
The Problem of KingsMichael Larsen*University of PennsylvaniaPhiladelphia, PA 19104larsen@math.upenn.eduSubmitted: May 30, 1994; Accepted: September 23, 1995AbstractLet f(n) denote the number of con�gurations of n2 mutually non-attacking kings ona 2n� 2n chessboard. We show that log f(n) grows like 2n log n� 2n log 2, with an errorterm of O(n4=5 log n). The result depends on an estimate for the sum of the entries of ahigh power of a matrix with positive entries.In chess, two kings can attack one another if their squares are horizontally, vertically,or diagonally adjacent. Consider the problem of placing mutually non-attacking kings ona chessboard with 2m rows and 2n columns. Partitioning the chessboard into 2� 2 cells,we see that no cell can contain more than one king, so there can be no more than mnkings:
Figure 1In this note, we estimate the number K(m;n) of con�gurations of mn kings. H. Wilf [5]has obtained good estimates in the case that m is �xed and n� m. We consider the orderof growth when both m and n tend to in�nity, and especially the case m = n. Our mainresult is stated at the end of the paper.Before proceeding with the problem of kings, it may be worth a brief look at theanalogous problem for other chess pieces. No more than n mutually non-attacking rookscan �t on an n� n board; the legal con�gurations have one rook in each row and columnand are therefore given by the n! permutations. It is known that there exist con�gurationsof nmutually non-attacking queens as long as n � 4, and the number of such con�gurationsis conjecturally super-exponential in n [4]. For bishops, it is not too di�cult to see that* Partially supported by N.S.A. Grant No. MDA 904-92-H-30261



the electronic journal of combinatorics 2 (1995), #R18 2there are exactly 2n ways of placing 2n� 2 pieces on an n�n board, when n > 1 [3]. Themaximum number of knights on an n � n board is bn2+12 c, when n > 2. For n > 4, thenumber of such con�gurations is 1 or 2 according to whether n is odd or even; this followsfrom the existence of a knight's tour (resp. a closed knight's tour) [3].All such problems can be reformulated in the language of statistical mechanics, butfrom this point of view the problem of kings is certainly the most natural. Assign spinat each vertex in a (region of a) square lattice according to whether there is or is not aking in the corresponding square of the chessboard. The generating function Pn anzn forthe number of con�gurations of n kings is closely related to the L = M = �1 limit ofpartition function of Baxter's \hard square model" [1] x14.2. The only di�erence is thatin the hard square model, a king on a corner (resp. edge) of the board counts for onlyone quarter (resp. one half). Of course, questions in statistical mechanics can be quitesensitive to boundary conditions; see, e.g., [3]. In any case, the hard square model has beensolved in certain regions of the (L;M) plane, but not in the \unphysical" third quadrant.Our approach to the problem of the kings is completely elementary. It depends onestimates for the entries of powers of matrices. These depend, in turn, on eigenvalueestimates. It is clear that for �xed M , the entries of Mn grow like polynomial multiplesof Rn, where R is the largest eigenvalue of n. The coe�cients of this polynomial can bebounded if the entries of M are bounded. Theorem 2 below gives the estimates we need,which may be be of some independent interest.I would like to thank Herb Wilf for introducing me to this problem and the refereefor suggesting the simpli�ed proof of Theorem 2 which appears below.To each con�guration ofmn kings on a 2m�2n chessboard, we associate two diagrams.Each diagram consists of an m�n array of squares, with an arrow in each square. Squaresare labelled by an ordered pair (i; j), 1 � i � n, 1 � j � m, with the top row is labelled mand the bottom row 1. A square in the vertical diagram contains a " if the correspondingcell on the chessboard contains a king in one of its two upper squares; otherwise it containsa #. Thus �gure 1 has the following vertical diagram:
Figure 2Likewise, each square in the horizontal diagram contains a  if the king in the corre-sponding cell is in one of the two left squares of the cell; otherwise it contains a !. The2



the electronic journal of combinatorics 2 (1995), #R18 3horizontal diagram of �gure 1 is
Figure 3The condition that kings in vertically adjacent cells cannot attack each other amountsto the condition that every " in a column of �gure 2 must lie over every # in that column;likewise, the condition that kings in horizontally adjacent cells cannot attack amounts tothe condition that every  in a row in �gure 3 lies to the left of every !. Thus a vertical(resp. horizontal) diagram is speci�ed uniquely by the number of # (resp.  ) symbols ineach column (resp. row). For a 2m � 2n board, this is a an ordered n-tuple (a1; : : : ; an)(resp. m-tuple (b1; : : : ; bm)) of integers in [0;m] (resp. [0; n]). Obviously a con�gurationof kings is uniquely speci�ed by its two diagrams. The question that remains is whichpairs of diagrams are compatible. The compatibility condition is dictated by the rulethat diagonally adjacent squares in diagonally adjacent cells should not contain attackingkings. This actually amounts to two separate rules depending on whether the adjacencyis NE$SW or NW$SE. The �rst gives rise to the rule that we cannot haveai < j < ai+1 and bj < i < bj+1 (1)for any i and j. The second implies that we cannot haveai > j > ai+1 and bj > i > bj+1: (2)One way of visualizing the situation is to extend j 7! aj and i 7! bi to piecewise linearfunctions, y = a(x) and x = b(y) respectively, view their graphs as oriented curves, and askthat the curves not intersect with \positive" orientation. This is not quite right becausethe two diagrams are incompatible only if (1) or (2) is sharp for some (i; j). Nevertheless,this picture motivates the computations below.Lemma 1. For all m and n, K(m;n) � bn=2cmbm=2cn:Proof. Consider all vertical diagrams satisfyingai 2 � [0;m=2] if i � n=2,[m=2;m] if i > n=2,3



the electronic journal of combinatorics 2 (1995), #R18 4and all horizontal diagrams satisfyingbj 2 � [n=2; n] if j � m=2,[0; n=2] if j > m=2.There cannot be an incompatibility among two such diagrams. Indeed, if (1) holds forsome (i; j), we havei � n2 ) bj < n2 ) j > m2 ) ai+1 > m2 ) i+ 1 > n2 ) bj+1 � i+ 1 > n2 ) j + 1 � m2and i > n=2) j > ai � m=2) i < bj+1 � n=2;a contradiction either way. If (2) holds for some (i; j),j � m=2 ) ai > m=2) i > n=2) j > ai+1 > m=2;and j > m=2) i < bj � n=2) m=2 � ai > j;again a contradiction. The lemma follows. utFrom this and the trivial upper bound K(m;n) � (m+ 1)n(n+ 1)m we obtainTheorem 1. For all positive integers m and n,logK(m;n) = m log n+ n logm+O(m+ n): utIn order to improve the error term, we need a better upper bound for K. To get it,we need to bound the size of entries of powers of matrices. Let �(M) denote the sum ofthe entries of a matrix M .Theorem 2. Let M be a k � k matrix with entries in [0; 1]. For all n > k,�(Mn) < 35(15k)knk sup(r(M)n; 1)where r(M) denotes the largest absolute value of an eigenvalue of M .Proof. Note �rst that if M is nilpotent, �(Mn) = 0 for all n � k. We are thereforejusti�ed in assuming henceforth that r(M) > 0.If v denotes the column vector of length k with all entries 1, the sum of the entries ofMn is Sn := tvMnv:By the Cayley-Hamilton theorem, the sequence S satis�es the linear recurrencekXi=0 ciSn+i = 0 8n � 0; (3)4



the electronic journal of combinatorics 2 (1995), #R18 5wherePi cixi is the characteristic polynomial ofM . Moreover, if Ip;q denotes the p�q ma-trix with every entry equal to 1, then each entry of Mn is dominated by the correspondingentry of Ink;k, so Sn � kn+1 for all n. SettingP (x) = kXi=0 cixk�i; S(x) = 1Xi=0 Sixi;we conclude that P (x)S(x) is a polynomial Q(x) =Pi qixi of degree less than k. As theabsolute value of the determinant of a j � j matrix with entries in [0; 1] is bounded by j!,we have ci � k(k � 1) � � � (i+ 1) � kk�iand therefore qi � (i+ 1)ki+1:By the residue theorem, Sn = I Q(z)zn+1P (z)dz;as long as the contour of integration is contained in an open disk about the origin of radius1=r(M). We choose a counter-clockwise circle of radius n(n+k+1)r(M) . For every point z onthis contour, jP (z)j � � k + 1(n+ k + 1)r(M)�kandjQ(z)j � (kk+1+(k�1)kk�1+(k�2)kk�2+ � � �) sup(r(M)1�k; 1) � kk+2 sup(r(M)1�k; 1):Therefore, the integral is bounded above by2�r(M)�1kk+2 sup(r(M)1�k; 1)r(M)k(n+ k + 1)k(k+ 1)�kr(M)n+1(n+ k + 1)n+1n�n�1and thus by 2�k2 sup(r(M)n+k; 1)(n+ k + 1)k n+ k + 1n ek+1:As n � k+1, sup(r(M)) � k, ek � ke > k2, 4�e < 35, and 2e2 < 15, we obtain the desiredupper bound of4�ek2(2ek)knk sup(r(M)n; 1) < 35(15k)knk sup(r(M)n; 1): utFix k � 3 and assume that m0 = m=k and n0 = n=k are integers. We divide eachdiagram, horizontal and vertical, into a k � k array of m0 � n0 blocks, indexed by orderedpairs (p; q), 1 � p; q � k, and consisting of the cells with integral coordinates in therectangle [(p� 1)n0 + 1; pn0]� [(q � 1)m0 + 1; qm0]. We say that the (p; q) block is of type" if there exists i 2 [(p � 1)n0 + 1; pn0 � 2] such that ai � (q � 1)m0 < qm0 � ai+1. Ine�ect, the graph of i 7! ai cuts entirely through the block from below. We de�ne blocks5



the electronic journal of combinatorics 2 (1995), #R18 6of type #,  , and ! analogously. For example, the �gure below shows a vertical diagram,its a-function, and its " and # blocks:

Figure 4Thanks to condition (1), a block cannot be both of type " and of type !, and thanks6



the electronic journal of combinatorics 2 (1995), #R18 7to condition (2), it cannot be both of type # and of type  . It turns out that we need touse only the �rst of these conditions.We consider the single column Xp of blocks of the form f(p; i) j 1 � i � kg. Given asubset U = Up of Xp, we consider the number of sequences aj , j 2 [(p� 1)n0 +1; pn0 � 2],for which the set of blocks of type " is contained in U . Such sequences are characterizedby the rule aj � (i� 1)m0 < im0 � aj+1 ) (p; i) 2 U: (4)The number of such sequences is �(Mn0�2U ), whereMU is the incidence matrix de�nedby condition (4). More precisely, MU is a f0; 1g-matrix whose (u + 1; v + 1) entry is 1 ifand only if v � (i� 1)m0 < im0 � u) (p; i) 2 U; 0 � u; v � mWe extend the m+1�m+1 matrix MU to a (k+1)m0� (k+1)m0 matrix ~MU by addingm0 � 1 zero-rows and m0 � 1 zero-columns, on the top and left respectively. For example,if m0 = 2, k = 3, and U is empty, we obtain~MU = 0BBBBBBBBB@ 0 0 0 0 0 0 0 00 1 1 1 1 1 1 10 1 1 1 1 1 1 10 0 1 1 1 1 1 10 0 1 1 1 1 1 10 0 0 0 1 1 1 10 0 0 0 1 1 1 10 0 0 0 0 0 1 1
1CCCCCCCCCA : (5)Let NU denote the (k + 1)m0 � (k + 1)m0 f0; 1g-matrix whose (u; v) entry is 1 if andonly if bv=m0c � i� 1 < i+ 1 � bu=m0c ) (p; i) 2 U; 0 � u; v � m+m0 � 1:For example, under the same conditions as (5), we obtainNU = 0BBBBBBBBB@ 1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 10 0 1 1 1 1 1 10 0 1 1 1 1 1 10 0 0 0 1 1 1 10 0 0 0 1 1 1 1
1CCCCCCCCCA :As i+1 � bu=m0c implies im0 � u� (m0 � 1), each term in NU is at least as great asthe corresponding term in ~MU , and�(Nn0�2U ) � �( ~Mn0�2U ) � �(Mn0�2U ) (6)7



the electronic journal of combinatorics 2 (1995), #R18 8On the other hand, NU = Im0;m0 
 PU ;where PU is the f0; 1g-matrix with (u+ 1; v + 1) entry 1 if and only ifv � i� 1 < i+ 1 � u) (p; i) 2 U:Thus �(Nn0�2U ) = �(In0�2m0;m0)�(Pn0�2U ) = (m0)n0�1�(Pn0�2U ): (7)By Theorem 2, �(Pn0�2U ) < 35(15k)k(n0)kr(PU )n0 ; (8)so we would like to estimate r(PU ).Consider the equivalence relation on f1; 2; : : : ; k+1g generated by the relation i � i+1if (p; i) 2 U . Let ci be the cardinality of the ith equivalence class, where the equivalenceclasses are arranged by the increasing size of their elements. ThusPU = 0BBBB@ Ic1;c1 Ic1;c2 Ic1;c3 � � � Ic1;crRc2;c1 Ic2;c2 Ic2;c3 � � � Ic2;cr0 Rc2;c3 Ic3;c3 � � � Ic3;cr... ... ... . . . ...0 0 0 � � � Icr;cr 1CCCCA ;where Rp;q is the p� q matrix whose �rst row consists of entries 1 but whose other entriesare zero. Letting Q` denote the `� ` matrix whose (j; k) entry ise 2�i(j�1)(k�1)` ;and conjugating by 0BB@Qc1 0 � � � 00 Qc2 � � � 0... ... . . . ...0 0 � � � Qcr 1CCA ;we obtainP 0U = 0BBBBB@ c1Ec1;c1 pc1c2Ec1;c2 pc1c3Ec1;c3 � � � pc1crEc1;crpc1=c2Cc2;c1 c2Ec2;c2 pc2c3Ec2;c3 � � � pc2crEc2;cr0 pc2=c3Cc2;c3 c3Ec3;c3 � � � pc3crEc3;cr... ... ... . . . ...0 0 0 � � � crEcr;cr 1CCCCCA ;where Ei;j denotes the i � j matrix with zero entries except for a one in the upper leftcorner, and Ci;j denotes the i�j matrix with zero entries except for ones in the �rst column.It follows that the non-zero eigenvalues of PU coincide with the non-zero eigenvalues of0BBBBB@ c1 pc1c2 pc1c3 � � � pc1crpc1=c2 c2 pc2c3 � � � pc2cr0 pc2=c3 c3 � � � pc3cr... ... ... . . . ...0 0 0 � � � cr 1CCCCCA :8



the electronic journal of combinatorics 2 (1995), #R18 9The characteristic polynomial of this matrix is�1� � c1(c1 � �)(c2 � �) + c2(c2 � �)(c3 � �) + � � � + cr�1(cr�1 � �)(cr � �)�+� c1(c1 � �)(c2 � �)(c3 � �) + � � � + cr�2(cr�2 � �)(cr�1 � �)(cr � �)�� � � �� rYi=1(ci � �):As Pi ci = k + 1, r(PU ) � 2pk + 1 + supi ci:On the other hand, (supi ci)� 1 �Xi (ci � 1) = jU j + 1:We deduce that r(PU ) � 2pk + 1 + 1 + jU j:Combining this with r � k + 1, and the inequalities (6), (7), and (8), we conclude that�(Mn0�2Up ) � 35(m0)n0(15n0(k + 1))k+1�jUpj+ 1 + 2pk + 1�n0 :We �x an array of subsets ~U = (U1; : : : ; Uk), U i � Xi, with a total ofh = jU1j+ � � � + jUpjblocks. The total number of vertical diagrams whose blocks of type " all lie in U1[� � �[Uk ,is kYp=1 35(m0)n0(15n0(k + 1))k+1�jUpj+ 1 + 2pk + 1�n0(m+ 1)� 35k(m0)n(15n0(k + 1))k2+k h+ k + 2p2kpkk (m+ 1)k!n= (35m+ 35)kmn(15n0(k + 1))k2+k(hk�2 + k�1 + 2p2k�1=2)n:Likewise, �xing an array ~L = (L1; : : : ; Lk), each Li a subset of the ith row of blocks, thenumber of horizontal diagrams whose blocks of type ! are contained in L1 [ � � � [ Lk isbounded by (35n+ 35)knm(15m0(k + 1))k2+k(h0k�2 + k�1 + 2p2k�1=2)n:As there are only 2k2 ways of choosing ~U and 2k2 ways of choosing ~L, the number of pairsof compatible diagrams is less than(35m+ 35)k(35n+ 35)kmnnm(900m0n0(k + 1)2)k2+kS;9



the electronic journal of combinatorics 2 (1995), #R18 10where S = sup0�h�k2((2p2k�1=2 + k�1) + hk�2)n((2p2k�1=2 + k�1) + (1� hk�2))m:If n is a perfect 5th power, we set k = n2=5, and obtainlogK(m;n) � n2=5(log(35m+ 35) + log(35n+ 35)) +m log n+ n logm+ n4=5 log(1800mn) + n2=5 log(1800mn) + log S:When m = n, by the arithmetic-geometric mean inequality,logK(n; n) � 2n2=5 log(35n+ 35) + 2n log n+ n4=5 log(1800n2)+ n2=5 log(1800n2) + 2n log(1=2 + 2p2k�1=2 + 2k�1)= 2n log n� 2n log 2 + (4p2 + 2)n4=5 log(n) +O(n4=5):This result applies even when n is not a perfect 5th power. Indeed, K(m;n) is monotoni-cally increasing in each variable, so setting N = dn 15 en,K(n; n) � K(N;N) � 2N logN � 2N log 2 +O(N4=5 logN)= 2n log n� 2n log 2 +O(n4=5 log n):Combining this upper bound with Lemma 1, we deduceTheorem 3. For all positive integers n,logK(n; n) = 2n log n� 2n log 2 +O(n4=5 log n): utREFERENCES[1] R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,1982.[2] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, Domino tilings of Aztec diamonds I,II J. of Algebraic Comb. 1 (1992) 111{132, 219{234.[3] N. Elkies, R. Stanley, Mathematical Chess, in preparation.[4] I. Rivin, I. Vardi, P. Zimmermann, The n-queens problem, American MathematicalMonthly (1994) 629{638.[5] H. Wilf, The problem of the kings, Electronic Journal of Combinatorics 2 (1995) R3.
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