singleton graph.

Note that we may view the vertices in S as points and the vertices not in S as lines,
with a point and line incident if the corresponding vertices are adjacent. This gives us
a 2-(15, 7, 1) design and in the construction above this design is the design of points and
lines in PG(3, 2). Now consider a possible Moore graph with valency 57. In this case an
independent set has at most 400 vertices. If S is an independent set of cardinality then the
incidence structure formed by the vertices in S and the vertices not in S is a 2-(400, 8, 1)
design. The points and lines of PG(3, 7) form a design with these parameters.

The Hoffman-Singleton graph contains many copies of the Petersen graph. It is easy to
show that there are subgraphs in it isomorphic to Petersen’s graph with one edge deleted,
and it can be shown that any such subgraph must actually induce a copy of the Petersen
graph. (See [10: Theorem 6.6], where this is used to show that the Hoffman-Singleton
graph is unique, i.e., it is the only graph of diameter two, girth five and valency seven.)
As far as I know, it has not been proved that Moore graph with valency 57 must contain
even one copy of the Petersen graph (to say nothing of the Hoffman-Singleton graph).
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2. Triangle-free Strongly Regular Graphs

A graph is strongly regular if it is not complete or empty and the number of common
neighbours of two vertices is determined by whether they are equal, adjacent or neither
equal nor adjacent. An (n, k; a, c) strongly regular graph is a k-regular graph on n vertices
such that any pair of adjacent vertices has exactly a common neighbours while a pair of
distinct non-adjacent vertices has exactly c common neighbours. We are concerned with
strongly regular graphs with no triangles, i.e., with a = 0. Any Moore graph with diameter
two is an example.

Three have already appeared—the cycle on five vertices, the Petersen graph and the
Hoffman-Singleton graph—but only four more are known. We describe them. The first is
the Clebsch graph, which we build from Petersen’s graph.

We may view the vertices of the Petersen graph as the unordered pairs from the set

F := {0, 1, 2, 3, 4},

where two unordered pairs are adjacent if and only if they are disjoint. It is not hard to
show that the maximum size of an independent set in Petersen’s graph is four, and that
any such set consists of the four pairs containing a given point from our F . Let Si be the
independent set formed of the four pairs containing i. Now construct a graph C as follows.
If P denotes the vertex set of the Petersen graph, vertex set of C is

∞, F, P.

The vertex ∞ is adjacent to each of the points of F and the vertex i in F is adjacent to
all vertices in Si. Thus C is a 5-regular triangle-free graph on 16 vertices, and it is not
difficult to show that it is strongly regular.

The Higman-Sims graph is also very easy to construct. Let W22 be the Witt design
on 23 points. This is a 3-(22, 6, 1) design with 77 blocks. Let V be the point set of W22

and let B be its block set. The vertex set of the Higman-Sims graph is the set

∞∪ V ∪ B.

The adjacencies are as follows. The vertex ∞ is adjacent to all vertices in V and each
block is adjacent to the six points in V which lie in it, and to all the blocks in B which
are disjoint from it. With some effort it can be shown that this is a (100, 22; 0, 6) strongly
regular graph.
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It is possible to partition the vertices of the Higman-Sims graph into two sets of size
50, with the subgraph induced by each set isomorphic the Hoffman-Singleton graph. (See,
e.g., Exercise 2 in Chapter 8 of [10] or Chapter VI of [41].)

The graph induced by the vertices at distance two from a chosen vertex in the Higman-
Sims graph form a subgraph isomorphic to the complement of the block graph of W22. (The
block graph of a design has the blocks of the design for vertices, with two blocks adjacent
if and only if the have a point in common.) Thus the complement of the block graph of
W22 is triangle-free. It is also a (77, 16; 0, 4) strongly regular graph. (This follows from
standard results on quasi-symmetric designs.) The 21 blocks in W22 containing a given
point form an incidence structure isomorphic to the projective plane of order four. The
remaining 56 blocks form another quasi-symmetric design and the complement of its block
graph is a (56, 10; 0, 2) strongly regular graph, known as the Gewirtz graph.

Now we have seen seven triangle-free strongly regular graphs, which leads naturally
to the question for this section.

2.1 Problem. Is there an eighth triangle-free strongly regular graph?

Biggs [5: Section 4.6]] shows that if a (n, k; 0, c) strongly regular graph exists and
c /∈ {2, 4, 6} then k is bounded by a function of c. This bounds n too, since

n = 1 + k +
k(k − 1)

c
.

The smallest open case appears to be the existence of a strongly regular graph with pa-
rameters (162, 21; 0, 3).

Triangle-free strongly regular graphs are of interest in knot theory. For more infor-
mation about the connection see, e.g., Jaeger [24]. Unfortunately for the knot theorists
the strongly regular graphs they need must not only be triangle-free, they should also be
“formally self-dual”. For what this means see [24], (or [17: p. 249]); this extra condition
does imply that the set of vertices at distance two from a fixed vertex must also be a
strongly regular graph. The Higman-Sims graph is formally self-dual.
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3. Equiangular Lines

A set of lines through the origin in Rn is equiangular if the angle between any two lines is
the same. Our general problem is to determine the maximum size of a set of equiangular
lines in Rm. The diagonals of the icosahedron provide a set of six equiangular lines in R3.

Let L be a set of equiangular lines in Rm and let x1, . . . , xm be a set of unit vectors
such that xi spans the i-th line of L. Let U be the matrix with i-column equal to xi and
let γ denote |xT

i xj |−1, for i 6= j. Then

UT U = I + γ−1S

where S is a symmetric matrix with all diagonal entries equal to zero, all off-diagonal
entries equal to 1 or −1, rank m and least eigenvalue −γ. Since S is an integer matrix
this implies that γ is an algebraic integer. Further, if γ is not rational then its multiplicity
n − m can be at most n/2. Thus γ must be rational if n > 2m. Since the only rational
algebraic integers are the plain old-fashioned integers, we deduce that if n > 2m then γ is
an integer. In fact γ must be an odd integer, as we now show.

To see this let A be 1
2 (S+J−I). Then A is a symmetric 01-matrix and S = 2A+I−J .

If n−m > 2 then γ is an eigenvalue of S + J (with multiplicity at least n−m− 1. Hence
(γ + 1)/2 is a rational eigenvalue of A. Since A is an integer matrix and γ is rational, this
implies that (γ + 1)/2 is an integer, and γ must be an odd integer.

Let Xi be the matrix xxT , which represents orthogonal projection on the line spanned
by xi. (Note that replacing xi by −xi does not change Xi.) Finally suppose that the square
of the cosine of the angle between any two distinct lines in L is λ. The matrices Xi lie in the
vector space of all symmetric m ×m matrices, which has dimension

(
m+1

2

)
. The mapping

(A, B) → trAB is an inner product on this space and the Gram matrix of X1, . . . , Xn with
respect to this inner product is

(1 − λ)I + λJ.

Since λ < 1 this is the sum of a positive definite and a positive semidefinite matrix. Hence
it is positive definite and therefore invertible. Consequently the matrices X1, . . . , Xn are
linearly independent and therefore n ≤ (

m+1
2

)
. Before discussing how good this bound is,

we examine what happens in the case of equality.
If n =

(
m+1

2

)
then X1, . . . , Xn is a basis for the space of symmetric m × m matrices.

Hence there are constants ci such that

I =
n∑

i=1

ciXi. (3.1)
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Now
tr(Xi − λI)Xj =

{
1 − λ, if i = j;
0, otherwise

and therefore (3.1) yields that

tr(Xi − λI) = ci(1 − λ).

Thus ci = (1 − mλ)/(1 − λ) and taking the trace of both sides of (3.1) yields that

n =
m(1 − λ)
1 − mλ

. (3.2)

Substituting n =
(
m+1

2

)
here and solving for λ yields λ = (m+2)−1, with the consequence

that m + 2 must be the square of an odd integer when m ≥ 6.
Examples of sets of

(
m+1

2

)
equiangular lines in Rm are known to exist, and be unique,

when m = 2, 3, 7 and m = 23. (When m = 2 we may take the diagonals of a regular
hexagon and, when m = 3, the diagonals of a regular isohedron. For the remaining two
cases, see pages 129–130 and pages 166–167 in [40].)

3.1 Problem. Is there a set of
(
m+1

2

)
equiangular lines in Rm when m > 23?

Infinitely many examples of sets of equiangular lines with cardinality of order m3/2

are known [40: Theorem 10.5]; it may be that the
(
m+1

2

)
bound is not even asymptotically

correct.

4. Two-graphs

There is another bound on sets of equiangular lines. Consider the matrix S above. Its
least eigenvalue is −γ, and this eigenvalue has multiplicity n − m. Let θ1, . . . , θm be its
remaining eigenvalues. Since trS = 0,

(n − m)γ =
∑

i

θi

and, since tr S2 = n(n − 1),

n(n − 1) − (n − m)γ2 =
∑

i

θi.

These two equations imply that

n(n − 1) − (n − m)γ2

m
≥

(
(n − m)γ

m

)2
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from which it follows that m(n−1)− (n−m)γ2 ≥ 0. If equality holds then the eigenvalues
θ1, . . . , θm must all be equal. If m < γ2 then this implies that

n ≤ m(γ2 − 1)
γ2 − m

.

We also obtain the following.

4.1 Lemma. Let L be a set of n equiangular lines in Rm, let x1, . . . , xn be unit vectors

spanning these lines with Gram matrix I + γ−1S, where γ > 0. Then

γ2 ≤ m(n − 1)
n − m

and, if equality holds then S has exactly two distinct eigenvalues.

A set of n equiangular lines such that S has only two eigenvalues is the same thing
as a regular two-graph on n vertices. Note that an equiangular set of

(
m+1

2

)
lines in Rm

will give equality in this lemma. (But this only gives two examples.) The matrix S in the
lemma is symmetric with zero diagonal and entries ±1 off the diagonal. If D is diagonal
matrix of the same order with diagonal entries ±1 then DSD and S are similar and DSD

still is symmetric with zero diagonal and entries ±1 off the diagonal. We may choose D

so that all off-diagonal entries of the first row and column of DSD are positive.
If S has only two eigenvalues then

S2 + αS + βI = 0 (4.1)

for some α and β. Since trS = 0 and trS2 = n(n−1), taking the trace of (4.1) yields that
β = n − 1. If, as we may assume, S has the form

S =
(

0 jT

jT T

)

then (4.1) implies that

TJ = −αJ, T 2 + αT − (n − 1)I = −J. (4.2)

From (4.2) we deduce that 1
2 (T +J−I) is the adjacency matrix of a strongly regular graph

on n − 1 vertices. Such a graph must have k = 2c and, conversely, any strongly regular
graph with k = 2c on n − 1 vertices determines a regular two-graph on n vertices.

Two surveys on regular two-graphs appear in [40]. We mention one question.

4.2 Problem. Is there a regular two-graph on 76 or 96 vertices?
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5. Hamilton Cycles

We consider the existence of Hamilton cycles in vertex transitive graphs. Ignoring K2,
there are only four known vertex transitive graphs without Hamilton cycles. Two of these
are the Petersen and Coxeter graphs. The Coxeter graph can be defined as follows. An
antiflag in a projective plane is an ordered pair (p, `), where p is a point and ` is a line
such that p /∈ `. The vertices of the Coxeter graph are the 28 antiflags from the projective
plane of order two. Two such antiflags (p, `) and (q, m) are adjacent if the set

{p, q} ∪ ` ∪ m

contains all points of the plane. For more on the Coxeter graph, see Section 12.3 in [8].
The remaining two non-Hamiltonian vertex transitive graphs are obtained from the

Petersen and Coxeter graphs by ‘blowing up’ each vertex to a triangle. (Formally we
take the line graph of the subdivision graphs of the Petersen and Coxeter graphs. The
subdivision graph S(G) of G is obtained by installing one vertex in the middle of each edge
of G.) The problem with the blowing-up process is that the graphs produced by applying
it a second time are no longer vertex transitive, although they are still cubic and have no
Hamilton cycle. For proofs that the Coxeter graph has no Hamilton cycle, see [6, 47].

5.1 Problem. Are there any more connected vertex-transitive graphs without Hamilton

cycles?

Still ignoring K2, the known non-Hamiltonian vertex-transitive graphs are not Cayley
graphs. Thus we are lead to ask whether all connected Cayley graphs have Hamilton
cycles. All known connected vertex-transitive graphs have Hamilton paths, and Lovász
has conjectured that all connected vertex-transitive graphs have Hamilton paths. Witte
[49] has proved that all Cayley graphs of p-groups have Hamilton cycles. For a survey of
results on Hamilton cycles in Cayley graphs see, e.g., [50].

Babai [3] gives an ingenious proof that a connected vertex-transitive graph on n ver-
tices must contain a cycle of length at least

√
3n; no better lower bound is known. Mohar

[34] derives an algebraic technique for showing that certain graphs do not have Hamilton
cycles. We present a simplified version of this for the Petersen graph.

Let P denote the Petersen graph and suppose that C is a cycle of length ten in
it. Then the edges not in C form a perfect matching in P and the vertices in the line
graph of P corresponding to the edges of C induce a cycle of length ten. Thus P has a
Hamilton cycle if and only if there is an induced copy of C10 in L(P ). For any graph X
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let θi(X) denote the i-th largest eigenvalue of the adjacency matrix of X . By interlacing
[17: Theorem 5.4.1], we know that if Y is an induced subgraph of X then θi(Y ) ≤ θi(X).
Since θ7(C10) > θ7(L(P )), the Petersen graph cannot have a Hamilton cycle.

The only problem with this argument is that there seems to be no other interesting case
where it works. It fails on the remaining three vertex-transitive graphs with no Hamilton
cycles. It would be very interesting to find a modification of this technique which could
be used to show that Coxeter’s graph has no Hamilton cycle.

6. The Matchings Polynomial

Let p(X, k) denote the number of k-matchings in the graph X , i.e., the number of matchings
with exactly k edges. If X has n vertices then its matchings polynomial of X is defined to
be

µ(X, x) =
∑
k≥0

(−1)kp(X, k)xn−2k.

It is known that the zeros of µ(X, x) are all real [17: Corollary 6.1.2] and that, if X has a
Hamilton path, they are all simple. This leads us to ask:

6.1 Problem. Is there a connected vertex-transitive graph X such that µ(X, x) does

not have only simple zeros?

This question is discussed at some length in [16]. There a graph X is defined to be
θ-critical if, for each vertex u of X , the multiplicity of θ as a zero of µ(X \ u, x) is less
than its multiplicity as a zero of µ(X, x). All vertex transitive graphs are θ-critical, by
a straightforward argument. Therefore we could solve Problem 6.1 by showing that if X

were a connected θ-critical graph then θ must be a simple zero of µ(X, x). This is known
to be true if θ = 0 (Gallai, see [33: Section 3.1]) or if X is a tree (Neumaier [35]). For
details, see [16].
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7. Characterising Line Graphs

If X is a line graph then the least eigenvalue of its adjacency matrix A(X) is at least −2.
Cameron, Goethals, Seidel and Shult proved a converse to this, which we want to discuss.

First, some definitions. A root system is, more or less, a set of vectors in Rm which is
invariant under reflection in the hyperplane orthogonal to any vector in it. Let e1, . . . , em

be the standard basis in Rm. Then the root system Am is the set of vectors

ei − ej , i 6= j

and the root system Dm is the set of vectors

ei ± ej , i 6= j.

We define E8 to be D8 together with all vectors in R8 with entries ±1
2 and an even number

of positive entries. It is not hard to see that a graph X is the line graph of a bipartite
graph if and only if A(X)+2I is the Gram matrix of a subset of Am. We define X to be a
generalised line graph is it is the Gram matrix of a subset of Dm. Every line graph lies in
Dm. Cameron et al. proved that if X is a graph with least eigenvalue at least −2 then it
is either a line graph, a generalised line graph or A(X) + 2I is the Gram matrix of subset
of E8. This extended earlier work, in particular of Alan Hoffman.

Now Hoffman [22] has also proved that a graph with least eigenvalue greater than

−1 −
√

2

and sufficiently large minimum valency is a generalised line graph. (Here ‘sufficiently large’
is determined by Ramsey theory, which means that it is only finite in a fairly technical
sense :-) .)

7.1 Problem. Is there a classification of the graphs X with θmin(X) > −1 − √
2,

analogous to that of the graphs with least eigenvalue at least −2?

Let θ2(X) denote the second-largest eigenvalue of X . Then for the complement X of
X we have

θmin(X) ≤ −1 − θ2(X).

(This follows because we obtain A(X) by adding the matrix J , with rank one, to −I −
A(X).) Hence if θmin(X) > −1 −√

2 then θ2(X) <
√

2. This indicates that it should also
be interesting to classify the graphs X such that θ2(X) <

√
2.
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Woo and Neumaier [51] have recently proved that, if X is a graph with least eigenvalue
greater than the smallest root of the polynomial x3+2x2−2x−2 (approximately −2.4812)
and the minimum valency of X is large enough, then θmin(X) ≥ −1 − √

2 and X has a
well-determined structure. This result is very interesting, but it still makes use of Ramsey
theory and requires a lower bound on the minimum valency of X .

8. Shannon Capacity

The strong product X ∗Y of the graphs X and Y has vertex set V (X)×V (Y ), with (u, v)
adjacent to (u′, v′) if and only if

(a) u ∼ u′ and v ∼ v′,
(b) u = u′ and v ∼ v′, or
(c) u ∼ u′ and v = v′.

We denote the strong product of n copies of X by X(n). Let α(X) denote the maximum
number of vertices in an independent set in X . It is not hard to show that, for any graphs
X and Y we have

α(X ∗ Y ) ≥ α(X)α(Y )

and from this it follows by Fekete’s lemma (see Lemma 11.6 in [27]) that the limit

lim
n→∞ α(X(n))1/n

always exists. We call it the Shannon capacity of X . This quantity is of some interest in
coding theory, but for further information about this we refer the reader to [30] and the
references given there.

Let ω(X) be the size of the largest clique in the graph X . We recall that X is perfect
if, for any induced subgraph Y of X , the chromatic number of Y is equal to ω(Y ). All
bipartite graphs are perfect, and there are many other classes of perfect graphs, almost as
many as there are graph theorists who have studied them. (For more information see, e.g.,
[31].) Shannon showed that if X is perfect then its Shannon capacity is equal to α(X).
However, using the fact that C5 is self-complementary, it is not hard to show that

α(C5 ∗ C5) = 5

and so the Shannon capacity of C5 is at least
√

5, while α(C5) = 2. In 1979 Lovász [31]
settled a long-standing open problem by proving that the Shannon capacity of C5 is

√
5.

His methods enabled the Shannon capacity of many other graphs to be determined, but
the following question is still open.
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8.1 Problem. What is the Shannon capacity of C7?

9. Perfect Codes

The ball of radius m about a vertex v in a graph X is the set of all vertices in X at
distance at most m from v. If C is a subset of V (X), the packing radius of C is maximum
integer e such that the balls of radius e about the vertices in C are pairwise disjoint. An
e-code in X is a subset with packing radius at least e and an e-code is perfect if the balls
of radius e about its vertices partition V (X). The Hamming graph H(n, q) has the set of
all sequences of length n from {0, . . . , q − 1} as its vertices, with two sequences adjacent
if they agree on all but one coordinate. If X is the Hamming graph, e-codes and perfect
codes are precisely the e-codes and perfect codes of standard coding theory. If e ≥ 3 and
q is a prime power then there are only two perfect e-codes (see, e.g., [8: p. 355], one in
H(11, 3) and the other in H(23, 2).

The Johnson graph J(v, k) has all k-subsets of a fixed v-subset as its vertices, with two
k-subsets adjacent if and only if they intersect in exactly k−1 elements. Two k-subsets are
then at distance i if and only if they have exactly k − i elements in common. The graphs
J(v, k) and J(v, v − k) are isomorphic, so we will assume that v ≥ 2k. When v = 2k and
k is odd, the pair formed by a given k-subset and it complement is a perfect code with e

equal to bk/2c. Delsarte [13: p. 55] raised the following question.

9.1 Problem. Is there a perfect code with more than two vertices in a Johnson graph?

The strongest result is due to Roos [37], who proved that if there is a perfect code in
J(v, k) with packing radius e then

v ≤ 2e + 1
e

(k − 1).

Hammond [21] proved that there are no perfect codes in J(2v + 1, v) and J(2v + 2, v).
Perfect codes in other classes of distance regular graphs can also be very interesting.

Perfect codes in the Hamming graphs H(n, q) are part of classical coding theory—if e ≥ 3
and q is a prime power then the only perfect codes are binary and ternary Golay codes.
Chihara [11] has proved that most of the known families of distance regular graphs do
not contain perfect codes. The Johnson graphs are one family of exceptions here, and the
closely related odd graphs are another.

The odd graph O(k + 1) has the k-subsets of a (2k + 1)-set as its vertices, with two
k-subsets adjacent if and only if they are disjoint. (Thus it has the same vertex set as
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J(2k+1, k).) The lines of a Fano plane form a perfect 1-code in O(4) and the blocks of the
Witt design on 11 points forms a perfect 1-code in O(6). No other examples are known. It
not hard to show that there is a perfect 1-code in O(m+1) if and only if there is a Steiner
system with parameters

(m − 1)−(2m + 1, m, 1).

Hence these codes will not be easy to find. Smith [43] has proved that there are no perfect
4-codes in the odd graphs. Perhaps it can be proved that there are no perfect e-codes in
the odd graphs for e sufficiently large (ideally for e ≥ 2).

Of course we should not forget that there may be interesting classes of codes which
are not perfect. Completely regular codes (see Chapter 11 in [8]) provide one example.

10. p-Ranks

Let Hv(k, `) be the 01-matrix with rows and columns respectively indexed by the k- and
`-subsets of a fixed v-set, and with ij-entry equal to one if and only if the i-th k-subset
is contained in the j-th `-subset. When k ≤ ` ≤ v − `, the rows of Hv(k, `) are linearly
independent over the rationals. A surprisingly large number of the applications of linear
algebra to combinatorics rest on this fact. (Some of these are presented in [18].) For the
earliest proof of independence known to me, see [20]. More recently Richard Wilson [48]
determined the rank of Hv(k, `) over all finite fields. It is not clear what the combinatorial
implications of this will be, but surely it will be useful in time.

There is a so-called q-analog of this problem. Consider the incidence structure formed
by the k- and `-subspaces of a v-dimensional vector space over the field with q elements
(where a k-space is incident with the `-spaces which contain it). Then it is natural to
want to know the rank of this matrix. Over what field? There are three cases. Over the
rationals this has been known at least since Kantor [25]. For primes not dividing q the
answer appears in [15]; the result is in fact analogous to Wilson’s for the rank of Hv(k, `)
in positive characteristic. The most interesting case is still open.

10.1 Problem. What is the p-rank for the incidence matrix of k-spaces versus `-spaces

of a v-dimensional vector space over a field of order pr?
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11. Homomorphisms

Let X and Y be graphs. A mapping f from V (X) to V (Y ) is a homomorphism if f(u) is
adjacent to f(v) in Y whenever u is adjacent to v in X . Since we do not allow vertices
to be adjacent to themselves, f must map edges of X to edges of Y . If Y is a complete
graph with r vertices then the homomorphisms from X into Y correspond to the proper
colourings of X using at most r vertices. The product X × Y of the graphs X and Y has
vertex set

V (X) × V (Y )

and (u, v) is adjacent to (u′, v′) if and only if u is adjacent to u′ and v is adjacent to v′.
(This is the natural product in the category of graphs and homomorphisms, if it helps.)

S. Hedetniemi has made the following conjecture.

11.1 Conjecture (Hedetniemi). For any two graphs X and Y

χ(X × Y ) = min{χ(X), χ(Y )}.

When n = 3 we can verify the conjecture by showing that the product of two odd
cycles contains an odd cycle. For n = 4, it was proved true by El-Zahar and Sauer in 1985
[14]. The remaining cases are still open, in fact we cannot exclude the possibility that
χ(X ×Y ) is less than 16 for some pair of graphs X and Y with arbitrarily large chromatic
number! (See [36] for this and, for some recent work on this problem, with more references,
see [38].)

The Kneser graph K(v, k) has all k-subsets of a fixed v-set as its vertices, with two k-
subsets adjacent if they are disjoint. So K(v, 1) is the complete graph Kv and K(2v +1, v)
is the odd graph O(v + 1). (In particular, K(5, 2) is Petersen’s graph.) The following
question was raised by Pavol Hell.

11.2 Problem. For which pairs (X, Y ) of Kneser graphs is there a homomorphism from

X to Y ?

Stahl [44: Section 2] proved that if v > 2k there is a homomorphism from K(v, k)
to K(v − 2, k − 1). Hence there is a homomorphism from K(v, k) to Kv−2k+2, i.e., the
chromatic number of K(v, k) is at most v − 2k + 2. Lovász [29] proved that equality holds
here, from which it follows that if v − 2k > v′ − 2k′ then there is no homomorphism from
K(v, k) to K(v′, k′). Further K(v′, k) is an induced subgraph of K(v, k) whenever v′ ≤ v.
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For any integer r there is an obvious homomorphism from K(v, k) into K(rv, rk), but none
into K(v′, kr) when v′ < rv. (See the corollary to Theorem 9 in Stahl [44].)

Let X be a graph and let M be the matrix whose columns are the characteristic
vectors of the maximal independent subsets of V (X). The value of the linear program

min1T x

Mx ≥ 1

x ≥ 0

is the fractional chromatic number of X . We denote it by χ∗(X). Note that χ(X) is the
value of the 01-integer program obtained from this LP (by requiring the entries of x to be
0 or 1), and that this is also the value obtained if we require that x be an integer vector.
Perles observed that if there is homomorphism from X to Y then χ∗(X) ≤ χ∗(Y ). It
is not hard to show that if X is vertex transitive then χ∗(X) = |V (X)|/α(X), whence
χ∗(K(v, k)) = v/k. Thus we conclude, for example, that there is no homomorphism from
K(8, 3) into K(11, 4). Nothing else seems to be known about existence or non-existence of
homomorphisms between Kneser graphs.

Dennis Stanton has raised the following problem. Let Kq(v, k) be the graph whose
vertices are k-subspaces of the n-dimensional vector space over GF (q), with two subspaces
adjacent if and only if their intersection is zero. What is the chromatic number of Kq(v, k)?
Clearly we are only interested in the case where n ≥ 2k. When q = 1 the graph Kq(v, k)
reduces to the Kneser graph K(v, k).

Remark: I am indebted to Pavol Hell, who has had to explain much of the above material
to me on more than one occasion. I hope I have it right by now.

12. Compact Graphs

Let G be a graph with adjacency matrix A and let Γ be the set of all permutation matrices
which commute with A. (Thus Γ is isomorphic to Aut(G).) By S(A) we denote the set
of all doubly stochastic matrices which commute with A. Then S(A) is is the set of all
matrices X such that

XA = AX, X1 = XT1 = 1, X ≥ 0

and therefore it is a convex polytope. We call G compact if S(A) is equal to the convex
hull of Γ or, equivalently, if the extreme points of S(A) are all permutation matrices. The
following problem is raised implicitly by Tinhofer at the end of [46].
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12.1 Problem. Is there a good characterisation of compact graphs?

Tinhofer [45, 46] has proved a number of results concerning compact graphs. In
particular he has shown that trees and cycles are compact, and that the disjoint union of
isomorphic compact graphs is compact. It is an easy observation that a compact regular
graph must be vertex transitive. The converse to this is false—in [19] it is noted that the
line graph of the complete graph Kn is not compact, at least when n ≥ 7, and that the
automorphism group of a compact regular graph is a multiplicity-free permutation group
with rank equal to to the number of distinct eigenvalues of G. Schreck and Tinhofer [39]
prove that a regular graph G on p vertices, p prime, is compact if and only if Aut(G) is
isomorphic to the dihedral group of order 2p. Using this it can be shown (see [19]) that
there is a polynomial time algorithm for determining if a regular graph on a prime number
of vertices is compact.

The graphs with S(A) = {I} can be recognised in polynomial time [19]. The set S(A)
is a semigroup, and the convex hull of Γ is a sub-semigroup of it. In [19] it is shown that
each equitable partition π of G determines an idempotent element Xπ of S(A).

12.2 Problem. Is S(A) generated (as a semigroup) by the convex hull of Γ and matrices

Xπ, where π is equitable?

A compact graph G has the property that the cells of any equitable partition are the
orbits of some group of automorphisms of G. It is not clear if the converse is true. If false
then the answer to the previous problem is no.

13. Edge-difference Polynomials

Let G be a graph with vertex set V = {1, . . . , n} and edge set E. Define the edge-difference

polynomial pG by

pG(x1, . . . , xn) =
∏

(i,j)∈E, i<j

(xi − xj).

The zero set of this polynomial is a set of |E| hyperplanes through the origin in Rn. The
number of regions into which Rn is divided by these hyperplanes is equal to the absolute
value of the chromatic polynomial of G, evaluated at −1. Note that pG is actually a
function on oriented graphs, but changing the orientation leads at worst to a change in
sign. If we expand pG as a sum of monomials then the number of terms in the result equals
the number of orientations of G and each term has degree |E|.
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Now let U(n, k) denote the set of all vectors in Rn which have k entries equal, and
let V (n, k) denote the set of all vectors with at most k − 1 distinct entries. We have the
following obvious result.

13.1 Lemma. The graph G has independence number less than k if and only if pG is

zero on U(n, k). Further, the chromatic number of G is at least k if and only pG is zero

on V (n, k).

This suggests that we should be able to obtain information about the independence
and chromatic numbers of G by analysing pG but, it seems fair to say, no great progress
has been made in this direction yet.

Lovász [32] proves that the ideal of polynomials which vanish on V (n, k) is generated
by the polynomials pH , where H is any graph on V (G) consisting of a k-clique and n − k

isolated vertices. He also shows that χ(G) ≥ k if and only if we can write pG in the form

pG = pH1
+ · · · + pHN

,

where each Hi is a graph on V (G) containing a k-clique. We mention one problem, raised
in both [26] and [32].

13.2 Question. Is there a sequence of graphs Gi such that the minimum possible

number of terms in the above expansion increases exponentially?

Analogous results holds for the independence number, see [26, 32, 28]. De Loera [28]
shows that certain natural bases for the ideals of polynomials vanishing on U(n, k) and
V (n, k) are Gröbner bases, which means that there is an effective algorithm for testing
whether pG lies in one of these ideals.
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