
A Plethysm Formula for pµ(x) ◦ hλ(x)

William F. Doran IV

Department of Mathematics
California Institute of Technology

Pasadena, CA 91125

doran@cco.caltech.edu
Submitted: September 10, 1996; Accepted: May 2, 1997

Abstract
This paper gives a new formula for the plethysm of

power-sum symmetric functions and complete symmet-
ric functions. The form of the main result is that for
µ ` b and λ ` a with length t, then

pµ(x) ◦ hλ(x) =
∑
T

ωmajµt (T )ssh(T )(x)

where the sum is over semistandard tableaux of weight
λb1λ

b
2 . . . λ

b
t and ωmajµt (T ) is a root of unity which de-

pends on µ, t, and T .

1. Introduction

This paper gives a formula for the plethysm of power-sum symmetric functions
and complete symmetric functions. In Section 1, some tableaux and symmetric
function notation is given. In Section 2, the work of [D] is reviewed. The key result
in this section is that for µ ` b,

pµ(x) ◦ ha(x) =
∑
T

ωmajµ(T )ssh(T )(x)

where the sum is over all semistandard tableaux T of weight ab and ωmajµ(T ) is a
root of unity which depends on T and µ. In Section 3, a technical result which is
needed later is proven. In Section 4, the main result of the paper is proven. The
form of this result is that for µ ` b and λ ` a with length t

pµ(x) ◦ hλ(x) =
∑
T

ωmajµt (T )ssh(T )(x)

where the sum is over semistandard tableaux T of weight λb1λ
b
2 . . . λ

b
t and ωmajµt (T )

is a root of unity which depends on µ, t, and T .
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1.1 Tableaux
A partition of n is a weakly decreasing sequence λ = (λ1 ≥ · · · ≥ λl) of positive

integers which sum to n. Either |λ| = n or λ ` n is used to denote that λ is
a partition of n. The value l is called the length of λ and is denoted l(λ). Let
[λ] = {(i, j): 1 ≤ i ≤ l(λ) and 1 ≤ j ≤ λi} ⊂ Z2. The set [λ] is the Ferrers diagram
of λ and is thought of as a collection of boxes arranged using matrix coordinates.

A composition of n is a sequence α = (α1, . . . , αl) of positive integers which
sum to n. For notational purposes, let ab11 a

b2
2 . . . abll denote the composition

(a1, . . . , a1︸ ︷︷ ︸
b1 times

, a2, . . . , a2︸ ︷︷ ︸
b2 times

, . . . , al, . . . , al︸ ︷︷ ︸
bl times

).

Also, given a composition α = (α1, . . . , αl), let αt denote the composition

(α1, . . . , αl, . . . , α1, . . . , αl)

where α is repeated t times.
A tableau of shape λ and weight (or content) α = (α1, . . . , αl) is a filling of the

Ferrers diagram of λ with positive integers such that i appears αi times. A tableau
is semistandard if its entries are weakly increasing from left to right in each row and
strictly increasing down each column. The Kostka number Kλ,µ equals the number
of semistandard tableaux of shape λ and weight µ. If [ν] ⊆ [λ], let [λ/ν] denote the
skew-shape [λ] \ [ν]. A filling of [λ/ν] with αi i’s is a skew-tableau of shape λ/ν and
weight α. A semistandard skew-tableau is defined similarly.

1.2 Symmetric Functions
The symmetric function notation in this papers closely follows that of Chap-

ter 1 in Macdonald [M]. Let Λ denote the ring of symmetric functions with rational
coefficients in the variables {x1, x2, . . . }. Let sλ(x), pλ(x), and hλ(x) denote the
Schur symmetric functions, power-sum symmetric functions, and complete symmet-
ric functions respectively. The ring Λ has a bilinear, symmetric, positive definite
scalar product given by 〈sλ, sµ〉 = δλ,µ.

When two Schur symmetric functions are multiplied together and expanded in
terms of Schur symmetric functions,

sµ(x)sν(x) =
∑

λ`|µ|+|ν|
cλµ,νsλ(x),

the resulting multiplication coefficients cλµ,ν are nonnegative integers. These coeffi-
cients are called Littlewood-Richardson coe�cients. See either Section I.9 of [M]or
Section 4.9 of [S]for details.
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Let f(x) and g(x) be symmetric functions. The plethysm of f(x) and g(x) is
denoted f(x) ◦ g(x). A definition of plethysm is given in Section I.8 of [M]. The
plethysm results in this paper use a plethysm formula in [D]which is recalled in
Section 2. Plethysm has the property of being algebraic in the first coordinate.

Proposition 1.1. For all symmetric functions f1(x), f2(x), and g(x) the following

two identities hold.

(a) (f1(x) + f2(x)) ◦ g(x) = (f1(x) ◦ g(x)) + (f2(x) ◦ g(x)).

(b) (f1(x)f2(x)) ◦ g(x) = (f1(x) ◦ g(x))(f2(x) ◦ g(x)).

While plethysm is not in general symmetric, the following is true.

Proposition 1.2. For any symmetric function f(x) and positive integer n, pn(x)◦
f(x) = f(x) ◦ pn(x).

Proofs of these propositions are given in Section I.8 of [M].

2. Formula for pµ(x) ◦ ha(x)

This section reviews some results in [D].

Definition: Given a semistandard tableau or semistandard skew-tableau T , i is a
descent with multiplicity k if there exists k disjoint pairs {(x1, y1), . . . , (xk, yk)} of
boxes in the Ferrers diagram of T such that the entry in each xj is i, the entry in
each yj is i + 1, yj is in a lower row than xj for all j, and there does not exist a
set of k + 1 pairs of boxes which satisfy these conditions. Let mi(T ) denote the
multiplicity of i as a descent in T . Finally, the Major index of T , denoted maj(T ),
is sum of the descents with multiplicity. That is, maj(T ) =

∑
imi(T ).

Given a semistandard tableau T whose weight has length b and a composition
α = (α1, . . . , αl) of b, decompose T into a sequence of semistandard skew-tableaux
(T1, . . . , Tl) by letting the shape of T1 be those positions in T which contain 1
through α1, T2 be those positions in T which contain α1 + 1 through α2, and so on.
The actual entries in Ti are the entries of T but reindexed so they run from 1 to αi.

Definition: Following the notation of the previous paragraph, define the root of
unity

ωmajα(T ) =
l∏
i=1

ωmaj(Ti)
αi

where the ωk = e2πi/k.
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Example 1: Consider

T =
1 1 1 2 3
2 2 2 3 4
3 4 5

.

T is a semistandard tableau of shape (5, 5, 3) and weight (3, 4, 3, 2, 1). The descent
multiplicities are m1(T ) = 3, m2(T ) = 2, m3(T ) = 2, m4(T ) = 1. Its Major index
is 17. Take α = (2, 3). Then the decomposition of T is

T1 = 1 1 1 2
2 2 2 and T2 =

1
1 2

1 2 3

The Major indices are maj(T1) = 3 and maj(T2) = 4. Finally, ωmajα(T ) = ω3
2ω

4
3 =

−ω3.

The main result of [D]is the following.

Theorem 2.1. Let µ ` b, then

pµ(x) ◦ ha(x) =
∑

SST T
wt(T )=ab

ωmajµ(T ) ssh(T )(x).

Here is a quick application of this formula. It is a generalization of Example 9(b)
in Section I.8 of [M].

Proposition 2.2. If b is prime power pn, then 〈pb(x) ◦ ha(x), sλ(x)〉 ≡ Kλ,ab

(mod p).

Proof: By Theorem 2.1, 〈pb(x) ◦ha(x), sλ(x)〉 is a sum of Kλ,ab many terms where
each term is a pn-th root of unity.

One last result needed (Theorem 2.1 of [D]). This concerns an algorithm for
selecting the (xj , yj) pairs which contribute to the statistic mi(T ) for a given T .
Here is the algorithm.

Select an ordering σ of the α many boxes which contain an i.
Set j = 0.
For k = 1 to α Do

Let x = σ(k).
If there are any boxes below x which contain i+1 and have not already been
selected as an yj Then

Increment j by 1.
Let xj = x.
Let yj be the right-most of these unselected boxes containing i+ 1.

End If
End Do

Algorithm 1.
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This algorithm clearly works when the ordering σ is to consider the i’s from
right to left in T . The surprising result is that this algorithm works for any choice
of σ.

Theorem 2.3. The above algorithm for determining mi(T ) works for all choices

of the ordering σ of the i’s.

It should be noted that the choice of pairs (xj , yj) may differ based on the choice
of σ, but the number of pairs does not differ.

3. A technical result

Definition: Given a semistandard skew-tableau T , define J(T ) to be the semis-
tandard tableau obtained by the following algorithm, called Jeu de Taquin.

While T has skew-shape Do
Let λ/µ be the shape of T .
Let F be any outer corner of µ.
While F is not an outer corner of λ Do

If value of T to right of F is greater than or equal to the value below F
Swap F with the value below it.

Else
Swap F with the value to its right.

End If
End Do

End Do
Algorithm 2.

Example 2: Let

T =
1 2 3

1 2 2
1 2 3

.

One iteration of the inner loop is

F 1 2 3
1 2 2

1 2 3
,

1 F 2 3
1 2 2

1 2 3
,

1 2 2 3
1 2 F

1 2 3
.

Here are the tableaux after each application of the inner loop along with the choice
of F for the next iteration:

F 1 2 2 3
1 2

1 2 3
,

1 1 2 2 3
F 2 2
1 3

,

F 1 1 2 2 3
1 2 2
3

,
1 1 1 2 2 3
2 2
3

.
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It is clear that J(T ) is semistandard and that wt(J(T )) = wt(T ). However it
is not clear from the definition that this operation is well-defined. The choices for
the initial position of F in each iteration might effect the outcome of the algorithm.
But, it has been shown (see Section 3.9 of [S] for a proof) that for all choices of the
F’s, the resulting J(T ) is the same. The next result gives an important property
of the Jeu de Taquin operation. A proof is given in the proof of Theorem 4.9.4 of [
S].

Lemma 3.1. Given a semistandard tableau Q of shape η, the number of semistan-

dard tableaux T of shape λ/ν such that J(T ) = Q equals the Littlewood-Richardson

coe�cient cλν,η.

Another fact about Jeu-de-Taquin is that preserves descent multiplicities.

Lemma 3.2. Let T be a semistandard tableau whose weight has length b and let

α be a composition of b. Then mi(T ) = mi(J(T )) for all i.

Proof: Suppose T 7→ T ′ in one application of the inner loop of the Jeu de Taquin
algorithm. We want to show that mi(T ) = mi(T ′) for all i. If the swap of this kind

F j
k

→ j F
k

,

where k > j, then since no element has changed which row it occupies, it is clear
that all mi(T ) are unchanged. However, if the swap is of the other kind

F j
k

→ k j
F

where k ≤ j, then there are two possible problems: some (k, k + 1) pairs may have
been created, or some (k − 1, k) pairs may have been destroyed. Either of these
“problems” might alter the value of mk(T ) or mk−1(T ), respectively.

First, we show that any new (k, k + 1) pairs do not effect the value of mk(T ).
Let r be the row containing F in T . So, the possible new (k, k + 1) pairs in T ′ are
from the k which just moved into row r and the k + 1’s in row r + 1. Since T and
T ′ are semistandard, each of these k+ 1 must have a k directly above them in both
T and T ′. The key is apply Theorem 2.3 with the properly chosen ordering σ of
the k’s. The proper choice is to place the k’s in row r which have a k + 1 directly
below them (say from right to left) at the beginning of σ, then fill in all the other
k’s (again say from right to left). Now apply the algorithm to determine mk(T ) and
mk(T ′). In both cases, the first group of k’s in row r with a k + 1 below them get
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matched with the k+ 1 directly below them. Thus, all of the new (k, k+ 1) pairs in
T ′ do effect the outcome of the algorithm since all of the k+ 1’s get selected before
the algorithm can consider using one of these pairs. Therefore, mk(T ) = mk(T ′).

The proof that mk−1(T ) = mk−1(T ′) is similar. The (k − 1, k) pairs that get
destroyed in T ′ are from the k which moved into row r and the k − 1’s in row r.
Since T is semistandard, each of the k − 1’s in row r must have a k directly below
them in both T and T ′. Order the k − 1’s by placing the k − 1’s in row r first and
other k− 1’s later. The algorithm for determining mk−1(T ) and mk−1(T ′) give the
same result.

Finally, these two lemmas are put together to prove a key technical result used
in the next section.

Theorem 3.3. Let |λ/ν| = n, β be a composition of n with l parts, and α be a

composition of l. Then

∑
SSST T

sh(T )=λ/ν,wt(T )=β

ωmajα(T ) =
∑
η`n

cλν,η ∑
SST T

sh(T )=η,wt(T )=β

ωmajα(T )

 .

Proof: By Lemma 3.1, Jeu-de-Taquin provides the bijection between the two sides.
By Lemma 3.2, ωmajα(T ) is preserved under this bijection.

4. Formula for pµ(x) ◦ hλ(x)

Theorem 4.1. Given µ ` b and λ ` a where the length of µ is l and the length

of λ is t, let α = µt and β = λb1λ
b
2 . . . λ

b
t . So, β is a composition of ab with tb parts,

and α is a composition of tb. Then

pµ(x) ◦ hλ(x) =
∑

SST T
wt(T )=β

ωmajα(T )ssh(T )(x).

Proof: Proof by induction on t. The case t = 1 is Theorem 2.1. So assume the
theorem is valid when µ has length less than t. Let λ∗ = (λ1, . . . , λt−1). Now a
computation gives the desired result. Explanations of the steps are given after the
computation.

pµ(x)◦hλ(x) =
∏
i

pµi(x) ◦ hλ(x) (1)
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=
∏
i

hλ(x) ◦ pµi(x) (2)

=
∏
i

(hλ∗(x) ◦ pµi(x)) (hλt(x) ◦ pµi(x)) (3)

=
∏
i

(pµi(x) ◦ hλ∗(x))
∏
i

(pµi(x) ◦ hλt(x)) (4)

=

 ∑
SST T1

wt(T1)=λb1...λ
b
t−1

ωmajµt−1 (T1)ssh(T1)(x)


 ∑

SST T2

wt(T2)=λbt

ωmajµ(T2)ssh(T2)(x)

 (5)

=
∑
ν`ab

sν(x)

 ∑
SST T1

wt(T1)=λb1...λ
b
t−1

ωmajµt−1 (T1)

cνsh(T1),η

∑
SST T2

sh(T2)=η,wt(T2)=λbt

ωmajµ(T2)



 (6)

=
∑
ν`ab

sν(x)

 ∑
SST T1

wt(T1)=λb1...λ
b
t−1

ωmajµt−1 (T1)

∑
SST T2

sh(T2)=ν/sh(T1),wt(T2)=λbt

ωmajµ(T2)


 (7)

=
∑
ν`ab

sν(x)

 ∑
SST T3

sh(T3)=ν,wt(T3)=β

ωmajα(T3)

 (8)

(1) Apply Proposition 1.1(b). (2) Apply Proposition 1.2. (3) Apply Proposi-
tion 1.1(b). (4) Apply Proposition 1.2. (5) Apply the induction hypothesis. (6)
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Multiply the Schur symmetric functions and collect the terms which contribute to
sν(x). (7) Apply Theorem 3.3. (8) Combine T1 and T2 to form T3 by first reindexing
the values in T2 to run from b(λ1+· · ·+λt−1)+1 to b(λ1+· · ·+λt) and then place T1

inside the reindexed T2. Notice that under this bijection ωmajµt−1 (T1) ωmajµ(T2) =
ωmajα(T3).

Example 3: Let µ = (2) and λ = (2, 1). Then α = (2, 2) and β = (2, 2, 1, 1).
The semistandard tableaux T with weight β and ωmajα(T ) are given in Table 1.
So, p(2)(x) ◦ h(2,1)(x) = s(6)(x) − s(5,1)(x) + 2s(4,2)(x) − 2s(3,3)(x) − s(4,1,1)(x) +
s(2,2,2)(x) + s(3,1,1,1)(x)− s(2,2,1,1)(x).
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T ωmaj(2,2)(T ) T ωmaj(2,2)(T )

1 1 2 2 3 4 1
1 1 2 2
3
4

−1

1 1 2 2 4
3 1

1 1 2 4
2
3

−1

1 1 2 2 3
4 −1

1 1 2 3
2
4

1

1 1 2 3 4
2 −1

1 1 2
2 3
4

1

1 1 2 2
3 4 1

1 1 2
2 4
3

−1

1 1 2 4
2 3 −1

1 1 4
2 2
3

1

1 1 2 3
2 4 1

1 1 3
2 2
4

−1

1 1 3 4
2 2 1

1 1
2 2
3 4

1

1 1 2
2 3 4 1

1 1 2
2
3
4

1

1 1 3
2 2 4 1

1 1
2 2
3
4

−1

Table 1: Semistandard Tableaux of Weight (2, 2, 1, 1)


