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Abstract

We analyze a certain random walk on the cartesian product Gn of a finite group G
which is often used for generating random elements from G. In particular, we show that
the mixing time of the walk is at most crn

2 logn where the constant cr depends only on
the order r of G.

1. Introduction

One method often used in computational group theory for generating random elements

from a given (non-trivial) finite group G proceeds as follows (e.g., see [2]). A fixed integer

n ≥ 2 is initially specified. Denote by Gn the set {(x1, . . . , xn) : xi ∈ G, 1 ≤ i ≤ n}. If

x̄ = (x1, . . . , xn) ∈ Gn, we denote by 〈x̄〉 the subgroup of G generated by {xi : 1 ≤ i ≤ n}. Let

G∗ ⊆ Gn denote the set of all x̄ ∈ Gn such that 〈x̄〉 = G. We execute a random walk on G∗

by taking the following general step. Suppose we are at a point p̄ = (p1, . . . , pn) ∈ G∗. Choose

a random pair of indices (i, j) with i 6= j. (Thus, each such pair is chosen with probability

1
n(n−1)

.) We then move to one of p̄′ = (p′1, . . . , p
′
n) where

p′k =

 pipj or pip
−1
j if k = i, each with probability 1/2

pk if k 6= i .

This rule determines the corresponding transition matrix Q of the walk. We note that with

this rule, we always have p̄′ ∈ G∗. It is also easy to check that for n ≥ n0(G), this walk is

irreducible and aperiodic (see Section 5 for more quantitative remarks), and has a stationary

distribution π which is uniform (since G∗ is a multigraph in which every vertex has degree

2n(n− 1)).
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Starting from some fixed initial distribution f0 on G∗, we apply this procedure some number

of times, say t, to reach a distribution f0Q
t on G∗ which we hope will be close to “random”

when t is large. A crucial question which must be faced in this situation is just how rapidly

this process mixes, i.e., how large must t be so that f0Q
t is close to uniform. In this note,

we apply several rather general comparison theorems to give reasonably good bounds on the

mixing time for Q. In particular, we show (see Theorem 1) that when t ≥ c(G)n2 logn, where

c(G) is a constant depending only on G, then Qt is already quite close to uniform (where we

usually will suppress f0).

This problem belongs to a general class of random walk problems suggested recently by

David Aldous [1]. In fact, he considers a more general walk in which only certain pairs of

indices (i, j) are allowed in forming p′k = pipj or pip
−1
j . These pairs can be described by a

graph H on the vertex set {1, 2, ·, n}. The case studied in this note corresponds to taking H

to be a complete graph.

We first learned of this problem from a preprint of Diaconis and Saloff-Coste [6], part of

which has subsequently appeared [7]. In it, they wrote “ · · · for G = Zp with p = 2, 3, 4, 5, 7, 8, 9

we know that n2 logn steps are enough whereas for G = Z6 or Z10 we only know that n4 logn are

enough. Even in the case of Z6 it does not seem easy to improve this.” Our main contribution

in this note is to show that by direct combinatorial constructions, a mixing time of c(G)n2 logn

can be obtained for all groups G where c(G) is a constant depending just on G. Subsequently,

they have now [8] also obtained bounds of the form c(G)n2 logn for all groups G by including

a more sophisticated path construction argument than they had previously used in [6].

2. Background

A weighted graph Γ = (V,E) consists of a vertex set V , and a weight functionw : V ×V → R

satisfying w(u, v) = w(v, u) ≥ 0 for all u, v ∈ V . The edge set E of Γ is defined to be the set

of all pairs uv with w(u, v) > 0. A simple (unweighted) graph is just the special case in which

all weights are 0 or 1. The degree dv of a vertex v is defined by

dv :=
∑
u

w(u, v) .
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Further, we define the |V | × |V | matrix L by

L(u, v) =


dv − w(v, v) if u = v,

−w(u, v) if uv ∈ E, u 6= v,

0 otherwise .

In particular, for a function f : V → R, we have

Lf(x) =
∑
y

xy∈E

(f(x)− f(y))w(x, y) .

Let T denote the diagonal matrix with the (v, v) entry having the value dv. The Laplacian LΓ

of Γ is defined to be

L = LΓ = T−1/2LT−1/2 .

In other words,

L(u, v) =


1− w(v,v)

dv
if u = v,

−w(u,v)√
dudv

if uv ∈ E, u 6= v,

0 otherwise .

Since L is symmetric and non-negative definite, its eigenvalues are real and non-negative. We

denote them by

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1

where n = |V |.

It follows from standard variational characterizations of eigenvalues that

λ1 = inf
f

sup
c

∑
u,v∈E

(f(u)− f(v))2w(u, v)∑
x
dx(f(x)− c)2

.(1)

For a connected graph Γ, the eigenvalues satisfy

0 < λi ≤ 2

for i ≥ 1. Various properties of the eigenvalues can be found in [3].

Now, the usual random walk on an unweighted graph has transition probability 1/dv of

moving from a vertex v to any one of its neighbors. The transition matrix P then satisfies

P (v, u) =

{
1/dv if uv ∈ E,

0 otherwise .

That is,

fP (u) =
∑
v

uv∈E

1

dv
f(v)
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for any f : V → R. It is easy to check that

P = T−1/2(I −R)T 1/2 = T−1A

where A is the adjacency matrix of the graph.

In a random walk on a connected weighted graph Γ, the transition matrix P satisfies

1TP = 1T .

Thus, the stationary distribution is just 1T/vol(Γ), where vol(Γ) =
∑
x
dx and 1 is the all ones

vector. Our problem is to estimate how rapidly fP k converges to its stationary distribution,

as k → ∞, starting from some initial distribution f : V → R. First, consider convergence in

the L2 (or Euclidean) norm. Suppose we write

fT−1/2 =
∑
i

aiφi

where φi denotes the eigenfunction associated with λi and ‖φi‖ = 1. Since φ0 = 1·T 1/2/
√
vol(Γ)

then

a0 =
〈fT−1/2, 1T 1/2〉

‖1T 1/2‖
=

1√
vol(Γ)

since 〈f, 1〉 = 1. We then have

‖fP s − 1T/vol(Γ)‖ = ‖fT−1/2(I −L)sT 1/2 − a0φ0T
1/2‖

=

∥∥∥∥∥∑
i 6=0

(1− λi)
saiφiT

1/2

∥∥∥∥∥
≤ (1− λ)s‖f‖

≤ e−sλ‖f‖

where

λ =

 λ1 if 1− λ1 ≥ λn−1 − 1,

2− λn−1 otherwise .

So, after s ≥ (1/λ) log(1/ε) steps, the L2 distance between fP s and its stationary distribution

is at most ε‖f‖.

Although λ occurs in the above bound, in fact only λ1 is crucial, in the following sense. If it

happens that 1−λ1 < λn−1−1, then we can consider a random walk on the modified graph Γ′

formed by adding a loop of weight cdv to each vertex v where c = (λ1 + λn−1)/2− 1. The new

graph has (Laplacian) eigenvalues λ′k = 1
1+c

λk ≤ 1, 0 ≤ k ≤ n− 1, so that 1− λ′1 ≥ λ′n−1 − 1.
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Consequently (see [3]), we only need to increase the number of steps of this “lazy” walk on Γ

to s ≥ (1/(λ′) log(1/ε) to achieve that same L2 bound on ε‖f‖ where λ′ is

λ′ =

 λ1 if 1− λ1 ≥ λn−1 − 1,

2λ1

λ1+λn−1
otherwise .

We note that we have λ′ ≥ 2λ1/(2 + λ1) ≥ 2λ1/3.

A stronger notion of convergence is measured by the L∞, or relative pointwise distance,

which is defined as follows. After s steps, the relative pointwise distance of P to its stationary

distribution π is given by

∆(s) := max
x,y

|P s(y, x)− π(x)|

π(x)
.

Let δz denote the indicator function defined by

δz(x) =

{
1 if x = z,

0 otherwise .

Set

T 1/2δx =
∑
i

aiφi

and

T−1/2δy =
∑
i

βiφi .

In particular,

α0 =
dx√
vol(Γ)

, β0 =
1√

vol(Γ)
.

Hence,

∆(t) = max
x,y

|δy(P t)δy − π(x)|

π(x)

= max
x,y

|δyT−1/2(I − L)tT 1/2δx − π(x)|

π(x)

≤ max
x,y

∑
i6=0

|(1− λi)tαiβi|

dx/vol(Γ)
(2)

≤ (1− λ)t max
x,y

‖T 1/2δx‖‖T−1/2δy‖

dx/vol(Γ)

≤ (1− λ)t
vol(Γ)

min
x,y

√
dxdy

≤ e−tλ
vol(Γ)

min
x
dx

.

Thus, if we choose t so that

t ≥
1

λ
log

vol(Γ)

emin
x
dx
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then after t steps, we have ∆(t) ≤ ε. We also remark that requiring ∆(t) → 0 is a rather

strong condition. In particular, it implies that another common measure, the total variation

distance ∆TV (t) goes to zero just as rapidly, since

∆TV (t) = max
A⊂V

max
y∈V

∣∣∣∣∣∑
x∈A

P t(y, x)− π(x)

∣∣∣∣∣
≤ max

A⊂V
vol(A)≤ 1

2
vol(Γ)

∑
x∈A

π(x)∆(t)

≤
1

2
∆(t) .

We point out here that the factor vol(Γ)

min
x
dx

can often be further reduced by the use of so-called

logarithmic Sobolev eigenvalue bounds (see [9] and [3] for surveys). In particular, Diaconis and

Saloffe-Coste have used these methods in their work on rapidly mixing Markov chains. We will

follow their lead and apply some of these ideas in Section 4.

3. An eigenvalue comparison theorem

To estimate the rate at which ∆(t)→ 0 as t→∞, we will need to lower bound λ1(Γ∗), the

smallest non-zero Laplacian eigenvalue of the graph Γ∗ on G∗, defined by taking as edges all

pairs x̄ȳ ∈ E∗ where x̄ ∈ G∗ and ȳ can be reached from x̄ by taking one step of the process Q.

Our comparison graph Γn on Gn will have all edges x̄ȳ ∈ E where x̄ and ȳ are any two elements

of Gn which differ in a single coordinate (so that Γn is just the usual Cartesian product of G

with itself n times).

Lemma 1. Suppose Γ = (V, E) is a connected (simple) graph and Γ′ = (V ′, E′) is a connected

multigraph with Laplacian eigenvalues λ1 = λ1(Γ) and λ′1 = λ1(Γ′), respectively. Suppose

φ : V → V ′ is a surjective map such that:

(i) If dx and d′x′ denote the degrees of v ∈ V and x′ ∈ V ′, respectively, then for all x′ ∈ V ′

we have ∑
x∈φ−1(x′)

dx ≥ ad
′
x′ .

(ii) For each edge e = xy ∈ E there is a path P (e) between φ(x) and φ(y) in E′ such that:

(a) The number of edges of P (e) is at most `;

(b) For each edge e′ ∈ E′, we have

|{xy ∈ E : e′ ∈ P (e)| ≤ m .
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Then we have

λ′1 ≥
a

`m
λ1(3)

Proof. For h : V → C, define h2 : E → C by setting h2(e) = (h(x) − h(y))2 for e = xy ∈ E

(with a similar definition for h : V ′ → C and h2 : E′ → C).

We start by letting g : V ′ → C be a function achieving equality in (1) (or rather, the version

of (1) for λ′1). Define f : V → C by setting

f(x) = g(φ(x)) for x ∈ V .

Thus,

λ′1 = sup
c

∑
e′∈E′

g2(e′)∑
v′∈V ′

(g(v′)− c)2d′v′

≥

∑
e′∈E′

g2(e′)∑
v′∈V ′

(g(v′)− c)2d′v′
for all c(4)

=

∑
e′∈E′

g2(e′)∑
e∈E

f 2(e)
·

∑
e∈E

f2(e)∑
v∈V

(f(v)− c)2dv
·

∑
v∈V

(f(v)− c)2dv∑
v′∈V ′

(g(v′)− c)2d′v′

= I × II × III .

First, we treat factor I. Using Cauchy-Schwarz, we have for all e ∈ E,

f2(e) ≤ `
∑

e′∈P (e)

g2(e′)

by (a). Hence by (b),

m
∑
e′∈E

g2(e′) ≥
∑
e∈E

∑
e′∈E′

g2(e′) ≥
1

`

∑
e∈E

f2(e)

i.e., ∑
e′∈E′

g2(e′)∑
e∈E

f2(e)
≥

1

`m
(5)

which gives a bound for factor I. To bound factor III, we have

∑
x∈V

(f(x)− c)2dx =
∑
x′∈V ′

∑
x∈φ−1(x′)

(f(x)− c)2dx

=
∑
x′∈V ′

(g(x′)− c)2
∑

x∈φ−1(x′)

dx(6)

≥ a
∑
x′∈V ′

(g(x′)− c)2d′x′ by (i) .
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Finally, for factor II we choose c0 so that

sup
c

∑
e∈E

f2(e)∑
v∈V

(f(v)− c)2dv
=

∑
e∈E

f2(e)∑
v∈V

(f(v)− c0)2dv
≥ λ1(7)

by (1).

Hence, by (4), (5), (6) and (7) we have

λ′1 ≥
a

`m
λ1

which is just (3).

Note that in the case that Γ and Γ′ are regular with degrees k and k′, respectively, then (i)

holds with a = k/k′, and (3) becomes

(3′) λ′1 ≥
k

k′`m
λ1 .

4. A comparison theorem for the log-Sobolev constant

Given a connected weighted graph Γ = (V,E), the log-Sobolev constant α = α(Γ) is defined

by

α = inf
f 6=constant

∑
e∈E

f 2(e)∑
x
f2(x)dx log f2(x)∑

y

f2(y)π(y)

(8)

where f ranges over all non-constant functions f : V → R and π is the stationary distribution

of the nearest neighbor random walk on Γ. In a recent paper [9], Diaconis and Saloffe-Coste

show that

∆TV (t) ≤ e1−c if t ≥
1

2α
log log

vol(Γ)

min
x
dx

+
c

λ1

.(9)

This is strengthened in [3], where the slightly stronger inequality is proved

∆(t) ≤ e2−c if t ≥
1

2α
log log

vol(Γ)

min
x
dx

+
c

λ1

(10)

and

∆TV (t) ≤ e1−c if t ≥
1

4α
log log

vol(Γ)

min
x
dx

+
c

λ1

(11)

using the alternate (equivalent) definition:

α = inf
f 6=constant

∑
e∈E

f 2(e)

S(f )
(12)
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where

S(f) := inf
c>0

∑
x∈V

(f2(x) log f2(x)− f2(x)− f2(x) log c+ c)dx .(13)

While (10) is typically stronger than (2), it depends on knowing (or estimating) the value of α,

which if anything is harder to estimate than λ1 for general graphs. We can bypass this difficulty

to some extent by the following (companion) comparison theorem for α. Its statement (and

proof) is in fact quite close to that of Lemma 1.

Lemma 2. Suppose Γ = (V, E) is a connected (simple) graph and Γ′ = (V ′, E′) is a connected

multigraph, with logarithmic Sobolev constants α = α(Γ) and α′ = α(Γ′), respectively. Suppose

φ : V → V ′ is a surjective map such that (i), (ii) and (iii) of Lemma 1 hold. Then

α′ ≥
a

`m
α .(14)

Proof: Consider a function g : V ′ → R achieving equality in (14). Define f : V → R as in

the proof of Lemma 1. Then we have

α′ =

∑
e′∈E′

g2(e′)

S(g)

=

∑
e′∈E′

g2(e′)∑
e∈E

f2(e)
·

∑
e∈E

f2(e)

S(f)
·
S(f)

S(g)
(15)

= I ′ × II′ × III ′ .

Exactly as in the proof of Lemma 1, we obtain

I′ ≥
1

`m
, II ′ ≥ α .

It remains to show III′ ≥ a (which we do using a nice idea of Holley and Stroock; cf. [9]).

First, define

F (ξ, ζ) := ξ log ξ − ξ log ζ − ξ + ζ

for all ξ, ζ > 0. Note that F (ξ, ζ) ≥ 0 and for ζ > 0, F (ξ, ζ) is convex in ξ. Thus, for some

c0 > 0,

S(f) =
∑
x∈V

F (f2(x), c0)dx

=
∑
x′∈V ′

 ∑
x∈φ−1(x′)

dx

F (g(x′)2)



the electronic journal of combinatorics 4, no. 2 (1997), #R7 10

≥
∑
x′∈V ′

ad′x′F (g(x′)2) since F ≥ 0

≥ a
∑
x′∈V ′

F (g(x′)2d′x′) by convexity

= aS(g) .

This implies III ′ ≥ a and (14) is proved.

As in (3′), if Γ and Γ′ are regular with degrees k and k′, respectively, then

(13′) α′ ≥
k

k′`m
α .

5. Defining the paths

In this section we describe the key path constructions for our proof. For our finite group

G, we say that B ⊆ G is a minimal basis for G if 〈B〉 = G but for any proper subset B′ ⊂ B,

we have 〈B′〉 6= G. Define

b(G) := max{|B| : B is a minimal basis for G} .

Further, define w(G) to be the least integer such that for any minimal basis B, and any g ∈ G,

we can write g as a product of at most w terms of the form x±1, x ∈ B. Finally, define s(G)

to be the cardinality of a minimum basis for G. We abbreviate b(G), w(G) and s(G) by b, w

and s, respectively, and, as usual, we set r := |G|. In particular, the following crude bounds

always hold:

s ≤ b ≤
log r

log 2
= log2 r, w < r .(16)

Let R denote blog2 rc. We will assume n > 2(s + R). To apply Lemmas 1 and 2, we must

define the map φ : Γn → Γ∗ and the paths P (e), e ∈ En. Let {g1, . . . , gs} be a fixed minimum

basis for G.

For x̄ = (x1, . . . , xn) ∈ Γn, define

φ(x̄) =

{
x̄ if 〈x̄〉 = G,

(g1, . . . , gs, xs+1, . . . , xn) if 〈x̄〉 6= G .

Next, for each edge e = x̄ȳ ∈ En, we must define a path P (e) between φ(x̄) and φ(ȳ) in Γ∗.

Suppose x̄ and ȳ just differ in the ith component so that

x̄ = (x1, . . . , xi, . . . , xn), ȳ = (y1, . . . , yi, . . . , yn)

where xj = yj for j 6= i, and xi 6= yi. There are three cases:
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(I) x̄ ∈ G∗, ȳ ∈ G∗. Let I denote interval{
{i+ 1, . . . , i+ s+ 2R} if i ≤ n− s− 2R,

{n− s− 2R, . . . , n} \ {i} if i > n− s− 2R .

Choose a subset J ⊂ I so that:

(i) |J | = s

(ii) 〈{xk : k ∈ [n] \ |J|}〉 = G

(iii) 〈{yk : k ∈ [n] \ |J |}〉 = G .

That is, the values xj = yj, j ∈ J , are not needed in generating G using the xk or the yk.

Write J as {j1, j2, . . . , js}. In this case φ(x̄) = x̄, φ(ȳ) = ȳ. To form P (e):

(i) Use a basis from the elements xk, k 6∈ J , to change xj1 to g1, xj2 to g2, . . . , xjs to gs. This

takes at most ws steps;

(ii) Next, use g1, . . . , gs to change xi to yi. This takes at most w steps;

(iii) Finally, use a basis from the elements yk, k 6∈ J , to change g1 back to xj1 = yj1 , . . . , gs

back to xjs = yjs . This takes at most ws steps. Hence, for case (I), P (e) has length at

most w(2s+ 1).

(II) x̄ 6∈ G∗, ȳ ∈ G∗. In this case, φ(x̄) = (g1, . . . , gs, xs+1, . . . , xn), φ(ȳ) = (y1, . . . , yn)

where xj = yj for j 6= i, and xi 6= yi. This time we locate a set J of s indices j1, . . . , js,

with i < j1 < · · · < js ≤ i + s + R so that 〈{yk : k ∈ [n] \ J}〉 = G. If there is not enough

room, i.e., i > n− s−R, then we locate J to lie in {n− s−R, . . . , n} \ {i}. In addition, if it

happens that i ≤ s, then we take J ⊆ {s+ 1, . . . , 2s+R}. Now, to form P (e):

(i) Use g1, . . . , gs in φ(x̄) to change xj1 to g1, xj2 to g2, . . . , xjs to gs.

(ii) Use the newly formed g1, . . . , gs (with indices in J) to change coordinate 1 from g1 to y1,

coordinate 2 from g2 to y2, . . ., coordinate s from gs to ys. Then change xi to yi.

(iii) Finally use a basis in {yk : k 6∈ [n] \ J} to change coordinates j1, . . . , js to yj1, . . . , yjs ,

respectively. In this case, the length of P (e) is at most w(3s+ 1).
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III) x̄ 6∈ G∗, ȳ 6∈ G∗. Thus, φ(x̄) = (g1, . . . , gs, xs+1, . . . , xn), φ(ȳ) = (g1, . . . , gs, ys+1, . . . , yn)

and of course, xj = yj , j 6= i, and xi 6= yi. If i > s then we can change xi to yi in at most w

steps (and this forms P (e)). If i ≤ s then φ(x̄) = φ(ȳ) and P (e) does not have to be defined.

The main point in the preceding slightly complicated construction is that it guarantees a

rather small value of m. The reason is that the only coordinates u which change in edges

of P (e) are either in {1, 2, . . . , s} or fairly close to i, e.g. |i − u| ≤ 2(s + R). Furthermore,

if a changing coordinate u ∈ {1, . . . , s} and i > 2(s + R), so that we have some edge e′ =

(z1, . . . , zs, . . . , zu, . . . , zn), (z1, . . . , zs, . . . , z
′
u, . . . , zn) in Γ∗, then we search (z1, . . . , zn) for the

first interval of length 2(s+R) which contains g1, . . . , gs, say {w + 1, . . . , w + 2(s+ R)}. By

our construction, such an interval must exist.

Furthermore, it is not hard to see that in this case |i−w| < 4(s+R) (and this is somewhat

generous). Consequently, the original point x̄ in e must agree with (z1, . . . , zn) in all but at

most 10(s+R) coordinates. If follows that for these choices of φ and P (e), e ∈ En, we have

m ≤ 10(s+R)r10(s+R) .(17)

Also by previous remarks, we have

` ≤ w(3s+ 1) .(18)

Observe that deg Γn = (r − 1)n and deg Γ∗ = 2n(n− 1).

Consequently, by (3′), (13′), (17) and (18) (after some simplifications)

λ′1 ≥
λ1

1600R2r20Rn
, α′ ≥

α

1600R2r20Rn
.(19)

6. Putting it all together

The final pieces we need to bound ∆(t) in (10) are the values of λ1(Γ
n) and α(Γn). Fortu-

nately, these are easy to derive since λ1 and α behave very nicely under Cartesian products.

In particular, we have

λ1(Γ
n) = α(Γn) =

(r − 1)

r
·

1

n
.(20)

Note that

vol(Γ∗) ≤ vol(Γn) = |Γn| · 2n(n− 1) .

Thus, by (10) we have

∆(t) ≤ e2−c if t ≥
1

2α′
log log |Γn|+

c

λ′1
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and, by (11) we have

∆TV (t) ≤ e1−c if t ≥
1

4α′
log log |Γn|+

c

λ′1
.

This implies

Theorem 1.

∆(t) ≤ e2−c if t ≥ 800R2r20R+1n2(logn+ log log r+ c) .(21)

In other words, crn
2 logn steps are enough to force the distribution to be close to uniform,

which is what we claimed in the Introduction. Also, we have

Theorem 2.

∆TV (t) ≤ e1−c if t ≥ 400R2r20R+1n2(logn+ log log r + c) .(22)

7. Concluding remarks

Of course, the preceding techniques using comparison theorems can be applied to many

other random walk problems of this general type. For example, one could restrict the preceding

moves so that pi → pip
±1
j is only allowed if (i, j) belongs to some specified set (this determines

an underlying digraph).

It is probably true that the correct answer in (21) is actually crn logn (this is conjectured

in [6]). Some evidence in favor of this is our recent result in [4] that O(n logn) steps do suffice

when G = Z2.
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