
Some New Optimum Golomb Rectangles

James B. Shearer
IBM Research Division

T.J. Watson Research Center
P.O. Box 218

Yorktown Heights, N.Y. 10598
jbs@watson.ibm.com

Submitted: April 3, 1995; Accepted: June 1, 1995
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In [2] Robinson defined a Golomb rectangle as an N ×M array of ones and zeros
such that the two-dimensional autocorrelation has three values: 0, 1 and K, where
K is the number of ones in the array. This means that the positions of the ones in
any nonzero integral translation of the rectangle will overlap with the positions of the
ones in the original position of the rectangle in at most one place. Equivalently, the
differences between the positions of every pair of ones in the rectangle, considered as
vectors, are distinct. See also [1]. Let G(N,M) be the maximum number of ones that
can be present in an N ×M Golomb rectangle. For example G(2, 2) = 3. Robinson
defined an optimum Golomb rectangle to be one containing G(N,M) ones. We prefer
to add the conditions G(N,M) > G(N − 1,M) and G(N,M) > G(N,M − 1).

In table 1 we give a number of new optimum Golomb rectangles found by computer
search. In most cases they are far from unique. Note there exists a 2× 18 rectangle
with 9 ones. The rectangle in Robinson’s table V is 2× 20 an apparent misprint.

A brief description of the computer program used to find these rectangles follows.

Recall that a Golomb ruler is a set of integers a1 < a2 < · · · < ak for which the

(
k
2

)
differences {aj−ai|1 ≤ i < j ≤ k} are distinct. We will use the following easy lemma.

Lemma 1: N ×M Golomb rectangles with K ones correspond 1− 1 with K element
Golomb rulers with elements chosen from the set {i+ (2N − 1)(j− 1)|1 ≤ i ≤ N, 1 ≤
j ≤M}.

Proof: Let {(bi, ci)|1 ≤ bi ≤ N, 1 ≤ ci ≤M, 1 ≤ i ≤ K} be a set of K positions in a
N ×M rectangle. We claim this set consists of the positions of the ones in a N ×M
Golomb rectangle with K ones iff the set {ai = bi + (2N − 1)(ci− 1)|1 ≤ i ≤ K}, is a
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Golomb ruler with elements chosen from the set {i+ (2N − 1)(j − 1)|1 ≤ i ≤ N, 1 ≤
j ≤M}. For suppose (bi1 , ci1)− (bi2, ci2) = (bi3, ci3)− (bi4, ci4). Then

ai1 − ai2 = (bi1 + (2N − 1)(ci1 − 1)) − (bi2 + (2N − 1)(ci2 − 1))

= (bi1 − bi2) + (2N − 1)(ci1 − ci2)
= (bi3 − bi4) + (2N − 1)(ci3 − ci4)
= (bi3 + (2N − 1)(ci3 − 1)) − (bi4 + (2N − 1)(ci4 − 1))

= ai3 − ai4 .

Conversely suppose (ai1 − ai2) = (ai3 − ai4). Then

(bi1 + (2N − 1)(ci1 − 1))− (bi2 + (2N − 1)(ci2 − 1))

= (bi3 + (2N − 1)(ci3 − 1))− (bi4 + (2N − 1)(ci4 − 1)).

It follows that

(bi1 − bi2)− (bi3 − bi4) + (2N − 1)((ci1 − ci2)− (ci3 − ci4)) = 0.

Now 1 ≤ bi1, bi2, bi3, bi4 ≤ N . It follows that

−(2N − 1) < (bi1 − bi2) + (bi3 − bi4) < (2N − 1).

Therefore we must have (bi1 − bi2) − (bi3 − bi4) = 0 and (ci1 − ci2) − (ci3 − ci4) = 0.
Hence (bi1, ci1) − (bi2, ci2) = (bi3, ci3) − (bi4 , ci4). This suffices to prove the claim and
the lemma. 2

Lemma 1 means that searches for Golomb rectangles can be performed with a
modified version of the author’s Golomb ruler search program (see [3]). This program
performs a straightforward depth first backtrack search. It builds up a Golomb ruler
by picking a1, a2, . . . , ak in order (aj being picked at level j of the search tree). At
each node of the search tree the program keeps track of which differences have been
used (i.e. are formed by pairs of the elements which have already been picked)
and of which integers can be adjoined to the current ruler without violating the
distinct difference condition. The sons of a node at level j are formed by setting
aj+1 to each of the elements in the level j eligibility list in turn. The search tree
is pruned (i.e. the program backtracks) when too few integers remain eligible to
allow completion of the ruler, when not enough small differences remain unused to
allow completion of the ruler or when allowed by symmetry conditions. (Symmetry
conditions allow search trees to be pruned because we need only generate one member
of each symmetry class of solutions. Clever use of symmetry can produce dramatic
improvements in running times.) The following symmetry conditions were used in
the Golomb rectangle program. Assume at least half the ones are in the left half of
the rectangle (flip left and right if necessary). Assume the top half of the first column
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contains a one (clearly in an optimum rectangle the first column must contain a one,
flip top and bottom if necessary). These conditions are probably not the best (in
particular the second condition could assume the top half of the first column contains
at least half the ones in the first column) but they were simple to implement. One
can choose to search for N ×M rectangles or for M ×N rectangles. The main runs
were done with N ≤M although that is not always the best choice.

The entire program amounts to about 100 lines of VS Fortran code. As is often
the case for this sort of program running times (on a 3090 IBM mainframe) increased
rapidly with the problem size. For example showing G(7, 11) < 14 required 640
seconds of cpu time but showing G(9, 12) < 16 required 44000 seconds of cpu time.
On average each node visited in the search tree required about 6 microseconds of cpu
time.

A skeptical reader might ask why he should believe the program is correct. Check-
ing that the rectangles found are in fact Golomb rectangles is fairly simple. An inde-
pendent program checked this for the rectangles in table 1. It is possible (although
tedious) to do these checks by hand. The validity of the assertion that the rectangles
in table 1 are optimum (i.e. that Golomb rectangles with better parameters do not
exist) is more problematic. However, the following factors give the author confidence
that his search program has not missed any superior rectangles. The program suc-
cessfully reproduced (with the exception noted above) the results Robinson obtained
with a completely different program. The program is reasonably small (100 lines of
code). Additionally, the basic algorithm and much of the code is the same as for
the author’s Golomb ruler program. The results obtained by the Golomb ruler pro-
gram are in agreement with those obtained by other researchers using independent
programs. Of course, additional checking is always possible. For example, it would
be nice to do searches on N ×M rectangles and on M ×N rectangles as the search
trees will be completely different (when N 6= M). However, as noted above this was
not done for the large cases.

Table 1

G(2,18)=9 110000010000000010
100101000000010001

G(2,29)=11 11000000100000000000010100010
10010000000010000100000000001

G(2,35)=12 10100000000000110000000010000000100
10010001000000000000000100001000001

G(2,43)=13 1100000000000010100000000000000000100010010
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1000001000010000000000010000000010000000001

G(2,52)=14 1100000001000000000000001000000100000000000001000101
1001000000000100000000000000010000000000010000100000

G(2,59)=15 11000000001000000100000000000000000000001000001000000010001
10010000000000000000001010000000000100000000000000100001000

G(3,18)=11 100100000000010100
100000000100000001
010000011000100000

G(3,21)=12 100001000001000000011
100000000000000010100
001000100100000000010

G(3,26)=13 10001000000010000000001101
01000000100000000000000001
10000010000000010000100000

G(3,31)=14 1000010001000000010000001000001
1000000000000000000010010000000
0110000000001000000000000000101

G(3,37)=15 1000010000000010000000000000000000101
1001000000000000000000000010001000000
0010000000100000010000010000000000110

G(4,13)=11 1001000000011
1000000000000
0100001010000
1000100000100

G(4,16)=12 1001000000001010
1000000000000001
0000000100010000
1000011000000100

G(4,19)=13 1010000100000000100
1000000000100000001
0000000001000001000
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0100110000000000100

G(4,23)=14 11000001000100001000000
10000000000000000010010
00000010000000000001000
10100000000000100000001

G(4,27)=15 100000000100010100000001000
100100000000000000000000100
000000011000000000010000001
100001000000000000000000010

G(5,11)=11 11000000001
10000000000
00000010010
10100001000
00001000001

G(5,12)=12 110001000001
100000000000
000000010010
100000001000
001010000001

G(5,15)=13 100001000001001
100000000000010
000000000010001
001010000000000
100000011000000

G(5,18)=14 100000001000100001
100000010010000000
000010000000000100
100000000000000000
010100000000000011

G(5,20)=15 10000000010000000100
00001000100000000011
10100000000000000000
00000000000001001000
01000010000001000001
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G(6,8)=11 11000100
00000001
00000001
01010000
10000010
01001000

G(6,10)=12 1100000001
1000000100
0001000001
0000100000
0000000010
1010010000

G(6,12)=13 100010000110
000010000001
100000000000
000101000000
001000000000
100000001001

G(6,14)=14 10010000000101
00000110000010
00100000000000
10000000000010
10000000000000
00001000100001

G(6,17)=15 11000000000000101
10000001000000000
00000000010000010
00010000000001000
10000000000000000
01000100001001000

G(7,7)=11 1000100
0100001
1000001
0000000
0001000
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0000001
0110100

G(7,9)=12 110000101
100000000
000100000
100000000
000000001
010010000
001000100

G(7,10)=13 1100000010
0000010000
0000100100
1000000000
0000000001
1000000001
0101000100

G(7,12)=14 001010000001
000000001000
100000000001
110000000000
000000000010
000100100000
010001000001

G(7,15)=15 100000001000011
100000010001000
000000000000000
101000000000000
000010000000001
000001000000000
010000000010010

G(8,8)=12 11001010
10000000
00000001
10000000
00010000
00000100
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00100000
10000001

G(8,11)=14 10000001001
10001000010
00000000000
00001000000
00000000010
11000000000
00000001000
00100000101

G(8,13)=15 1000010001001
1000000000000
0000000001000
0100000000000
1000000000010
0000000000001
0000011000000
0010000010100

G(9,9)=13 110000001
100000000
000010000
100000000
000000100
010000010
000000000
100000000
000101001

G(9,10)=14 1000001000
1010000001
0000000000
1001000000
0000000100
0000000000
0000000001
1000000010
0100011000
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G(9,12)=15 110000010001
100000000000
000000001010
100000000000
000010000000
000001000000
000000000000
100000000100
000100100001

G(10,10)=15 1000010010
0100000000
0000000001
1000100000
0010000000
0000000000
0000000001
0000000001
0101000000
1000001100
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