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Abstract

Let a(n, k) denote the number of combinatorial structures of size n with k compo-
nents. One often has

∑
n,k a(n, k)xnyk/n! = exp

{
yC(x)

}
, where C(x) is frequently

the exponential generating function for connected structures. How does a(n, k)
behave as a function of k when n is large and C(x) is entire or has large singular-
ities on its circle of convergence? The Flajolet-Odlyzko singularity analysis does
not directly apply in such cases. We extend some of Hayman’s work on admissi-
ble functions of a single variable to functions of several variables. As applications,
we obtain asymptotics and local limit theorems for several set partition problems,
decomposition of vector spaces, tagged permutations, and various complete graph
covering problems.
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1. Introduction

A variety of combinatorial structures can be decomposed into components so that
the generating function for all structures is the exponential of the generating func-
tion for components: A(x) = eC(x). (This is a single variable instance of the
exponential formula.) In this case, A(x, y) = eyC(x) is the generating function for
structures by number of components and is an ordinary generating function in y.
For the present discussion, we assume C(x) is an exponential generating function.
One often wishes to study an,k = [xnyk/n!]A(x, y), the number of k-component
structures of size n. In particular, one may ask how an,k varies with k for fixed
large n. From a somewhat different viewpoint, one may want to study the probabil-
ity distribution for the random variable Xn given by Pr(Xn = k) = an,k

/∑
k an,k

as n→∞.
One approach is to observe that k! an,k = [xn/n!](C(x))k. Such methods are

useful for estimating the larger coefficients of (C(x))k as n varies and k is large,
which is not the same as studying the larger values of an,k for fixed n. Consequently,
one may find that the method only yields estimates in the tail of the distribution
of Xn. See Gardy [7] for a discussion of these methods. However, it is sometimes
possible to extend the range to include the larger values of an,k. See Drmota [3],
especially Section 3.

Working directly with A(x, y) is likely to provide estimates for the larger coef-
ficients rather than tail probabilities. Unfortunately, multivariate generating func-
tions have proven to be recalcitrant subjects for asymptotic analysis. When A(x, y)
has small singularities, methods akin to Darboux’s Theorem may be useful. See
Flajolet and Soria [5] and Gao and Richmond [6] for examples. See Odlyzko [12]
for an extensive discussion of asymptotic methods.

In order to study a variety of single-variable functions with large singularities,
Hayman [10] defined a class of admissible functions in such a way that (a) class
members have useful properties and (b) class membership can easily be established
for a variety of functions. We refer to his functions as H-admissible. Hayman’s
results include:

• If p is a polynomial and the coefficients of ep are eventually strictly positive,
then ep is H-admissible.

• If f is H-admissible, so is ef .

• If f and g are H-admissible, so is fg.

In [2] we made a somewhat ill-considered attempt to extend his notions to multivari-
ate generating functions. In this paper we present a simpler alternative definition
which has applications to the problems described in the first paragraph and which
includes H-admissible functions as a special single variable case.

The next section contains our definition for a class of admissible functions
and an estimate for coefficients of such functions. Section 3 provides theorems for
establishing the admissibility of a variety of functions, especially those related to
counting structures by number of components of various types via the exponential
formula. Applications are presented in Section 4. Proofs of the theorems are given
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in Section 5.

2. Definitions and Asymptotics

Let x be d-dimensional, let �+ be the positive reals, and let rei0 be the vector
whose kth component is rkeiθk . Suppose f(x) has a power series expansion

∑
anxn

where xn is the product of xnkk . The lattice Λf ⊆ �d is the �-module spanned by
the differences of those n for which an 6= 0. We assume that Λf is d-dimensional.
Let d(Λf) be the absolute value of the determinant of a basis of Λf . In other words,
d(Λf ) is the reciprocal of the density of Λf in �d. The polar lattice Λ∗f ⊆ �d is the
�-module of vectors v such that v ·u is an integer for all u ∈ Λf . If v1, . . . ,vd is a
�-basis for Λ∗f , a fundamental region for f is the parallelepiped

Φ(f) =
{
c1v1 + · · ·+ cdvd

∣∣∣ −π ≤ ck ≤ π for 1 ≤ k ≤ d
}
.

Since the basis for a lattice is not unique, neither is Φ(f). If coefficients an are
nonzero for all sufficiently large n, then Λ∗f = Λf = �

d, d(Λf ) = 1, and we may
take Φ(f) = [−π, π]d.

We say that f(x) = ou(x)(g(x)) for x in some set S if there is a function
λ(t) → 0 as t →∞ such that |f(x)/g(x)| ≤ λ(|u(x)|) for all x ∈ S. The extension
to equations involving little-oh expressions is done in the usual manner.

If B is a square matrix, |B| denotes the determinant of B. We use v′ and S′

to denote the transpose of the vector v and the matrix S.

Definition of Admissibility. Let f be a d-variable function that is analytic at
the origin and has a fundamental region Φ(f). When Λf is d-dimensional, we say
that f(x) is admissible in R ⊆ �d+ with angles Θ if there are (i) a function Θ from
R to open subsets of Φ(f) containing 0 and (ii) functions

a : �d → �
d and B : �d → �

d×d

such that
(a) f(x) is analytic whenever r ∈ R and |xi| ≤ ri for all i;
(b) B(r) is positive definite for r ∈ R;
(c) the diameter of Θ(r) is ou(1), where u = |B(r)|;
(d) for r ∈ R, u = |B(r)|, and 0 ∈ Θ(r), we have

f(rei0) = f(r)
(
1 + ou

(
1)
)

exp
{
ia(r)′0 − 0′B(r)0/2

}
; (1)

(e) For r ∈ R, u = |B(r)|, and 0 in the complement of Θ(r) relative to Φ(f), we
have

f(rei0) = ou
(
f(r)

) /
|B(r)|1/2. (2)
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We say f is super-admissible if (2) can be replaced by

f(rei0) = ou
(
f(r)

) /
|B(r)|t (3)

for all t, where ou may depend on t.
Usually one can let a(x) and B(x) be the gradient and Hessian of log f with

respect to log x; that is,

ai(x) =
xi∂f

f∂xi
and Bi,j = xj

∂ai
∂xj

= Bj,i.

We call these the gradient a and B.

Since H-admissible functions satisfy b(r) → ∞ as r → R, it is easily verified
that this definition includes H-admissible functions. The asymptotic result for H-
admissible functions holds for our admissible functions:

Theorem 1. Suppose f(x) is admissible in R. Let k be any vector such that
[xk]f(x) 6= 0, let u = |B(r)|, and let v = a(r)− n. Then

[xn] f(x) =
d(Λf )f(r)r−n

(2π)d/2|B(r)|1/2

(
exp
{
−vtB(r)−1v/2

}
+ ou(1)

)
(4)

for r ∈ R and n− k ∈ Λf .

3. Classes of Admissible Functions

In this section we state various theorems that allow us to establish admissibility
for generating functions for a variety of combinatorial structures. We begin with
two theorems for multiplying admissible functions: Theorem 2 allows us to combine
structures of similar size and Theorem 3 allows us to make (minor) modifications
in our structures. Theorem 4 allows us to do simple multisection of admissible
functions; that is, limit attention to structures with simple congruence properties.
As already remarked H-admissible functions are admissible (with gradient a = a and
B = b). In addition, the exponentials of polynomials considered in Theorems 2 and 3
of [2] are superadmissible. The proofs given there suffice, but the notation differs
somewhat: Θ(r) is called D(r). It seems likely that one could extend the results
in [2] to larger classes of polynomials and/or larger domains R. In Theorems 5–7
we construct a variety of admissible functions of the form exp {yC(x)}.

Suppose f is admissible in R with angles Θ. Suppose there are variables not
appearing in f . We extend R and Θ to include these variables by forming the
Cartesian product of R with copies of (0,∞) and the Cartesian product of Θ with
copies of [−π, π]. We extend a and B by adding entries of zeroes; however, we ignore
the appended coordinates when computing |B| and when determining admissibility.
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Theorem 2. We assume the various objects associated with f and g are extended
as described above so that they include the same set of variables. Suppose that
• f is super-admissible in R with angles Θf ;
• g is super-admissible in R with angles Θg;
• |Bf (r) +Bg(r)| is unbounded on R;
• there are constants C and k such that

|Bf (r) +Bg(r)| ≤ C min
(
|Bf (r)|k, |Bg(r)|k

)
for r ∈ R. (5)

Then fg is super-admissible in R with angles Θfg(r) = Θf (r)∩Θg(r). Further-
more, Λfg = Λf + Λg, the the set of vectors u + v where u ∈ Λf and v ∈ Λg,
and we may take

afg = af + ag and Bfg = Bf +Bg,

There are two important observations concerning Theorem 2:
• In using it, one normally chooses R to be as big a subset as possible of Rf ∩Rg

such that (5) holds.
• Hayman shows that, if f(x) is H-admissible, then so is f(x) + p(x) when p(x)

is a polynomial. This is not true for admissible functions. For example, if
f(x) = g(x2) is admissible, f(x) + x is not. This problem could be avoided if
we changed the definition of Λf to use only sufficiently large n rather than all
n. Unfortunately Theorem 2 would fail because, for example ex

2
and ex

2
+ x

would be super-admissible but their product would not be.

Theorem 3. Suppose that f is admissible (resp. super-admissible) in R with angles
Θ and that g(rei0) is analytic for r ∈ R. Let u = |Bf (r)|. Suppose that there are
ag and Bg such that
(a) Λg ⊆ Λf ;
(b) for r ∈ R and 0 ∈ Θ(r),

g(rei0) = g(r) exp
{
iag(r)′0 − 0 ′Bg(r)0 + ou(1)

}
; (6)

(c) there is a constant C such that |g(rei0)| ≤ Cg(r) for r ∈ R;
(d) there is a constant C such that |Bf (r) +Bg(r)| ≤ C |Bf (r)| for r ∈ R.
Then fg is admissible (resp. super-admissible) in R with angles Θ and we may take

afg = af + ag and Bfg = Bf +Bg,

There are three important observations concerning Theorem 3:
• We do not assume that g is admissible.
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• One may need to extend ag and Bg as described before Theorem 2. In this
case, Λg should also be extended by adding components containing zeroes to
its vectors.
• If ag and Bg are so small that (6) reduces to g(rei0) = g(r)

(
1 + ou(1)

)
, the

contribution of g to the asymptotics in Theorem 1 is simply a factor of g(r).

Theorem 4. Let f(x) =
∑
anxn be a d-variable admissible (resp. super-admissible)

function. Let Λ be a sublattice of Λf and suppose k is such that ak 6= 0. Define

g(x) =
∑
n∈Λ

ak+nxk+n.

We may take Φ(g) ⊆ Φ(f). The function g is admissible (resp. super-admissible)
with

Λg = Λ, ag = af , Bg = Bf , Rg = Rf , and Θg = Θf .

Theorem 5. Suppose that
• f(x) =

∑
anxn is an H-admissible function with a0 = 0 and (possibly infinite)

radius of convergence R;
• K is a subset of {0, 1, . . . ,m− 1};
• λk are nonnegative reals for 0 ≤ k < m with λk > 0 if and only if k ∈ K.

Define λn = λk whenever n ≡ k (mod m),

g(x) =
∞∑
n=0

λnanx
n, (7)

and λ =
(∑m−1

k=0 λk
)/
m. Then:

(a) For some R0 < R, the function h(x) = eg(x) is super-admissible in
R = {r | R0 < r < R} with angles

Θ(r) =
{
θ
∣∣∣ |θ| < 1/g(r)1/3+ε

}
and the gradient a and B, provided ε > 0 is sufficiently small. Also

ah(r) ∼ λrf ′(r) and Bh(r) ∼ λr(rf ′(r))′.

If d denotes the greatest common divisor of m and the elements of K, then Λh
is generated by (d); that is, Λh = �(d).

(b) For some R0 < R and all δ > 0, the function h(x, y) = eyg(x) is super-
admissible in

R =
{

(r, s)
∣∣∣ R0 < r < R and g(r)δ−1 < s < g(r)1/δ

}
.
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with angles
Θ(r, s) =

{
0
∣∣∣ |θk| < 1/(sg(r))1/3+ε

}
and the gradient a and B, provided ε > 0 is sufficiently small. Also

ah(r, s) ∼ λs
(
rf ′(r)
f(r)

)
, Bh(r, s) ∼ λs

(
r(rf ′(r))′ rf ′(r)
rf ′(r) f(r)

)
,

and

|Bh(r, s)| = s2

2

∑
n,k

(n− k)2λnanλkakr
n+k. (8)

If k ∈ K and d denotes the greatest common divisor of m and differences
of pairs of elements of K, then Λh is generated by (k, 1) and (d, 0); that is
Λh = �(d, 0) + �(k, 1).

Theorem 6. Suppose that

• f(x) is analytic in |x| < 1 with f(0) = 1 and f(x) 6= 0 for |x| < 1;
• x−k log f(x) has a power series expansion in powers of xm for some integers k

and m with 0 ≤ k < m;

• C(r) is a positive function on (0, 1) with

(1− r)C
′(r)

C(r)
→ 0 as r→ 1;

• there exist positive constants α and β with β < 1 such that

log f(x) ∼ C(|x|)(1− x)−α as x→ 1

uniformly for | arg x| ≤ β(1− r) and such that∣∣log f(reiθ)
∣∣ ≤ ∣∣log f(reiβ(1−r))

∣∣ for β(1− r) ≤ |θ| ≤ π/m. (9)

Then, with g(r) = log f(r):
(a) For some R0 < 1, the function f(x) is super-admissible in R = {r | R0 < r < 1}

with angles
Θ(r) =

{
θ
∣∣∣ |θ| < (1− r)/g(r)1/3+ε

}
and the gradient a and B, provided ε > 0 is sufficiently small. Also Λf = �(d)
where d = gcd(k,m).

(b) For some R0 < 1 and all δ > 0, the function h(x, y) = f(x)y is super-admissible
in

R =
{

(r, s)
∣∣∣ R0 < r < 1 and g(r)δ−1 < s < g(r)1/δ

}
.
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with angles

Θ(r, s) =
{

(θ, ϕ)
∣∣∣ |θ| < (1− r)/(sg(r))1/3+ε and |ϕ| < 1/(sg(r))1/3+ε

}
and the gradient a and B, provided ε > 0 is sufficiently small. Also Λh =
�(m, 0) + �(1, k).

Theorem 7. Suppose that f(x) =
∑
anxn has radius of convergence R > 0 and

that an ≥ 0 for all n. Let ν(r) be the value of n such that anrn is a maximum.
Suppose that, for every ε > 0, ν(r) = o(f(r)ε) as r → R. Suppose that there exist
ρ < 1, A, a function K(m) > 0 and an N depending on ρ, A, and K such that, for
all ν = ν(r) > N and all k > 0,

Aρk ≥ atrt

aνrν
where t = ν ± k (10)

and

K(m) ≤ ajr
j

aνrν
whenever |j − ν| ≤ m. (11)

Then f(x) is entire and the conclusions of Theorem 5 hold for it.

4. Applications

Admissibility allows one to compute asymptotics for the coefficients of a variety of
generating functions, but the accuracy of the method is limited by one’s ability to
estimate the solution of a(r) = n and then estimate f(r) and rn accurately. On
the other hand, admissibility allows one to establish asymptotic normality rather
easily, and obtaining asymptotic estimates for the means and covariances is usually
fairly easy: Suppose our generating function is of the form f(x,y) and is ordinary
in y. Partition all vectors and matrices into block form according the the two sets of
variables x and y. Let an,k be the coefficients of f . Set a(r,1) = (n,k∗), solve for r
asymptotically in terms of n and use this to compute k∗ and B(r, 1) asymptotically
as functions of n. Let n go to infinity in a way that (r,1) ∈ R and |B| → ∞. From
Theorem 1 and the formula ([13, pp. 25–26])(

B1,1 B1,2

B′1,2 B2,2

)−1

=
(
A C
C′ D−1

)
where D = B2,2 −B′1,2(B1,1)−1B1,2, (12)

it follows that an,k/
∑

k an,k satisfies a local limit theorem with means vector and
covariance matrix asymptotic to k∗ and D, respectively. When x and y are 1-
dimensional, D = |B|/B1,1.

Example 1 (Stirling Numbers of the Second Kind). With multivariate situations,
it is important to know the range of values of the subscripts of the coefficients (rather
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than the variables in the generating function) for which the asymptotics applies. We
examine exp {y(ex − 1)}, the generating function for S(n, k), the Stirling numbers
of the second kind. Let |x| = r and |y| = s. Since f(x) = ex−1 is H-admissible, we
can apply Theorem 5(b) with m = 1 and λ0 = 1. (There is no multisection.) Then

a(r, s) = s

(
rer

er − 1

)
, B(r, s) = s

(
(r2 + r)er rer

rer er − 1

)
,

and
R =

{
(r, s)

∣∣∣ R0 < r and er(δ−1) < s < er/δ
}
.

Setting a = (n, k), we obtain
(i) n/k ∼ r and

(ii) the value of r lies between the solutions of n = rerδ and n = rer(1+1/δ).
Thus r is between roughly δ logn and log n/δ. It follows from this and (i) that we
have admissibility as long as (k log n)/n is bounded away from 0 and ∞. Conse-
quently, for any positive constants c andC , Theorem 1 provides uniform asymptotics
for S(n, k) when

cn

logn
< k <

Cn

logn
. (13)

If, instead, we set a(r, 1) = (n, k∗), we obtain the equations n = rer and
k∗ = er − 1. Hence r ∼ logn and k∗ ∼ n/ logn. Using (12), we obtain

D = (er − 1)− (rer)2/(r2 + r)er ∼ er/r ∼ n/(logn)2

and so S(n, k) satisfies a local limit theorem with mean and variance asymptotic to
n/ log n and n/(logn)2, respectively, a result obtained by Harper [9].

Example 2 (Other Set Partitions). The coefficient of yk1
1 yk2

2 · · ·xn/n! in

f(x,y) = exp
{ ∞∑
k=1

ykx
k/k!

}
(14)

is the number of partitions of an n-set with exactly ki blocks of size i. In the
previous example, we set yi = y for all y. Other results are possible, particularly
when one is interested in residue classes modulo m. Some illustrative examples
follow.

Let K ⊂ {0, 1, . . . ,m− 1} and set yi = 1 when i modulo m is in K and 0 oth-
erwise. Since ex− 1 is H-admissible, g(x) = f(x,y) is admissible by Theorem 5(a).
The coefficient of xn/n! is the number of set partitions of a n-set with block sizes
congruent modulo m to elements in K.

Suppose, instead, we set yi = y when i modulo m is in K and 0 otherwise.
Then Theorem 5(b) applies and the coefficient of xnyk/n! in g(x,y) is the number
of partitions of an n-set with exactly k blocks all of whose sizes are congruent
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modulo m to elements in K. Asymptotic normality follows as it did for the Stirling
numbers and the mean and variance are asymptotically the same as we found there.

If all but a finite number of yi = 0 and the rest are equal to y, f(x,y) is the
exponential of a polynomial and admissibility follows by the methods in [2] unless
the polynomial is a monomial.

Not every choice of which yi are zero leads to an admissible function. For
example, it can be shown that f(x) = exp {

∑
xnk/(nk)!} is not admissible if the nk

grow sufficiently rapidly since f(reiθ)/f(r) is not sufficiently small when r is near
nk and θ is a multiple of 2π/nk.

From (14),
[
xnykee y

ko
o /n!

](
exp
{
ye(coshx− 1)

}
exp
{
yo sinhx

})
is the number

of partitions of an n-set that have ke blocks of even size and ko blocks of odd size.
By Theorem 5(b), f(x, ye) = exp

{
ye(coshx− 1)

}
and g(x, yo) = exp

{
yo sinhx

}
are

super-admissible and

Rf = Rg =
{

(r, s)
∣∣∣ R0 < r and e(δ−1)r < s < er/δ

}
Θf = Θg =

{
0
∣∣∣ |θk| < (e−r/s))1/3+ε

}
Bf(r, se) = se

(
r2 cosh r + r sinh r r sinh r

r sinh r cosh r − 1

)
Bg(r, so) = so

(
r2 sinh r + r cosh r r cosh r

r cosh r sinh r

)
.

(15)

Hence
|Bf | = s2

er(sinh r − r)(cosh r − 1) ∼ s2
ere

2r/4

and
|Bg| = s2

or(sinh r cosh r − r) ∼ s2
ore

2r/4.

We now apply Theorem 2. Since

Bf +Bg =

 r(rse + so) cosh r+ r(rso + se) sinh r rse sinh r rso cosh r
rse sinh r se(cosh r − 1) 0
rso cosh r 0 so sinh r

 ,

we have

|Bf +Bg| = rseso(cosh r − 1)
(
se sinh r(sinh r − r) + so(cosh r sinh r − r)

)
∼ seso(se + so)re3r/8.

It follows that fg is super-admissible in

R =
{

(r, se, so)
∣∣∣ R0 < r and e(δ−1)r < se, so < er/δ

}
with angles

Θ(r, se, so) =
{

0
∣∣∣ |θk| < (e−r/max(se, so)))1/3+ε

}
.
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Consequently we obtain asymptotics for the coefficients provided ke logn/n and
ko logn/n are bounded away from 0 and ∞.

Suppose we want to count partitions by the number of non-singleton blocks.
The generating function is f(x, y)g(x) where

f(x, y) = exp
{
y(ex − x− 1)

}
and g(x) = ex.

Apply Theorem 5(b) without multisection to show that f is super-admissible with
angles

Θ(r, s) =
{

0
∣∣∣ |θk| < (e−r/s)1/3+ε

}
.

Now apply Theorem 3. The conditions on g are easily checked. In particular, one
must verify (6) for |θ| < e−δr. In this range

exp
{
reiθ

}
= exp

{
r
(
1 +O(θ)

)}
∼ er.

Unfortunately, the theorems do not allow us to do the complementary problem—
count partitions by number of singleton blocks using the generating function
exy exp {ex − 1− x}.

Fix integers k and m. Let an,j be the number of partitions of an n-set into
j blocks such that the total number of elements in blocks of odd cardinality is
congruent to k modulo m. The generating function is fh where

f(x, y) = exp {y(coshx− 1)} , g(x, y) = exp {y sinhx} ,

and h(x, y) is the sum of those terms in g for which the power of x modulo m is
k. By Theorem 5, f and g are super-admissible with the R, Θ and B given by
(15). By Theorem 4 with Λ = m�×�, h is super-admissible. By Theorem 2, fh is
super-admissible and, furthermore, we may take R and B to be as in Example 1.
It follows that asymptotics are obtainable for a(n, j) whenever (13) holds.

Example 3 (Decompositions of Vector Spaces). Let Dn,k(q) be the number of
decompositions of an n-dimensional vector space over GF(q) as a direct sum of k
nonzero subspaces where the order of the subspaces is irrelevant. It follows from
Example 11 of Bender and Goldman [1] that

h(x, y) = 1 +
∞∑
n=1

n∑
k=1

Dn,k(q)xnyk

cn
= eyf(x) where f(x) =

∞∑
n=1

xn

cn
(16)

and cn = (qn−1) · · · (qn−qn−1). Let Ci stand for some positive constant. We apply
Theorem 7 without multisection. Note that cn ∼ Qqn

2
where Q =

∏
(1−q−k). The

largest term in f(r) is near the solution ν of r = q2ν . If m = ν ± t is a positive
integer, then a simple calculation shows that

C1q
−t2 <

rm/cm
rν/Qqν2 < C2q

−t2 .
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Thus Theorem 7 applies. We obtain n/k ∼ ν = (logq r)/2. Since C3qν
2
<

f(r) < C4qν
2

and the theorem requires f(r)δ < sf(r) < f(r)1/δ, it follows that
ε(log n)1/2 < ν < (logn)1/2/ε. Thus asymptotics are obtained when k(log n)1/2/n
is bounded away from 0 and ∞.

By solving (n, k∗) = a(r, 1) = (rf ′(r), f(r)) for r and k∗, the asymptotic for-
mula gives us a local limit theorem for Dn,k(q) as n → ∞. We now study the
asymptotic mean and variance. Define ν and δ as functions of r by

ν =
[
(logq r)/2

]
= (logq r)/2− δ.

Using ν →∞, (10), (11), and (8), we have

f(r) ∼ 1
Q

∞∑
t=−∞

rν+t

q(ν+t)2
=
qν

2+2δν

Q

∞∑
t=−∞

1
qt2−2δt

rf ′(r) ∼ νqν
2+2δν

Q

∞∑
t=−∞

1
qt2−2δt

∼ νf(r)

r(rf ′(r))′ ∼ ν2qν
2+2δν

Q

∞∑
t=−∞

1
qt2−2δt

∼ ν2f(r)

|B(r, 1)| ∼ q2ν2+4δν

2Q2

∞∑
t,u=−∞

(t− u)2

qt2+u2−2δ(t+u)
∼ q2ν2+4δν(S2S0 − S2

1)
Q2

,

where

Sk = Sk(δ, q) =
∞∑

t=−∞

tk

qt2−2δt
.

From n = r′f(r) we have logq n ∼ ν2 and so ν ∼
√

logq n. Thus the mean k∗ is
asymptotic to n/

√
logq n. Since the variance is given by |B|/B1,1, we have

variance ∼ C(δ, q)n
(logq n)3/2

where C(δ, q) =
S2S0 − S2

1

S2
0

.

To evaluate the sums C(δ, q), one needs to know δ and this depends on more detailed
knowledge of ν and r than we have obtained. However, we can say something about
it:
• We have C(δ + 1, q) = C(δ, q) = C(−δ, q) from which it follows that C(δ, q) is

determined by its values on 0 ≤ δ ≤ 1/2.
• By using the t = 0 and ±1 terms in Sk we find that,

for fixed δ and q →∞, C(δ, q) ∼


2/q, if δ = 0
1/q1−2δ, if 0 < δ < 1/2
1/4, if δ = 1/2.
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• Since r ∼ q2ν and n = rf ′(r), which is between Cνqν
2

and C′νqν
2
, we have

r ∼ exp
{

2 log q
√

logq n
}

. Hence, as n→∞, C(δ(n), q) approaches a periodic

function of exp
{

2 log q
√

logq n
}

. Since the period of δ as a function of r is 1,
its period in terms of n is about

n
√

logq n exp
{
−2 log q

√
logq n

}
.

If we use the Eulerian generating function with cn = (qn−1) · · · (q−1) in (16),
we obtain similar results with q replaced by q1/2 and Dn,k(q) counts direct sum
decompositions into orthogonal subspaces.

Example 4 (Tagged Permutations). A tagged permutation is a permutation writ-
ten in one-line form together with a distinguished increasing subsequence. Following
Flajolet and Sedgewick [4], the generating function is given by

h(x, y) =
1

1− x exp
{

xy

1− x

}
,

where the exponential variable x keeps track of permutation length and the ordinary
variable y keeps track of distinguished subsequence length. Lifschitz and Pittel [11]
and Flajolet and Sedgewick [4] obtained asymptotics for the coefficients of h(x, 1)
using real and complex analysis, respectively. Using Theorem 6(b) with f(x) = x

1−x

and C(r) = 1, we see that f(x, y) = exp
{

xy
1−x

}
is super-admissible. One easily

computes

af (r, s) = s

(
r

(1−r)2
r

1−r

)
, Bf (r, s) = s

( r(1+r
(1−r)3

r
(1−r)2

r
(1−r)2

r
1−r

)
,

and |Bf (r, s)| = r3s2

(1−r)4 .
We now apply Theorem 3 with g(x, y) = 1

1−x to conclude that h(x, y) is super-
admissible. Only (6) requires any effort. For (θ, ϕ) ∈ Θf (r, s), where Θf is given
by Theorem 6(b), we have

log(1− reiθ) = log(1− r) +O(θ/(1− r)) = log(1− r) +O

((
1−r
s

)1/3+ε
)
.

Using the definition or R in Theorem 6 and the above formula for |Bf (r, s)|, one
easily verifies that the big-oh is ou(1).

Let t(n, k) be the number of n-long tagged permutations with tags of length
k. It follows from the above work that t(n, k) is asymptotically normal as n→∞,
with mean and variance asymptotic to

√
n and

√
n/2, respectively. It also follows

from the formula for R that asymptotics can be obtained for tagged permutations
whenever (1−r)1−δ < s < (1−r)−1/δ. Since k ∼ s

1−r and n ∼ s
(1−r)2 , some algebra
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shows that we can obtain asymptotics whenever nδ/(1+δ) < k < n(1+δ)/(1+2δ); that
is, we can obtain asymptotics for t(n, k) as n → ∞ provided nε < k < n1−ε for
some ε > 0.

Example 5 (Covering Complete Graphs). A cover of the complete graph with
graphs of some specified type is simply the number of sets of graphs of that type
such that the total number of vertices is n. The exponential formula f(x, y) =
eyg(x) applies, where g(x) is the exponential generating function for graphs of the
desired type. Here are some examples taken from problems 3.3.5–7 in Goulden and
Jackson’s text [8, p. 187].
• The generating function for coverings with complete graphs is exp

{
y(ex− 1)

}
,

which was studied in Example 1.
• The generating function for coverings with complete bipartite graphs having

at least one vertex in each part of the bipartition is exp
{
y(ex − 1)2/2

}
and

Theorem 5(b) applies.
• The generating function for coverings with star graphs is exp

{
y(xex − x2/2)

}
and Theorem 5(b) applies. (A star graph on k ≥ 1 vertices is a tree consisting
of one vertex of degree k−1 to which the remaining k−1 vertices are attached.)

• The generating function for coverings with paths is exp
{
yx(2−x)
2(1−x)

}
and Theo-

rem 6(b) applies.

5. Proofs of Theorems

Throughout the proofs, ε and C stand for positive constants, not necessarily the
same at each occurrence. The value of ε is intended to be small whereas C need not
be. References to results in [10] have an H prefixed as in Theorem H.II.

Proof (of Theorem 1): We follow essentially the same argument as in [10] and [2].
With f(x) =

∑
anxn and d the dimension of x, we have

anrn =
1

(2π)d

∫
· · ·
∫

[−π,π]d

f(rei0) exp {−in′0} d0 .

Suppose that an 6= 0. Let u ∈ Λ∗f . The integrand is invariant when 0 is replaced by
0 + 2πu because u′(m− n) is an integer whenever am 6= 0. It follows that we can
restrict the integral to Φ(f) and multiply the result by (2π)d/vol(Φ(f)) = d(Λf ).

Let Θ∗(r) be the largest set of 0 such that c0 ∈ Θ(r) when 0 < c < 1. Note
the following:
• The interior of Θ∗(r) is contained in Θ(r).
• exp {−0′B0/2} = ou(1)/|B(r)|1/2 on the boundary of Θ∗(r) because no points

on the boundary of Θ∗(r) are in Θ(r).
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• For every 0 , there is an ε(r) such that ε0 ∈ Θ∗(r) because the origin is in the
interior of Θ(r).

Since B is positive definite, replacing 0 by c0 with c > 1 increases 0 ′B0 and so

exp {−0 ′B0/2} = ou(1)/|B(r)|1/2 for all 0 6∈ Θ∗(r). (17)

It follows that

anrn =
d(Λf )
(2π)d

∫
· · ·
∫

Θ∗(r)

f(rei0) exp {−in′0} d0 +
ou(f(r))
|B(r)|1/2

.

Using (1) for 0 ∈ Θ∗(r) gives us

f(rei0) exp {−in′0} = f(r)
(
1 + ou

(
1)
)

exp
{
iv′0 − 0′B(r)0/2

}
.

Since B is positive definite, we can write B = S′S for some real d × d matrix S.
With y = S0 and w2 = w′w,

iv′0 − 0 ′B0/2 = iv′S−1y− y2/2

= −
(
(S′)−1v

)2
/2−

(
y− i(S′)−1v

)2
/2

= −v′B−1v/2−
(
y− i(S′)−1v

)2
/2.

Hence ∫
· · ·
∫

Θ∗

exp {iv′0 − 0 ′B(r)0/2} d0

=
exp
{
−v′B(r)−1v/2

}
|B(r)|1/2

∫
· · ·
∫

SΘ∗

exp
{
−
(
y− i(S′)−1v

)2
/2
}
dy

=
exp
{
−v′B(r)−1v/2

}
|B(r)|1/2

∫
· · ·
∫

�d

exp
{
−
(
y− i(S′)−1v

)2
/2
}
dy

+
O(1) exp

{
−v′B(r)−1v/2

}
|B(r)|1/2

∫
· · ·
∫

T

exp
{
−x2/2

}
dx,

where, by (17), T is a set of x ∈ �d for which exp
{
−x2/2

}
= ou(1)/|B|1/2. It

follows that the integral over T is ou(1). The integral over �d is the product of d
integrals of the form ∫ ∞

−∞
exp

{
−(y − ic)2/2

}
dy

and so equals (2π)d/2.
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Proof (of Theorem 2): Let h = fg. As already described before Theorem 2, we
can extend the R, Θ, a and B values for f and g to include all the variables in h.
We can expand Λ as well by adding components which equal 0 to the vectors in Λ.
Then Λ∗ will no longer be a lattice—the corresponding components of vectors there
can be any real numbers since a real number times 0 is 0.

For the function h, we must verify (a)–(d) and (3) in the definition of super-
admissibility in Section 2. Property (a) is immediate.

We now prove (b). Since v′Bhv = v′Bfv + v′Bgv and since each summand is
nonnegative by the positive semidefiniteness of the extended Bf and Bg , it follows
that Bh is positive semidefinite. Suppose that v′Bhv = 0. Then v′Bfv = 0 and
v′Bgv = 0. Since the original Bf is positive definite, the components of v associated
with the variables of f must be 0. Similarly, the components of v associated with
the variables of g must be 0. Hence v = 0 and so Bh is positive definite.

Using (5) and Θh = Θf ∩Θg , we obtain (c) and (d).
Before proving (3), we prove the claim concerning Λh. Clearly Λh ⊆ Λf + Λg,

but equality may fail due to cancellation of terms when computing fg. Note that

(Λf + Λg)∗ = Λ∗f ∩ Λ∗g

and the operator ∗ reverses inclusion. Hence it suffices to prove that Λ∗h ⊆ Λ∗f ∩Λ∗g.
Suppose to the contrary that v ∈ Λ∗h and v 6∈ Λ∗f ∩Λ∗g, say v 6∈ Λ∗f . We may choose
r so that |Bh| is as large as we wish and hence also |Bf | by (5). From (c) in the
definition of admissibility, it follows that Θf+v will be disjoint from Θf+Λ∗f and so,
by (3) for f and (5), we have f(re2πiv) = ou(f(r)). Since v ∈ Λ∗h, h(re2πiv) = h(r),
we have the contradiction

f(r)g(r) = h(r) = h(re2πiv) = f(re2πiv)g(re2πiv) = ou(1)f(r)g(r).

This proves Λh = Λf + Λg and also

Λ∗h = Λ∗f ∩ Λ∗g. (18)

We now turn to (3). Since Λ∗f + Λ∗g is a lattice, it follows that, whenever the
diameters of Θf (r) and Θg(r) are sufficiently small,(

Θf (r)+2πΛ∗f
)
∩
(

Θg(r)+2πΛ∗g
)

=
(

Θf (r)∩Θg(r)
)

+2π
(

Λ∗f∩Λ∗g
)

= Θh(r)+2πΛ∗h,

by (18) and the definition of Θh. Consequently, when min(|Bf (r)|, |Bg(r)|) is suf-
ficiently small and 0 is in the complement of Θh(r) relative to Φ(h), (3) must hold
for at least one of f and g. This implies (3) for h.

Proof (of Theorem 3): Since Λg ⊆ Λf , it follows that Λfg = Λf . The remainder
of the proof is straightforward and will be omitted.

Proof (of Theorem 4): By multidimensional multisection of series,

g(x) =
1

d(Λ)

∑
v∈Λ∗/�d

f(xe2πiv)e−2πiv′k,
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where the sum makes sense since e−2πiv′k and the vector e2πiv are constant on a
coset of Λ∗/�d. Noting that, when an 6= 0, the value of e2πiv′(n−k) is constant on a
coset of Λ∗/Λ∗f , we have

g(x) =
1

d(Λ)

∑
v∈Λ∗/Λ∗

f

f(xe2πiv)e−2πiv′k.

When the diameter of Θf (r) is sufficiently small it follows that, for arg(x) ∈ Θf (r),
only the v = 0+Λ∗f term is large. Let Φ(g) be a fundamental region for Λ∗ contained
in Φ(f). If arg(x) is in the complement of Θf (r) in Φ(g), then none of arg(x)+2πv
is in Θf (r) + Φ(f). Hence g(x) is small in this case.

The following two lemmas lay the foundation for proving Theorem 5.

Lemma 1. In the notation of Theorem 5 with F = ef and G = eg, we have
g(r) ∼ λf(r),

aG(r) = rg′(r) ∼ λrf ′(r) = λaF (r) = ou(g(r)1+ε),
BG(r) = r(rg′(r))′ ∼ λr(rf ′(r))′ = λBF (r) = ou(g(r)1+ε),
g(reiθ) = g(r) + iθaG(r)− θ2BG(r)/2 + ou(θ3g(r)1+ε) (19)

for all ε > 0.

Proof: Using the asymptotic formula for the coefficients of admissible functions
and an argument like that in Hayman’s proof of Theorem H.II, the results for a
and B follow in a straightforward manner. The last equation follows from Taylor’s
Theorem with remainder:

H(θ) = H(0) +H′(0)θ +H′′(0)θ2/2 +
∫ θ

0

(t− θ)2H ′′′(t) dt/2

with H(θ) = g(reiθ) and the observation that for r sufficently near R,

|H′′′(θ)| ≤ H′′′(0) = O(r3f ′′′(r)) = O(f(r)1+ε),

where we used Theorem H.III for growth of derivatives.

Lemma 2. Suppose f is H-admissible in |x| < R, g is given by (7), and C is a
compact subset of (0,∞). Then there is an R1 < R depending on f , C, and ε such
that:
(a) When d is as in Theorem 5(a),

<
(
g(reiθ)

)
≤ g(r)− g(r)1−2c−ε

whenever R1 < r < R, c ∈ C, and g(r)−c ≤ |θ| ≤ π/d.



��� ��������	� 
������ � ����	�����	�� � ������� ���� ��

(b) When d is as in Theorem 5(b),∣∣g(reiθ)| ≤ g(r)− g(r)1−2c−ε

whenever R1 < r < R, c ∈ C, and g(r)−c ≤ |θ| ≤ π/d.

Proof: To prove the existence of R1, it suffices to consider a fixed c ∈ C since
compactness of C allows us to take the maximum R1.

Let x = reiθ. We assume that r is sufficiently near R for various asymptotic
estimates given below. By H-admissibility, the coefficients of all sufficiently high
powers of x in f(x) are nonzero and af (r) →∞ as r → R. Let r be so close to R
that all coefficients of f(x) with n ≥ af (r) are nonzero. Let t be the least integer
such that mt ≥ af (r) and define αk = amt+kxmt+k. By H-admissibility, we have

|αk| ∼ f(r)/
√

2πbf (r).

Hayman proves that b(r) = o(a(r)2) = o(f(r)ε) for admissible functions. Using
Lemma 1, it follows that mt = o(g(r)ε) and |αk| > Cg(r)1−ε. Let θk be (mt+ k)θ
reduced modulo 2π so that |θk| ≤ π. Then

|αk| − <αk = (1− cos θk)|αk| > Cg(r)1−εθ2
k.

It suffices to show that there is some k for which λk 6= 0 and |θk| ≥ g(r)−c−ε.
Suppose there is no such k. By the gcd condition, there are integers µ and µk

for 0 ≤ k < m such that µk = 0 when λk = 0 and

d = µm+
∑
k

µkk.

Let j be such that λj 6= 0 and define

ϕ = µ(θm+j − θj) +
m−1∑
k=0

µkθk.

Since |θk| = O(g(r)−c−ε), we have |ϕ| = O(g(r)−c−ε). Modulo 2π,

ϕ ≡ µ(mθ) +
m−1∑
k=0

µk(mt+k)θ ≡ dθ+
(
t

m−1∑
k=0

µk

)
mθ ≡ dθ+

(
t

m−1∑
k=0

µk

)
(θm+j− θj)

and so

dθ ≡ ϕ−
(
t
m−1∑
k=0

µk

)
(θm+j − θj) (mod 2π).

Since t = o(g(r)ε), the right side of this congruence is O(g(r)−c−ε). Hence θ dif-
fers from a multiple of 2π/d by O(g(r)−c−ε), a contradiction to the assumption
g(r)−c ≤ |θ| ≤ π/d. This proves (a).
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The proof of (b) is similar to that for (a) except that we now want to estimate

δ = |ciαi|+ |ckαk| − |ciαi + ckαk|.

For two complex numbers z and w with β = arg(zw), we have

(|z|+ |w|)2 − |z + w|2 = 2|zw| cosβ

whence
|z|+ |w| − |z + w| = 2|zw| cosβ

|z|+ |w|+ |z + w| ≥
|zw| cosβ
|z|+ |w| .

Hence
δ ≥ C cos

(
(i− k)θ

)
g(r)1−ε.

The remainder of the proof is nearly the same as that for (a), with (i− k)θ modulo
2π in place of θk.

Proof (of Theorem 5): We begin by deriving the description of Λh. Let S be the set
of indices n for which xn has a nonzero coefficient in g(x). Since f is admissible, its
coefficients are positive for all sufficiently large indices. Hence, for some sufficiently
large J , {

k + jm
∣∣ k ∈ K, j ≥ J

}
⊆ S ⊆

{
k + jm

∣∣ k ∈ K, j ≥ 0
}
. (20)

The powers of h(x) with nonzero coefficients are precisely those which are sums of
elements of S. From this and (20), the proof that Λh = �(d) is now straightforward.
The powers of h(x, y) which have nonzero coefficients are precisely those of the form
(n, j) where n is the sum of j elements of S. This can be rewritten as j(k, 1)+(n∗, 0)
where k ∈ S and n∗ is a sum j numbers of the form s− k where s ∈ S. From this
and (20), the formula for Λh is straightforward.

To prove Theorem 5(a), one need only follow Hayman’s proof of Theorem H.VI
with his use of Lemmas H.5 and H.6 replaced by our (19) and Lemma 2(a), respec-
tively.

We now prove Theorem 5(b). Let x = reiθ, let y = seiϕ, and let R be the
radius of convergence of g.

One easily computes a and B in terms of g and its derivatives and then applies
Lemma 1 to obtain the asymptotics in the theorem. With g(x) =

∑
cnxn, one has

2|B(r, s)|/s2 = 2r(rg′(r))′g(r)− 2(rg′(r))2

=
∞∑

n,k=0

n2cnckr
n+k +

∞∑
n,k=0

cnk
2ckr

n+k − 2
∞∑

n,k=0

ncnkckr
n+k

=
∞∑

n,k=0

(n− k)2cnckr
n+k.

This proves (8).
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Since B has positive diagonal entries, it will be positive definite if |B| > 0,
which is the case for all r < R if cn ≥ 0 for all n; however, a finite number of
coefficients of the H-admissible function f may be negative. Let g∗ be g with these
negative terms removed. The previous argument shows that

2|B∗(r, s)|/s2 =
∞∑

n,k=0

(n− k)2c∗nc
∗
kr
n+k

≥
∞∑

n,k=0

c∗nc
∗
kr
n+k −

∞∑
n=0

(c∗nr
n)2

≥ g∗(r)2 − sup
n

(c∗nrn)g∗(r) = g∗(r)2 −O(g∗(r)/bf (r)1/2)g∗(r)

= g∗(r)2(1 + o(1)) as r → R.

Since the entries in B(r, s)/s and B∗(r, s)/s differ by at most a polynomial in r, the
determinants differ by at most a polynomial in r times the largest entry in B(r, s)/s.
Since f is H-admissible, Lemma H.2 and Theorem H.III tell us that this difference
is O(f(r)1+ε). Since |B∗| grows like g(r)2s2 and R requires that s > g(r)δ−1, it
follows that r → R and |B(r, s)| → ∞ are uniformly the same condition in R. We
also have |B(r, s))| > 0 provided r is sufficiently close to R; that is, R0 < r < R for
some R0.

By Lemma 1,

g(x) = g(r)
(

1 + iα(r)θ − β(r)θ2/2 +O(g(r)εθ3)
)

where α(r) = aG(r)/g(r) and β(r) = BG(r)/g(r). Hence

yg(x) = sg(r)
(

cosϕ+ i(α(r)θ + sinϕ)− β(r)θ2(cosϕ)/2 +O(g(r)εθ3)
)

(21)

= sg(r)
(
1 + ia′0 − 0 ′B0

)
+ sg(r)1+ε

3∑
k=0

O
(
ϕ3−kθk

)
(22)

where 0 = (θ, ϕ) and ε is any positive number. Let η be a small positive number.
When

|θ| ≤ (1/sg(r))2η+1/3 and |ϕ| ≤ (1/sg(r))2η+1/3,

(22) establishes (1). When

|θ| ≤ (1/sg(r))η+1/3 and |ϕ| ≥ (1/sg(r))2η+1/3,

α(r)θ = o(ϕ) and so (21) gives us

|yg(x)| < sg(r)
(
1− Cϕ2) ≤ sg(r)−C(sg(r))1/3−4η

for r sufficiently near R, the radius of convergence of g. This establishes (3) in that
range of 0 .
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We finish establishing the asymptotic requirements on exp
{
yg(x)

}
by proving

(3) for |θ| ≥ (1/sg(r))η+1/3. Let λ = λ(r) = log s/ log f(r). We are given δ − 1 ≤
λ ≤ 1/δ. Let c = 2(λ+ 1)/5 and note that

g(r)c = g(r)2(λ+1)/5 = (sg(r))2/5 > (sg(r))η+1/3.

Apply Lemma 2(b) to obtain

|yf(x)| ≤ |y|
(
g(r)− g(r)1−2c−ε

)
= sg(r)− sg(r)(g(r))−2c−ε

= sg(r)− (sg(r))1/5g(r)−ε.

Since ε is arbitrarily small and sg(r) > g(r)δ, condition (3) follows.

Proof (of Theorem 6): This proof uses ideas from the proofs of Theorems 5
and H.XII. All conditions in the definition of super-admissibility are easily estab-
lished except for (1) and (3). By (H.17.2), when |θ| < β(1−r)

16r ,

g(reiθ) = g(r) + iθaf (r)− θ2Bf (r)/2 + E(r, θ) (23)

where |E(r, θ)| < A(α, β)|θ|3g(r)(1 − r)−3 for some function A(α, β). From this,
one easily establishes (1) as in the proof of Theorem 5.

The proof of (3) for small θ and large ϕ is similar to the proof in Theorem 5.
The following discussion is intended for part (b) of the theorem. Setting s = 1

allows one to prove part (a).
Suppose (1− r)/(sg(r))1/3+ε < |θ| < η(1 − r) for some small η to be specified

later. Let ρ = θ/(1− r). Hayman shows that

af (r)
g(r)

∼ α

1− r and
Bf (r)
g(r)

∼ α(α+ 1)
(1− r)2

From (23), ∣∣∣∣g(reiθ)g(r)

∣∣∣∣2 =
∣∣∣1− iθaf/g − θ2Bf/2g +O(ρ3)

∣∣∣2
=
(

1− θ2Bf/2g +O(ρ3)
)2

+
(
θaf/g +O(ρ3)

)2

= 1− αρ2(1 + o(1)) +O(ρ3).

It follows that with η (and hence ρ) sufficiently small we have∣∣∣∣g(reiθ)g(r)

∣∣∣∣2 < 1− αρ2/2.

Since ρ ≥ (1/sg(r))1/3+ε, it follows that∣∣sg(reiθ)∣∣ < |sg(r)| − |sg(r)|1/3−ε.
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Next suppose that η(1−r) ≤ |θ| ≤ β(1−r). Hayman proves that
∣∣g(reiθ)/g(r)

∣∣
is bounded above by a constant which is strictly less than 1 and so

∣∣g(reiθ)
∣∣ ≤

g(r)− εg(r).
For β(1− r) < |θ| ≤ π/m, apply the previous paragraph and (9).

Proof (of Theorem 7): To prevent complexity of argument from obscuring the
underlying ideas, we give a proof without multisection of f ; that is, we assume
g(x) = f(x). The proof can be adapted for multisection by following the proof of
Theorem 5.

As can be seen from the proof of Theorem 5, it suffices to establish
• some estimates of rkf (k)(r) for k = 1, 2,
• Lemma 2 for dealing with angles outside Θ, and
• Equation (19) for dealing with angles in Θ.

Using (10), one easily has that rkf(k)(r) = O(νkf(r)), which is o(f(r)1+ε) since we
are given ν = o(f(r)ε) for all ε > 0.

Lemma 2 is easily established using (11).
We now prove (19). Let F = ef , let H(r, θ) = f(r)+ iθaF (r)− θ2BF (r)/2, and

let t be an integer to be specified later. By (10), we have

f(reiθ) =
∑
|k|<t

aν+kr
ν+keiθ(ν+k) +O

(
aνr

ν
∑
k≥t

ρk
)

=
∑
|k|<t

aν+kr
ν+k
(

1 + iθ(ν + k)− θ2(ν + k)2/2 +O(θ3(ν + k)3)
)

+O(f(r)ρt)

= H(r, θ) +
∑
|k|≥t

O(f(r)ρk)
(

1 + |θ|(ν + k) + θ2(ν + k)2
)

+O

(
aνr

νθ3
∑
k

(ν + k)3ρk
)

+O
(
f(r)ρt

)
= H(r, θ) +

2∑
j=0

O
(
f(r)θj(ν + t)jρt

)
+O(f(r)θ3ν3) +O

(
f(r)ρt

)
= H(r, θ) +O

(
f(r)ρt

)
+O

(
f(r)θ3(ν + t)3ρt

)
+O

(
f(r)θ3ν3

)
.

Using the assumption that ν = o(f(r)ε) for all ε > 0 and setting t = log(f(r))/ε| log ρ|,
(19) follows.
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