Some New Optimum Golomb Rectangles

James B. Shearer
IBM Research Division
T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, N.Y. 10598
jbs@watson.ibm.com

Submitted: April 3, 1995; Accepted: June 1, 1995

Abstract

We give some new optimum Golomb rectangles found by computer search.

AMS Subject Classification. 05B99

In [2] Robinson defined a Golomb rectangle as an $N \times M$ array of ones and zeros such that the two-dimensional autocorrelation has three values: 0,1 and K, where K is the number of ones in the array. This means that the positions of the ones in any nonzero integral translation of the rectangle will overlap with the positions of the ones in the original position of the rectangle in at most one place. Equivalently, the differences between the positions of every pair of ones in the rectangle, considered as vectors, are distinct. See also [1]. Let $G(N, M)$ be the maximum number of ones that can be present in an $N \times M$ Golomb rectangle. For example $G(2,2)=3$. Robinson defined an optimum Golomb rectangle to be one containing $G(N, M)$ ones. We prefer to add the conditions $G(N, M)>G(N-1, M)$ and $G(N, M)>G(N, M-1)$.

In table 1 we give a number of new optimum Golomb rectangles found by computer search. In most cases they are far from unique. Note there exists a 2×18 rectangle with 9 ones. The rectangle in Robinson's table V is 2×20 an apparent misprint.

A brief description of the computer program used to find these rectangles follows. Recall that a Golomb ruler is a set of integers $a_{1}<a_{2}<\cdots<a_{k}$ for which the $\binom{k}{2}$ differences $\left\{a_{j}-a_{i} \mid 1 \leq i<j \leq k\right\}$ are distinct. We will use the following easy lemma.

Lemma 1: $N \times M$ Golomb rectangles with K ones correspond $1-1$ with K element Golomb rulers with elements chosen from the set $\{i+(2 N-1)(j-1) \mid 1 \leq i \leq N, 1 \leq$ $j \leq M\}$.

Proof: Let $\left\{\left(b_{i}, c_{i}\right) \mid 1 \leq b_{i} \leq N, 1 \leq c_{i} \leq M, 1 \leq i \leq K\right\}$ be a set of K positions in a $N \times M$ rectangle. We claim this set consists of the positions of the ones in a $N \times M$ Golomb rectangle with K ones iff the set $\left\{a_{i}=b_{i}+(2 N-1)\left(c_{i}-1\right) \mid 1 \leq i \leq K\right\}$, is a

Golomb ruler with elements chosen from the set $\{i+(2 N-1)(j-1) \mid 1 \leq i \leq N, 1 \leq$ $j \leq M\}$. For suppose $\left(b_{i_{1}}, c_{i_{1}}\right)-\left(b_{i_{2}}, c_{i_{2}}\right)=\left(b_{i_{3}}, c_{i_{3}}\right)-\left(b_{i_{4}}, c_{i_{4}}\right)$. Then

$$
\begin{aligned}
a_{i_{1}}-a_{i_{2}} & =\left(b_{i_{1}}+(2 N-1)\left(c_{i_{1}}-1\right)\right)-\left(b_{i_{2}}+(2 N-1)\left(c_{i_{2}}-1\right)\right) \\
& =\left(b_{i_{1}}-b_{i_{2}}\right)+(2 N-1)\left(c_{i_{1}}-c_{i_{2}}\right) \\
& =\left(b_{i_{3}}-b_{i_{4}}\right)+(2 N-1)\left(c_{i_{3}}-c_{i_{4}}\right) \\
& =\left(b_{i_{3}}+(2 N-1)\left(c_{i_{3}}-1\right)\right)-\left(b_{i_{4}}+(2 N-1)\left(c_{i_{4}}-1\right)\right) \\
& =a_{i_{3}}-a_{i_{4}} .
\end{aligned}
$$

Conversely suppose $\left(a_{i_{1}}-a_{i_{2}}\right)=\left(a_{i_{3}}-a_{i_{4}}\right)$. Then

$$
\begin{aligned}
\left(b_{i_{1}}\right. & \left.+(2 N-1)\left(c_{i_{1}}-1\right)\right)-\left(b_{i_{2}}+(2 N-1)\left(c_{i_{2}}-1\right)\right) \\
& =\left(b_{i_{3}}+(2 N-1)\left(c_{i_{3}}-1\right)\right)-\left(b_{i_{4}}+(2 N-1)\left(c_{i_{4}}-1\right)\right)
\end{aligned}
$$

It follows that

$$
\left(b_{i_{1}}-b_{i_{2}}\right)-\left(b_{i_{3}}-b_{i_{4}}\right)+(2 N-1)\left(\left(c_{i_{1}}-c_{i_{2}}\right)-\left(c_{i_{3}}-c_{i_{4}}\right)\right)=0 .
$$

Now $1 \leq b_{i_{1}}, b_{i_{2}}, b_{i_{3}}, b_{i_{4}} \leq N$. It follows that

$$
-(2 N-1)<\left(b_{i_{1}}-b_{i_{2}}\right)+\left(b_{i_{3}}-b_{i_{4}}\right)<(2 N-1) .
$$

Therefore we must have $\left(b_{i_{1}}-b_{i_{2}}\right)-\left(b_{i_{3}}-b_{i_{4}}\right)=0$ and $\left(c_{i_{1}}-c_{i_{2}}\right)-\left(c_{i_{3}}-c_{i_{4}}\right)=0$. Hence $\left(b_{i_{1}}, c_{i_{1}}\right)-\left(b_{i_{2}}, c_{i_{2}}\right)=\left(b_{i_{3}}, c_{i_{3}}\right)-\left(b_{i_{4}}, c_{i_{4}}\right)$. This suffices to prove the claim and the lemma.

Lemma 1 means that searches for Golomb rectangles can be performed with a modified version of the author's Golomb ruler search program (see [3]). This program performs a straightforward depth first backtrack search. It builds up a Golomb ruler by picking $a_{1}, a_{2}, \ldots, a_{k}$ in order (a_{j} being picked at level j of the search tree). At each node of the search tree the program keeps track of which differences have been used (i.e. are formed by pairs of the elements which have already been picked) and of which integers can be adjoined to the current ruler without violating the distinct difference condition. The sons of a node at level j are formed by setting a_{j+1} to each of the elements in the level j eligibility list in turn. The search tree is pruned (i.e. the program backtracks) when too few integers remain eligible to allow completion of the ruler, when not enough small differences remain unused to allow completion of the ruler or when allowed by symmetry conditions. (Symmetry conditions allow search trees to be pruned because we need only generate one member of each symmetry class of solutions. Clever use of symmetry can produce dramatic improvements in running times.) The following symmetry conditions were used in the Golomb rectangle program. Assume at least half the ones are in the left half of the rectangle (flip left and right if necessary). Assume the top half of the first column
contains a one (clearly in an optimum rectangle the first column must contain a one, flip top and bottom if necessary). These conditions are probably not the best (in particular the second condition could assume the top half of the first column contains at least half the ones in the first column) but they were simple to implement. One can choose to search for $N \times M$ rectangles or for $M \times N$ rectangles. The main runs were done with $N \leq M$ although that is not always the best choice.

The entire program amounts to about 100 lines of VS Fortran code. As is often the case for this sort of program running times (on a 3090 IBM mainframe) increased rapidly with the problem size. For example showing $G(7,11)<14$ required 640 seconds of cpu time but showing $G(9,12)<16$ required 44000 seconds of cpu time. On average each node visited in the search tree required about 6 microseconds of cpu time.

A skeptical reader might ask why he should believe the program is correct. Checking that the rectangles found are in fact Golomb rectangles is fairly simple. An independent program checked this for the rectangles in table 1. It is possible (although tedious) to do these checks by hand. The validity of the assertion that the rectangles in table 1 are optimum (i.e. that Golomb rectangles with better parameters do not exist) is more problematic. However, the following factors give the author confidence that his search program has not missed any superior rectangles. The program successfully reproduced (with the exception noted above) the results Robinson obtained with a completely different program. The program is reasonably small (100 lines of code). Additionally, the basic algorithm and much of the code is the same as for the author's Golomb ruler program. The results obtained by the Golomb ruler program are in agreement with those obtained by other researchers using independent programs. Of course, additional checking is always possible. For example, it would be nice to do searches on $N \times M$ rectangles and on $M \times N$ rectangles as the search trees will be completely different (when $N \neq M$). However, as noted above this was not done for the large cases.

Table 1

$$
\begin{array}{ll}
G(2,18)=9 & \begin{array}{l}
110000010000000010 \\
100101000000010001
\end{array} \\
G(2,29)=11 & \begin{array}{l}
11000000100000000000010100010 \\
10010000000010000100000000001
\end{array} \\
G(2,35)=12 & \begin{array}{l}
10100000000000110000000010000000100 \\
10010001000000000000000100001000001
\end{array} \\
G(2,43)=13 & 1100000000000010100000000000000000100010010
\end{array}
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 2 (1995) \#R12

```
    10000010000100000000000100000000010000000001
    G(2,52)=14 1100000000100000000000000010000001000000000000001000101
        100100000000010000000000000000100000000000010000100000
G(2,59)=15 11000000001000000010000000000000000000000010000001000000010001
        10010000000000000000001010000000000100000000000000100001000
G(3,18)=11 100100000000010100
        100000000100000001
        010000011000100000
G(3,21)=12 100001000001000000011
        100000000000000010100
        0010001001000000000010
G(3,26)=13 10001000000010000000001101
        010000001000000000000000001
        10000010000000010000100000
G(3,31)=14 10000100010000000010000001000001
        10000000000000000000010010000000
        0110000000001000000000000000101
G(3,37)=15 10000100000000100000000000000000000101
        1001000000000000000000000010001000000
        0010000000100000010000010000000000110
G(4,13)=11 1001000000011
        1000000000000
        0100001010000
        1000100000100
G(4,16)=12 1001000000001010
        10000000000000001
        0000000100010000
        1000011000000100
G(4,19)=13 1010000100000000100
        10000000001000000001
        0000000001000001000
```

```
    01001100000000000100
G(4,23)=14 11000001000100001000000
    10000000000000000010010
    00000010000000000001000
    101000000000001000000001
G(4,27)=15 100000000100010100000001000
    1001000000000000000000000100
    0000000011000000000010000001
    1000010000000000000000000010
G(5,11)=11 11000000001
    10000000000
    00000010010
    10100001000
    00001000001
G(5,12)=12 110001000001
    100000000000
    000000010010
    100000001000
    001010000001
G(5,15)=13 100001000001001
    100000000000010
    000000000010001
    0010100000000000
    100000011000000
G(5,18)=14 100000001000100001
    100000010010000000
    0000100000000000100
    1000000000000000000
    0101000000000000011
G(5,20)=15 10000000010000000100
    000010001000000000011
    10100000000000000000
    00000000000001001000
    010000100000001000001
```

```
G(6,8)=11 11000100
    00000001
    00000001
    01010000
    10000010
    01001000
G(6,10)=12 1100000001
    1000000100
    0001000001
    0000100000
    0000000010
    1010010000
G(6,12)=13 100010000110
    000010000001
    100000000000
    000101000000
    001000000000
    100000001001
G(6,14)=14 10010000000101
    00000110000010
    00100000000000
    10000000000010
    10000000000000
    00001000100001
G(6,17)=15 11000000000000101
    10000001000000000
    00000000010000010
    00010000000001000
    10000000000000000
    01000100001001000
G(7,7)=11 1000100
    0100001
    1000001
    0000000
    0001000
```

```
    0000001
    0 1 1 0 1 0 0
G(7,9)=12 110000101
    100000000
    000100000
    100000000
    000000001
    010010000
    001000100
G(7,10)=13 1100000010
            0000010000
            0000100100
            1000000000
            00000000001
            1000000001
            0101000100
G(7,12)=14 001010000001
            000000001000
            100000000001
            110000000000
            0000000000010
            000100100000
            010001000001
G(7,15)=15 1000000001000011
            100000010001000
            000000000000000
            1010000000000000
            000010000000001
            0000010000000000
            010000000010010
G(8,8)=12 11001010
            10000000
            00000001
            10000000
            00010000
            00000100
```

```
    00100000
    10000001
G(8,11)=14 10000001001
    10001000010
    00000000000
    00001000000
    00000000010
    11000000000
    00000001000
    00100000101
G(8,13)=15 1000010001001
        1000000000000
        0000000001000
        0100000000000
        1000000000010
        0000000000001
        0000011000000
        0010000010100
G(9,9)=13 110000001
            100000000
            000010000
            100000000
            000000100
            010000010
            000000000
            100000000
            000101001
G(9,10)=14 1000001000
            1010000001
            0000000000
            1001000000
            0000000100
            0000000000
            0000000001
            1000000010
            0100011000
```

```
G(9,12)=15 110000010001
    100000000000
    0000000001010
    100000000000
    000010000000
    000001000000
    000000000000
    100000000100
    000100100001
G(10,10)=15 1000010010
    0100000000
    00000000001
    1000100000
    0010000000
    00000000000
    0000000001
    0000000001
    0101000000
    1000001100
```


References

[1] Golomb, S.W. and Taylor, M., Two-dimensional synchronization patterns for minimal ambiguity, IEEE Transactions Information Theory, It-28, pp. 600-604, 1982.
[2] Robinson, J.P., Golomb Rectangles, IEEE Transactions on Information Theory, It-31, pp. 781-787, 1985.
[3] Shearer, J.B., Some New Optimum Golomb Rulers, IEEE Transactions on Information Theory, It-36, pp. 183-184, 1990.

