The Last Digit of $\binom{2 n}{n}$ and $\sum\binom{n}{i}\binom{2 n-2 i}{n-i}$

Walter Shur
11 Middle Road
Port Washington, NY 11050
wshur @ worldnet.att.net

Submitted: June 28, 1996; Accepted: November 11, 1996.
AMS subject classification (1991): Primary 05A10; Secondary 11B65.

Let $f_{n}=\sum_{i=0}^{n}\binom{n}{i}\binom{2 n-2 i}{n-i}, g_{n}=\sum_{i=1}^{n}\binom{n}{i}\binom{2 n-2 i}{n-i}$. Let $\left\{a_{k}\right\}_{k=1}$ be the set of all positive integers n , in increasing order, for which $\binom{2 n}{n}$ is not divisible by 5 , and let $\left\{b_{k}\right\}_{k=1}$ be the set of all positive integers n , in increasing order, for which g_{n} is not divisible by 5 . This note finds simple formulas for $a_{k}, b_{k},\binom{2 n}{n} \bmod 10$, $f_{n} \bmod 10$, and $g_{n} \bmod 10$.

Definitions

$f_{n}=\sum_{i=0}^{n}\binom{n}{i}\binom{2 n-2 i}{n-i} ; \quad g_{n}=\sum_{i=1}^{n}\binom{n}{i}\binom{2 n-2 i}{n-i}$
$\left\{a_{k}\right\}_{k=1}$ is the set of all positive integers n , in increasing order, for which $\binom{2 n}{n}$ is not divisible by 5 .
$\left\{b_{k}\right\}_{k=1}$ is the set of all positive integers n , in increasing order, for which g_{n} is not divisible by 5 .
u_{n} is the number of unit digits in the base 5 representation of n.

Theorem 1. a_{k} is the number in base 5 whose digits represent the number k in base 3. If $n \geq 1$,

$$
\binom{2 n}{n} \bmod 10=\left\{\begin{array}{l}
0 \\
2 \\
4 \\
6 \\
8
\end{array}\right\} \text { if } n \notin\left\{a_{k}\right\} \quad\left\{a_{k}\right\} \text { and } u_{n} \bmod 4=\left\{\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right.
$$

Note that if $n \in\left\{a_{k}\right\}, u_{n}$ is odd (even) if and only if n is odd (even).
Proof. From Lucas' theorem [1], we have

$$
\binom{2 n}{n} \equiv\binom{N_{1}}{n_{1}}\binom{N_{2}}{n_{2}} \cdots\binom{N_{t}}{n_{t}} \quad \bmod 5
$$

where $2 n=\left(N_{r} \cdots N_{3} N_{2} N_{1}\right)_{5}, n=\left(n_{s} \cdots n_{3} n_{2} n_{1}\right)_{5}$, and $t=\min (r, s)$.
Suppose that for each $i \leq t, n_{i} \leq 2$. Then, for each $i \leq t, N_{i}=2 n_{i}$. Since $n_{i}=0,1$ or 2 , each term of the product

$$
\binom{N_{1}}{n_{1}}\binom{N_{2}}{n_{2}} \ldots\binom{N_{t}}{n_{t}}
$$

is 1,2 or 6 . Hence, $\binom{2 n}{n}$ is not divisible by 5 .
Suppose that for some i, $n_{i}>2$. Let i_{m} be the smallest value of i for which that is true. Then, if $n_{i_{m}}$ is 3 or $4, N_{i_{m}}$ is 1 or 3 (resp.). In either case, $\binom{N_{i_{m}}}{n_{i_{m}}}=0$, and $\binom{2 n}{n}$ is divisible by 5 .

Thus, $\left\{a_{k}\right\}$ is the set of all positive integers written in base 3 , but interpreted as if they were written in base 5 . Since $\left\{a_{k}\right\}$ is in increasing order, the first part of the theorem is proved.

Suppose now that $\binom{2 n}{n}$ is not divisible by 5 . Then each term of the product

$$
\binom{N_{1}}{n_{1}}\binom{N_{2}}{n_{2}} \cdots\binom{N_{t}}{n_{t}}
$$

is 1,2 or 6 (according as $n_{i}=0,1$, or 2$)$. We have, noting that $\binom{2 n}{n}$ is even,

$$
\left.\begin{array}{c}
2^{u_{n}} \bmod 10=\mathrm{G}^{\dagger}, 2,4 \text { or } 8 \\
\binom{N_{1}}{n_{1}}\binom{N_{2}}{n_{2}} \cdots\binom{N_{t}}{n_{t}} \bmod 10=6,2,4 \text { or } 8, \\
\binom{2 n}{n} \bmod 10=6,2,4 \text { or } 8,
\end{array}\right\} \text { according as } u_{n} \bmod 4=0,1,2 \text { or } 3 .
$$

Corollary 1.1.

$$
a_{k}=k+2 \sum_{i=1}\left\lfloor\frac{k}{3^{i}}\right\rfloor 5^{i-1} .
$$

Proof. Let $k=\left(\cdots d_{3} d_{2} d_{1}\right)_{3}$, and consider $a_{k}=\sum_{i=1} d_{i} 5^{i-1}$.

$$
\begin{array}{ccc}
d_{1} & =k & -3\left\lfloor\frac{k}{3}\right\rfloor \\
d_{2} & =\left\lfloor\frac{k}{3}\right\rfloor & -3\left\lfloor\frac{k}{3^{2}}\right\rfloor \\
d_{3} & =\left\lfloor\frac{k}{3^{2}}\right\rfloor & -3\left\lfloor\frac{k}{3^{3}}\right\rfloor \\
\vdots & \vdots & \vdots
\end{array}
$$

Therefore,

$$
\sum_{i=1} d_{i} 5^{i-1}=\sum_{i=1}\left(\left\lfloor\frac{k}{3^{i-1}}\right\rfloor-3\left\lfloor\frac{k}{3^{i}}\right\rfloor\right) 5^{i-1} .
$$

Since $\left\lfloor\frac{k}{3^{2}}\right\rfloor 5^{i}-3\left\lfloor\frac{k}{3^{i}}\right\rfloor 5^{i-1}=2\left\lfloor\frac{k}{3^{i}}\right\rfloor 5^{i-1}$, the corollary is proved.

Corollary 1.2. Let μ_{k} be the largest integer t such that $k / 3^{t}$ is an integer. Then,

$$
a_{k}-a_{k-1}=\frac{5^{\mu_{k}}+1}{2}, \text { and } a_{k}=1+\sum_{i=2}^{k} \frac{5^{\mu_{i}}+1}{2} .
$$

$\mu_{k}=m$ if and only if $k \in\left\{j 3^{m}\right\}$, where j is a positive integer and $j \bmod 3 \neq$ 0.

Proof. If $\mu_{k}>0$, then

$$
k=\left(\cdots d_{\mu_{k}+1} 0 \cdots 0\right)_{3} ; \quad d_{\mu_{k}+1} \geq 1 ; \quad \text { and } k-1=\left(\cdots\left(d_{\mu_{k}+1}-1\right) 2 \cdots 2\right)_{3} .
$$

Hence,

$$
a_{k}-a_{k-1}=5^{\mu_{k}}-2\left[5^{\mu_{k}-1}+5^{\mu_{k}-2}+\cdots+1\right]=\frac{5^{\mu_{k}}+1}{2} .
$$

[^0]If $\mu_{k}=0$, then

$$
k=\left(\cdots d_{1}\right)_{3} ; \quad d_{1} \geq 1 ; \quad \text { and } k-1=\left(\cdots\left(d_{1}-1\right)\right)_{3} .
$$

Hence,

$$
a_{k}-a_{k-1}=1=\frac{5^{\mu_{k}}+1}{2} .
$$

The remaining parts of the corollary follow immediately.

Corollary 1.3. If $k>1$,

$$
a_{k}= \begin{cases}5 a_{\frac{k}{3}} & \text { if } k \bmod 3=0, \\ a_{k-1}+1 & \text { if } k \bmod 3 \neq 0 .\end{cases}
$$

Proof. If $k \bmod 3=0$, then $k=\left(\cdots d_{2} 0\right)_{3}$ and $\frac{k}{3}=\left(\cdots d_{2}\right)_{3}$. Hence, $a_{k}=5 a_{\frac{k}{3}}$.
If $k \bmod 3 \neq 0$, then $\mu_{k}=0$ and from Corollary 1.2, we have $a_{k}-a_{k-1}={ }^{3} 1$.

Theorem 2. b_{k} is the number in base 5 whose digits represent the number $2 k-1$ in base 3, i.e. $b_{k}=a_{2 k-1}$. Furthermore, $g_{n} \bmod 10$ can only take on the values 1,5 or 9 , as follows:

$$
g_{n} \bmod 10=\left\{\begin{array}{l}
5 \\
1 \\
9
\end{array}\right\} \text { if } n \notin\left\{b_{k}\right\},\left\{\begin{array}{l}
\text { if } n \in\left\{b_{k}\right\} \text { and } u_{n} \bmod 4=\left\{\begin{array}{l}
1 \\
3
\end{array} ~ . ~\right.
\end{array}\right.
$$

Proof. Let $F(z)=\sum_{n} f_{n} z^{n}=\sum_{n} z^{n} \sum_{i}\binom{n}{i}\binom{2 n-2 i}{n-i}$.
Letting $\mathrm{t}=\mathrm{n}$ - i , we have

$$
\begin{aligned}
F(z) & =\sum_{n} z^{n} \sum_{t}\binom{n}{t}\binom{2 t}{t} \\
& =\sum_{t}\binom{2 t}{t} \sum_{n}\binom{n}{t} z^{n} \\
& =\frac{1}{1-z} \sum_{t}\binom{2 t}{t}\left(\frac{z}{1-z}\right)^{t} \quad(\text { see }[2]] \\
& =\frac{1}{1-z} \frac{1}{\sqrt{1-\frac{4 z}{1-z}}}=\frac{1}{\sqrt{1-z}} \frac{1}{\sqrt{1-5 z}} \quad(\text { see }[2]) \\
& =\left[1+\left(\frac{1}{4}\right)\binom{2}{1} z+\left(\frac{1}{4}\right)^{2}\binom{4}{2} z^{2}+\cdots\right]\left[1+\left(\frac{1}{4}\right)\binom{2}{1} 5 z+\left(\frac{1}{4}\right)^{2}\binom{4}{2} 5^{2} z^{2}+\cdots\right] .
\end{aligned}
$$

Hence,

$$
f_{n}=\frac{1}{4^{n}} \sum_{i=0}\binom{2 i}{i}\binom{2 n-2 i}{n-i} 5^{i}
$$

and

$$
\begin{aligned}
g_{n} & =\frac{1}{4^{n}} \sum_{i=0}\binom{2 i}{i}\binom{2 n-2 i}{n-i} 5^{i}-\binom{2 n}{n}, \\
& =\frac{\sum_{i=1}\binom{2 i}{i}\binom{2 n-2 i}{n-i} 5^{i}-\left(4^{n}-1\right)\binom{2 n}{n}}{4^{n}} .
\end{aligned}
$$

Thus we see that g_{n} is divisible by 5 if and only if $\left(4^{n}-1\right)\binom{2 n}{n}$ is divisible by 5 . And since g_{n} is odd, $g_{n} \bmod 10=5$ if and only if g_{n} is divisible by 5 . $4^{n}-1$ is divisible by 5 if and only if n is even. Therefore, $g_{n} \bmod 10 \neq 5$ if and only if n is odd and $n \in\left\{a_{k}\right\}$. Hence, $b_{k}=a_{2 k-1}$, from which it follows that b_{k} is the number in base 5 whose digits represent the number $2 \mathrm{k}-1$ in base 3 .

Suppose that $g_{n} \bmod 10 \neq 5$. Then $\binom{2 n}{n} \bmod 10=c$, where (since $n \in\left\{a_{k}\right\}$ and n and u_{n} are odd) c is 2 or 8 , according as $u_{n} \bmod 4=1$ or 3 . Thus, for some non-negative integers j and k, $4^{n}-1=10 j+3$ and $\binom{2 n}{n}=10 k+c$. Since $\binom{2 i}{i}$ is even when $i \geq 1$, for some non-negative integer q we have

$$
4^{n} g_{n}=10 q-(10 j+3)(10 k+c)
$$

Since g_{n} is odd, and $4^{n} \bmod 10=4$, we have

$$
\begin{aligned}
& \text { If } \mathrm{c}=2, g_{n} \bmod 10=1 \\
& \text { if } \mathrm{c}=8, g_{n} \bmod 10=9
\end{aligned}
$$

Corollary 2.1.

$$
b_{k}=2 k-1+2 \sum_{i=1}\left\lfloor\frac{2 k-1}{3^{i}}\right\rfloor 5^{i-1}
$$

Proof. This follows from Corollary 1.1, since $b_{k}=a_{2 k-1}$.

Corollary 2.2. Let ν_{k} be the largest integer t for which $\frac{(k-1)(2 k-1)}{3^{t}}$ is an integer. Then,

$$
b_{k}-b_{k-1}=\frac{5^{\nu_{k}}+3}{2}, \text { and } b_{k}=1+\sum_{i=2}^{k} \frac{5^{\nu_{i}}+3}{2}
$$

If $m \geq 1, \nu_{k}=m$ if and only if $k \in\left\{\left\lceil\frac{j 3^{m}+1}{2}\right\rceil\right\}$, where j is a positive integer and $j \bmod 3 \neq 0$; if $m=0, \nu_{k}=m$ if and only if $k \in\{3 j\}$, where j is a positive integer.

Proof.

$$
\begin{gathered}
b_{k}=a_{2 k-1} \\
b_{k}-b_{k-1}=\left(a_{2 k-1}-a_{2 k-2}\right)+\left(a_{2 k-2}-a_{2 k-3}\right) \\
b_{k}-b_{k-1}=\frac{5^{\mu_{2 k-1}}+1}{2}+\frac{5^{\mu_{2 k-2}}+1}{2}
\end{gathered}
$$

where μ_{k} is the largest integer t such that $k / 3^{t}$ is an integer.
Note that ν_{k} is also the largest integer t for which $\frac{(2 k-1)(2 k-2)}{3^{t}}$ is an integer. Then we must have one of the following cases:

$$
\begin{aligned}
& \mu_{2 k-1}=0 \text { and } \mu_{2 k-2}=0, \text { or } \\
& \mu_{2 k-1}=\nu_{k} \text { and } \mu_{2 k-2}=0, \text { or } \\
& \mu_{2 k-1}=0 \text { and } \mu_{2 k-2}=\nu_{k}
\end{aligned}
$$

In any of these cases,

$$
b_{k}-b_{k-1}=\frac{5^{\nu_{k}}+3}{2}
$$

If $m \geq 1$, at most one of $(k-1)$ and $(2 k-1)$ is divisible by $3^{m} \cdot \nu_{k}=m$ if and only if either $(k-1)$ or $(2 k-1)$ is divisible by 3^{m} but not by 3^{m+1}. Suppose $m \geq 1$ and $j \bmod 3 \neq 0$.

If j is odd, $\left\lceil\frac{j 3^{m}+1}{2}\right\rceil=\frac{j 3^{m}+1}{2} ; \quad$ if $k=\frac{j 3^{m}+1}{2}, 2 k-1=j 3^{m}$, and $\nu_{k}=m$.
If j is even, $\left\lceil\frac{j 3^{m}+1}{2}\right\rceil=\frac{j 3^{m}+2}{2} ; \quad$ if $k=\frac{j 3^{m}+2}{2}, k-1=\frac{j 3^{m}}{2}$, and $\nu_{k}=m$.
It is straightforward to show the converse, that if $\nu_{k}=m \geq 1, k \in\left\{\left\lceil\frac{j 3^{m}+1}{2}\right\rceil\right\}$.
If $m=0, \nu_{k}=m$ if and only if neither $(k-1)$ or $(2 k-1)$ is a multiple of 3 . This occurs when $2 k$ (and therefore k) is a multiple of 3 .

Corollary 2.3. If $k \geq 1$,

$$
\begin{aligned}
b_{3 k} & =b_{3 k-1}+2, \\
b_{3 k+1} & =5 b_{k+1}-4, \quad k \bmod 3=0, \\
& =b_{3 k}+4, \\
b_{3 k+2} & =5 b_{k+1} .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
b_{3 k} & =a_{6 k-1}=a_{6 k-2}+1=a_{6 k-3}+2=b_{3 k-1}+2, \\
b_{3 k+2} & =a_{6 k+3}=5 a_{2 k+1}=5 b_{k+1}, \\
b_{3 k+1} & =a_{6 k+1}=a_{6 k}+1=5 a_{2 k}+1, \text { and }
\end{aligned}
$$

if $\mathrm{k} \bmod 3=0$,

$$
b_{3 k+1}=5\left(a_{2 k+1}-1\right)+1=5 b_{k+1}-4
$$

if $\mathrm{k} \bmod 3 \neq 0$,

$$
b_{3 k+1}=5\left(a_{2 k-1}+1\right)+1=5 b_{k}+6=b_{3 k-1}+6=\left(b_{3 k}-2\right)+6=b_{3 k}+4 .
$$

Theorem 3.

$$
f_{n} \bmod 10=\left\{\begin{array}{l}
5 \\
1 \\
3 \\
7 \\
9
\end{array}\right\} \text { if } n \in\left\{a_{k}\right\} \text { and } u_{n} \bmod 4=\left\{a_{k}\right\} \quad\left\{\begin{array}{l}
0 \\
1 \\
3 \\
2
\end{array} .\right.
$$

Proof. Since $f_{n}=\binom{2 n}{n}+g_{n}$, the corollary can be proved easily by combining the results of Theorem 1 and Theorem 2.

References

[1] I. Vardi, Computational Recreations in Mathematica, Addison-Welsey, California, 1991, p. 70 (4.4).
[2] H.S. Wilf, generatingfunctionology (1st ed.), Academic Press, New York, 1990, p. 50 (2.5.7, 2.5.11).

[^0]: ${ }^{\dagger}$ Equals 1 if $u_{n}=0$; nevertheless, the next line follows since, if $u_{n}=0$, at least one n_{i} must equal 2 , making $\binom{2 n_{i}}{n_{i}}=6$.

