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Abstract

A Gray code is a Hamilton path H on the n-cube, Q,,. By labeling each edge of
Q. with the dimension that changes between its incident vertices, a Gray code can
be thought of as a sequence H = ty,t2,...,tn_1 (with N = 2™ and each t; satisfying
1 <ty <n). The sequence H defines an (undirected) graph of transitions, Gy, whose
vertex set is {1,2,...,n} and whose edge set E(Gy) = {[ti,tisq1] [ 1 <1< N-—-1L A
G-code is a Hamilton path H whose graph of transitions is a subgraph of G; if H is a
Hamilton cycle then it is a cyclic G-code. The classic binary reflected Gray code is a
cyclic Ky n-code. We prove that every tree T of diameter 4 has a T-code, and that no
tree T of diameter 3 has a T-code.

Mathematical Reviews Subject Number: 05C45.

1 Introduction

The utility of the ubiquitous binary reflected Gray code is undisputed. See, for example,
the books of Nijenhuis and Wilf [5], Reingold, Nievergelt, and Deo [6], and Wilf [8]. For
certain applications, however, other Gray codes are desired. Many other Gray codes have
been proposed, both for specific values of n and general constructions. For example, God-
dyn, Lawrence, and Nemeth [3], motivated by an issue in the design of photon detectors,
study the problem of finding a Gray code that maximizes the minimum number of edges
between the use of edges of the same dimension. In a recent paper, Savage and Winkler [7]
find a Gray code in which all subsets of size k appear before any of size k + 2, and use this
Gray code to improve the best known results on the notorious “middle levels” problem.
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The n-cube, Q., has vertex set, V(Q.,), consisting of all bitstrings of length n. Its edge
set, E(Qn), consists of all pairs, [x,y]!, in which x and y have Hamming distance one; i.e.,
that differ in exactly one position. For [x,y] € E(Q,), define t(x,y), the transition
between x and y, to be the position of the bit that is different. A Gray code is a Hamilton
path H on the n-cube, Q.; a cyclic Gray code is a Hamilton cycle on Q.. Given a Gray
code H = by, by,...,bn, where N = 2", its transition sequence, T(H), is the sequence
T(H) =4, ts,..., tno1, Where t; = (b, biy1). If H is a cyclic Gray code, then in a cyclic
transition sequence we append the additional transition ty = T(bn, by). The transitions
t;_1 and t; are said to delimit the bitstring b;. The sequence t(H) defines an (undirected)
graph of transitions, Gy, whose vertex set is [n] = {1,2,...,n} and whose edge set is
E(Gh) ={[ti, tiq] [ TSN =T},

A motivation for this paper was the construction of a particular type of Hamilton cycle
in the cube-connected-cycle, CCC,. A cube-connected-cycle is a certain cubic Cayley
graph of the wreath product of an n-cycle and an n-cube, and is a well-known topology
for computer networks. Formally, the vertex set V(CCC,) consists of all pairs (d;x) where
x is a length n bitstring and d € Z,, is an integer mod n. The edge set E(CCC,,) is as
shown below.

E(CCC,) = {l(d;x),(d+T1;x)][x€eV(Qy)and 0 <d<n} U
{l(d;x), (d;y)] | [x,y] € E(Qn) and 0 < d <}

A basic fact about cube-connected-cycles is that they are Hamiltonian; an easily under-
stood proof may be found Leighton [4]. We would like to find a particular type of Hamilton
cycle — one that contiguously traverses all vertices of the form (d;x), for x fixed, before
moving onto a vertex with a different value of x. Such a Hamilton cycle can be written in
the form k1, k2, ..., Kn, With N = 2™, where each k; has the form (arithmetic done mod n)

(di;xi), (di + 15x3), (di + 25 %3), ..., (di + (n —1);x¢), or
(diyxi), (di = T5xi), (di — 25%3), ..., (di — (M= T)5x3).

The sequence X1,X2,...,xn must be a Hamilton cycle in Q,, and dy,d,...,dyn is its
transition sequence. Clearly, we must have di = d; ; + 1.

The question naturally occurs as to whether a Hamilton cycle H in the n-cube can
be “lifted” to a Hamilton cycle in the cube-connected cycle CCC,, by always traversing
sucessively all vertices of an n-cycle, either in increasing or decreasing order, as described
above. Such a Hamilton cycle exists if and only if the dimension of the successive edges
used in H differs by one (mod n). This question is a special case of the problems considered
below.

Lower case bold letters always denote bitstrings.
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Given any graph G, with n vertices, a G-code is a Hamilton path on Q, whose graph
of transitions is a subgraph of G. A cyclic G-code is a Hamilton cycle whose graph of
transitions is a subgraph of G. Every G-code has a unique G-transition sequence, whose
length is 2N if the G-code is cyclic, and is 2N — 1 otherwise. In either case, we refer to
the starting vertex and ending vertex as those numbered 1 and 2N — 1 in the sequence.
Note that to prove the existence of a G-code for graph G, it is sufficient to produce a
G-transition sequence. The question raised in the previous paragraph amounts to that of
finding a cyclic C,-code, where C,, denotes an n-cycle.

The classic binary reflected Gray code (BRGC) has transition sequence T, defined
recursively as follows. The initial conditionis To=1and ifn >0, then T, =T, 1,1, T ;.
For example, T,=1,2,1,3,1,2,1,4,1,2,1,3,1,2,1. The cyclic transition sequence for the
BRGC is T,n. For the BRGC the graph of transitions is Ky,_;. The graph K;,_; for
n > 3 is called a star, denoted S,,. It is a tree with one central vertex and n — 1 leaves.

The following useful theorem is due to Gilbert [2].

Theorem 1.1 The following statements characterize non-cyclic and cyclic transition
sequences:

e Let T be a sequence of 2™ — 1 integers from [n]. The sequence T 1s a transition
sequence if and only if every non-empty consecutive subsequence of T contains
some integer an odd number of times.

e Let T be a sequence of 2™ integers from [n]. The sequence T is a cyclic transition
sequence if and only if every non-trivial consecutive subsequence of T contains
some integer an odd number of times, and every integer in n] occurs in T an
even number of times.

We will also think in an algebraic sense of transitions as operations on bitstrings, so
that bt denotes the bitstring that results from flipping the t™ bit of b. We note the
following obvious equalities. The operation is commutative: bst = bts. The operation is
an involution: btt = b or, equivalently, if bt = ¢, then ct = b.

A graph G is completely Gray if there is a G-transition sequence starting from every
vertex of G. Observe that if there is a cyclic G-code, then G is completely Gray. A graph
G is Gray-connected if, for every pair of vertices u and v, there is a G-transition sequence
starting at u and ending at v. A bipartite graph G is Gray-laceable if, for every pair of
vertices u and v in the same partite set, there is a G-transition sequence starting at u and
ending at v.

The diameter of a graph G is the maximum distance between any two vertices of G.
For a tree T the diameter is thus the length of the longest path in T. A center of a tree
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is a vertex of minimum distance from all others. Every tree has one or two centers, and if
it has two, then they are adjacent. A tree with one center is unicentral, a tree with two
is bicentral.

We will refer to several standard graphs. The complete graph is denoted K,,. The
complete bipartite graph is denoted K, ,,. The path with n vertices (and n — 1 edges) is
denoted P,. The cycle of length n is denoted C,,.

2 Undirected G-codes

Below are two simple lemmata.
Lemma 2.1 If there 1s a G-code, then G s connected.

Lemma 2.2 If there 1s a G-transition sequence starting at u, then it must end at a
verter v of G for which there is an even length path from u to v. In particular, if G
18 bipartite, then a G-transition sequence must start and end at vertices in the same
partite set.

Proofs: Every bit must change at least once in a G-code. This means that each vertex is
encountered at least once in the G-transition sequence. Therefore, G must be connected.

If a G-transition sequence starts at w, then it lists 2™ — 2 other vertices, which is an
even number. By the property of bipartite graphs, the last vertex is in the same partite
set as u. O

Stars have interesting properties and are useful as subgraphs in succeeding construc-
tions.

Lemma 2.3 (a) There is a cyclic S,-transition sequence which starts and ends at
the central vertex. (b) For any leaves u and v of S,, there is a cyclic S, -transition
sequence which starts at u and ends at v if and only if u #v.

Proof: (a) Note that the BRGC’s graph of transitions is S,,, and that T,, begins and ends
on the central vertex 1.

(b) To show the necessity of u # v, let £ be the S, -transition sequence that starts at
u and ends at v. Let r be the central vertex. We can create a cyclic transition sequence,
Y. = t,t,...,tn, with w = t4, v = tn_1, and v = tn, where N = 2™, that meets the
requirements of Theorem 1.1. Because X. is cyclic, we can start on tn_1, producing a
subsequence tn_1,tn, t1, t2 = vrur, which is illegal when u =v.

Consider S,,, with distinct leaves u and v, and central vertex, r. Relabel r as v and
remove the leaf v, creating S,, ;. Using the BRGC and starting at u, we can form a cyclic
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O

Figure 1: The short tree T5(3,3,1,1,0).

transition sequence, ¥. = uv---vpv, where p is any leaf in S,, ;, and the length of the
sequence is 2"'. We can then place an r between each t;, t; 1 pair, (1 <i < 2" -1),
producing a new sequence X = urvr---rvrprv, with length 2™ — 1. Note that any proper
subsequence of the original sequence contains some vertex an odd number of times. Adding
the r’s maintains this property, and by appending an r to the end of X, we create the
condition that every vertex is visited an even number of times. This means that we can
create a cyclic transition sequence from X. The graph of transitions for X is clearly S,, and
the starting and ending leaves have been chosen arbitrarily. O

Corollary 2.1 The complete graph K,, 1s Gray-connected.

Proof: Note that K, contains S, as a spanning tree. Because you can choose any vertex as
the root or any two distinct vertices as leaves, all combinations of start and finish vertices
can produce a G-transition sequence. O

Define a short tree to be a rooted tree of height at most 2, where the height of a tree
is the length of the longest path from the root to a leaf. A short tree may be specified
by the number of children of each of the nodes at level 1. Let T((ny,n,,...,n¢), where
ny > n,; > --- > ng be the unique short tree in which the i-th node at level 1 has n;
children. For example, Figure 1 shows the tree T5(3,3,1,1,0). The number of nodes in
the tree T¢(ny,ny,...,ny) is T+t+ny +ny+ - -+ n,. Every free tree of diameter at least
2 and at most 4 can be made into a short tree by taking a center to be the root.

Theorem 2.2 For every t > 2 and n > 1 there s a cyclic T¢(n,1,0,...,0)-code.
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Figure 2: How to weave together the BRGC sequences T, and Ts to get a T4(3, 1,0, 0)-code.

Proof: We weave together a cyclic BRGC transition sequence over Q. together with one
over Q. 2. Thinking of Q12 as Q¢ X Qn2, one sees that the Hamilton cycles given by
the BRGC for t and n + 2 induce a 2' by 2™*? toroidal grid structure in Qin2.

Assume that the nodes are labelled so that 1 is the root, that its children are n +
3,...,m+t+ 2, that n + t + 2 has only child 2, and that the children of n + 3 are
3,4,...,n+ 2. Label the rows of the grid with the cyclic transition sequence for the
BRGC, using n+3,...,n+ t+ 2, and the columns with 1,2,...,n+ 2. On this toroidal
spanning subgraph, we weave a specific Hamilton cycle which starts at the left upper point
and follows the patterns illustrated in Figure 2, which uses t =4 and n+2 = 5. Beginning
with a vertical move, we zigzag down the 2' rows, wrapping round in column 2, then zigzag
back up. This up-down zig-zag is repeated 2" times and ends at the right upper point,
which attaches to the left upper point to create the Hamilton cycle on Q¢ n.2.

In the columns, note that if a transition is not 1 (these transitions occur only in the
first and last rows), then it is adjacent only to n + 3 or n + t + 2; furthermore, it is only
2, which occurs 2™ times as a column, that is adjacent to n +t + 2; the remaining vertices
3,4,...,n+ 2 are adjacent only to n + 3. O

Corollary 2.3 For any complete multipartite graph G, there 1s a cyclic G-code.
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Proof: Let the number of vertices in G be n. Consider any 2 of the partite sets, R and P,
in G, where |P| = m: If either set has only 1 vertex, then G contains S,, as a spanning tree
and we can generate a BRGC from it. If R and P each contain 2 vertices, and G is bipartite,
then the sequence 1,2,3,2,1,2,3,4,3,2,1,2,3,2,1,4, using vertices labelled sequentially
on the 4-cycle, can be used.

Otherwise, choose vertex r € R and mark its edges that are incident with a vertex in
P. Choose another vertex in R and mark its edge to some specific vertex s € P. Choose
another vertex q # s € P and mark its incident edges to every remaining unconsidered
vertex in R and the other partite sets. We can see that the marked edges of G constitute
a spanning T,,(n—m —2,1,0,...,0) subgraph of G, with r as the root. By Theorem 2.2,
this spanning subgraph guarantees a cyclic G-code. a

Theorem 2.4 For every tree T of diameter 4, there 1s a cyclic T-code.

Proof: Let m = n; +n, + -+ n; be the total number of leaves in T = T¢(nq,ny, ..., Ny),
and let n = 1+t + m be the total number of vertices. Consider the multipartite graph
G whose partite sets have sizes nqi,n,,...,ny; label its vertices with the corresponding
leaves of Ti¢(n;,ny,...,ny). By Corollary 2.3, there is a cyclic G-transition sequence,
I'=g1,92,...,9m, Where M = 2™,

Now, consider S i, with central vertex being the root of T((n;,n,,...,n¢) and the
leaves being the children of the root: By Lemma 2.3, we can choose any 2 distinct leaves as
a start-finish combination, to produce a S¢,;-transition sequence of length 2**' —1. Choose
such a sequence, X, for each g;, giy1 pair in I', such that the starting vertex is adjacent to g;
and the ending vertex is adjacent to g;,1, using T¢(n;,ny,...,n¢) to determine adjacencies.
Also, choose a sequence Xy, such that the starting vertex is adjacent to gy and the finish
vertex is adjacent to g;. Form a new sequence, QO = gi1,X1,92,%2,...,9m, Zm Of length
2m (29 — 1) 4 2m =2,

We show that Q is the cyclic transition sequence for a cyclic T¢(nq,ny,...,n)-code:
Each g; bit change is matched with a Gray code corresponding to the Si,;-bits, and the
gi’s themselves are a cyclic G-transition sequence. Essentially, we are tracing out a H-path
in a 2™ by 2**1 grid graph.

To show that the transition sequence is cyclic, we investigate the parity of all the
vertices in the Z;’s. Each ; has length 2**!' — 1 and can be made cyclic by appending an
r to it, meaning it encounters only the central vertex (the original root) an odd number
of times. But since there are an even number of X;’s, the total number of r’s in Q is even.
Therefore, by Theorem 1.1, we know Q) is a cyclic transition sequence. O

Theorem 2.5 For every tree T of diameter 3, there does not exist a cyclic T-code.
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Proof: Given the diameter 3 tree T = T{(m,0,...,0), let r and f be its centers, and let the
leaves adjacent to f be wi,wy, ..., w,,,. Assume that H=by,b,..., by is a cyclic T-code,
whose cyclic transition sequence is T(H); we will derive a contradiction.

Divide t(H) into all the subsequences which begin with and contain exactly 1 occurence
of any wjy; subsequences of three possible forms result: The A-type may exist and has the
form w;f. The B-type may exist and has the form w;frf. The C-type is necessary and has
the form w;fr---rf.

Since T(H) = tyt; - - - tn is cyclic we may assume that it begins with a subsequence that
is a C-type. Let k be the index of the last f in this subsequence. Let x’ = O™t t; .- -ty 2,
x =x'ty 1 =x'1, y =xty = xf, and y' = yr = x'f.

There must be a unique index j for which y’ = b;. Denote u = b;_; and v = b;;. There
are four mutually exclusive cases to consider since either r or a w;, but not both, must
delimit y’, either on the right or on the left. These cases are (a) t(u,y’) =1, (b) T(y’,v) =
1, (¢) T(u,y') =wy, and (d) t(y’,v) = w;. In case (a), we must have u = y'r =y, and in
case (b), we must have v = y'r =y. But both these cases cannot occur as y by definition
is delimited by f and w;, and not by r. In case (c), we must have b;;; = y'f = x’ which
means that the subsequence, w;frf is contained within this subsequence. But by definition,
a C-type subsequence cannot contain a B-type subsequence. In case (d), we conclude that
b;_; =y’'f = x’. This means that x' is delimited on the right by f, which is not true. O

Conjecture 2.1 If T s a tree then there is a cyclic T-code if and only if the diameter
of T 1s 2 or 4.

If the conjecture is true, then for n > 6, P,-codes do not exist, where P,, is a path of
length n. A natural way to add edges is to take the square of the graph.

Question 2.2 Does a P2-code exist for allm > 12

The question asked in the introduction about Gray codes being lifted to Hamilton
cycles on the cube-connected cycle is equivalent to the following question.

Question 2.3 Does a cyclic C,-code for n > 5 exist?

2.1 Experimental results

We have obtained a complete classification of all G-codes for graphs on at most 6 vertices,
and for some graphs on 7 vertices. Refer to Figure 3. Any graph G of order at most six
not illustrated contains, as a spanning subgraph, one or more of these graphs having a
cyclic Gray Code, and thus itself possesses a cyclic G-code. For example, any 6 vertex
connected graph with 6 edges, which is not a 6-cycle, must contain (6.2) or (6.3) as a
spanning subgraph.
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Figure 3: Minimal subgraphs of order 3 to 6. Every connected graph contains one of these
as a spanning subgraph.
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3 Directed G-codes

Let G be a directed graph. We make a make here a few small observations about directed
G-codes All the definitions in the Introduction carry over to directed G-codes.

Lemma 3.1 If there 1s a cyclic G-code, then G is strongly connected.

Proof: Choose any 2 vertices, u and v in G. Let H = by, b,,...,bxn be a cyclic G-code
such that u = t(by,b;). Since the bit in position v must change, there must be a path
from u to v in the graph of transitions, which is a subgraph of G. O

That a strongly connected graph is not sufficient to produce a G-code is demonstrated
by considering any directed cycle of n vertices. This graph forces the transition sequence
to repeat the sequence after 2n which is less than 2™ for n > 3.

Question 3.1 Does a cyclic transition sequence require that its graph of transitions
have at least one bi-directional edge?
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