A 2-COLORING OF $[1, N]$ CAN HAVE $(1 / 22) N^{2}+O(N)$ MONOCHROMATIC SCHUR TRIPLES, BUT NOT LESS!

Aaron Robertson and Doron Zeilberger ${ }^{1}$
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
aaron@math.temple.edu, zeilberg@math.temple.edu
Submitted: March 3, 1998; Accepted: March 25, 1998

Abstract

We prove the statement of the title, thereby solving a $\$ 100$ problem of Ron Graham. This was solved independently by Tomasz Schoen.

Tianjin, June 29, 1996: In a fascinating invited talk at the SOCA 96 combinatorics conference organized by Bill Chen, Ron Graham proposed (see also [GRR], p. 390):

Problem (\$100): Find (asymptotically) the least number of monochromatic Schur triples $\{i, j, i+$ $j\}$ that may occur in a 2 -coloring of the integers $1,2, \ldots, n$.

By naming the two colors 0 and 1 , the above is equivalent to the following

Discrete Calculus Problem: Find the minimal value of

$$
F\left(x_{1}, \ldots, x_{n}\right):=\sum_{\substack{1 \leq i<j \leq n \\ i+j \leq n}}\left[x_{i} x_{j} x_{i+j}+\left(1-x_{i}\right)\left(1-x_{j}\right)\left(1-x_{i+j}\right)\right]
$$

over the n-dimensional (discrete) unit cube $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}=0,1\right\}$. We will determine all local minima (with respect to the Hamming metric), then determine the global minimum.

Partial Derivatives: For any function $f\left(x_{1}, \ldots, x_{n}\right)$ on $\{0,1\}^{n}$ define the discrete partial derivatives $\partial_{r} f$ by $\partial_{r} f\left(x_{1}, \ldots, x_{r}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{r}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, 1-x_{r}, \ldots, x_{n}\right)$.

If $\left(z_{1}, \ldots, z_{n}\right)$ is a local minimum of F, then we have the n inequalities:

$$
\partial_{r} F\left(z_{1}, \ldots, z_{n}\right) \leq 0 \quad, \quad 1 \leq r \leq n
$$

A purely routine calculation shows that (below $\chi(S)$ is $1(0)$ if S is true(false))

$$
\begin{gathered}
\partial_{r} F\left(x_{1}, \ldots, x_{n}\right)= \\
\left(2 x_{r}-1\right)\left\{\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n-r} x_{i}-\left(n-\left\lfloor\frac{r}{2}\right\rfloor\right)-\chi\left(r>\frac{n}{2}\right)-\left(2 x_{r}-1\right)+x_{r} \chi\left(r>\frac{n}{2}\right)+1-\left(x_{\frac{r}{2}}+x_{2 r}\right) \chi\left(r \leq \frac{n}{2}\right)\right\} .
\end{gathered}
$$

Since we are only interested in the asymptotic behavior, we can modify F by any amount that is $O(n)$. In particular, we can replace $F\left(x_{1}, \ldots, x_{n}\right)$ by

$$
G\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n / 2} x_{i}\left(x_{2 i}-1\right)-\frac{1}{2} \sum_{i=1}^{n} x_{i}
$$

1 Supported in part by the NSF.
Mathematics Classification Numbers: Primary: 05D10, 05A16; Secondary: 04A20

Noting that $\left(2 x_{r}-1\right)^{2} \equiv 1$ and $\left(2 x_{r}-1\right) x_{r} \equiv x_{r}$ on $\{0,1\}^{n}$, we see that for $1 \leq r \leq n$,

$$
\partial_{r} G\left(x_{1}, \ldots, x_{n}\right)=\left(2 x_{r}-1\right)\left\{\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n-r} x_{i}-\left(n-\left\lfloor\frac{r}{2}\right\rfloor\right)-\frac{1}{2} \chi(r \leq n / 2)\right\}-\frac{1}{2} \chi(r \leq n / 2)-1 / 2 .
$$

Let $k=\sum_{i=1}^{n} x_{i}$. By symmetry we may assume that $k \geq n / 2$. Since at a local minimum $\left(z_{1}, \ldots, z_{n}\right)$ we have $\partial_{r} G\left(z_{1}, \ldots, z_{n}\right) \leq 0$, it follows that any local minimum $\left(z_{1}, \ldots, z_{n}\right)$ satisfies the

Ping-Pong Recurrence: Let

$$
H_{c}(y):= \begin{cases}0, & \text { if } y \geq c \\ 1, & \text { if } y<c\end{cases}
$$

For $r=n, n-1, \ldots, n-\lfloor n / 2\rfloor+1$

$$
\begin{gathered}
z_{r}=H_{1 / 2}\left(k-n+\left\lfloor\frac{r}{2}\right\rfloor+\sum_{j=1}^{n-r} z_{j}\right) \\
z_{n-r+1}=H_{1}\left(2 k-n-1 / 2+\left\lfloor\frac{n-r+1}{2}\right\rfloor-\sum_{j=r}^{n} z_{j}\right)
\end{gathered}
$$

(Right Volley)
(Left Volley)
and if n is odd then $z_{(n+1) / 2}=H_{1 / 2}\left(k-n+\left\lfloor\frac{n+1}{4}\right\rfloor+\sum_{j=1}^{(n-1) / 2} z_{j}\right)$.
These equations uniquely determine z (if it exists), in the order $z_{n}, z_{1}, z_{n-1}, z_{2}, \ldots$. When we solve the Ping-Pong recurrence we forget the fact that $\sum_{i=1}^{n} z_{i}=k$. Most of the time, the unique solution will not satisfy this last condition, but when it does, we have a genuine local minimum. Note that any local minimum must show up in this way.

The Solution of the Ping-Pong Recurrence: By playing around with the Maple package RON (available from either author's website), we were able to find the following explicit solution, for n sufficiently large, to the Ping-Pong recurrence. As usual, for any word (or letter) W, W^{m} means ' W repeated m times'.

Let $w=2 k-n, k>n / 2$ (the case $k=n / 2$ is treated seperately). Then $0<w \leq n$. If $w \geq n / 2$ then the (only) solution is 0^{n}. If $w<n / 2$, then let s be the (unique) integer $0 \leq s<\infty$, that satisfies $n /(12 s+14) \leq w<n /(12 s+2)$.

Case I: If $n /(12 s+8) \leq w<n /(12 s+2)$ then the unique solution is

$$
\begin{cases}0^{\left\lfloor\frac{n}{2}\right\rfloor} 1^{n-\left\lfloor\frac{n}{2}\right\rfloor-w-1} 0^{w+1} & \text { for } s=0 \\ 0^{4 w}\left(1^{6 w-1} 0^{6 w-1}\right)^{\frac{s-1}{2}} 1^{\left\lfloor\frac{n}{2}\right\rfloor-(6 s-2) w+s-1} 0^{n-\left\lfloor\frac{n}{2}\right\rfloor-(6 s+1) w+s-1} 1^{6 w-1}\left(0^{6 w-1} 1^{6 w-1}\right)^{\frac{s-1}{2}} 0^{w+1} & \text { for } s \text { odd } \\ 0^{4 w}\left(1^{6 w-1} 0^{6 w-1}\right)^{\frac{s-2}{2}} 1^{6 w-1} 0^{\left\lfloor\frac{n}{2}\right\rfloor-(6 s-2) w+s-1} 1^{n-\left\lfloor\frac{n}{2}\right\rfloor-(6 s+1) w+s-1}\left(0^{6 w-1} 1^{6 w-1}\right)^{\frac{s}{2}} 0^{w+1} & \text { otherwise. }\end{cases}
$$

Case II: If $n /(12 s+14) \leq w<n /(12 s+8)$ then the unique solution is

$$
\begin{cases}0^{4 w}\left(1^{6 w-1} 0^{6 w-1}\right)^{\frac{s-1}{2}} 1^{6 w-1} 0^{n-(12 s+5) w+2 s-1} 1^{6 w-1}\left(0^{6 w-1} 1^{6 w-1}\right)^{\frac{s-1}{2}} 0^{w+1} & \text { for } s \text { odd } \\ 0^{4 w}\left(1^{6 w-1} 0^{6 w-1}\right)^{\frac{s}{2}} 1^{n-(12 s+5) w+2 s-1}\left(0^{6 w-1} 1^{6 w-1}\right)^{\frac{s}{2}} 0^{w+1} & \text { for } s \text { even }\end{cases}
$$

Case III: if $w=0$ (i.e. $s=\infty$), the unique solution is

$$
\begin{cases}1\left(0^{3} 1^{3}\right)^{k / 6} 1^{2}\left(0^{3} 1^{3}\right)^{(k-6) / 6} 0^{3} & \text { if } k \equiv 0(\bmod 6) ; \\ 1\left(0^{3} 1^{3}\right)^{(k-1) / 6} 01^{3}\left(0^{3} 1^{3}\right)^{(k-7) / 6} 0^{3} & \text { if } k \equiv 1(\bmod 6) ; \\ 1\left(0^{3} 1^{3}\right)^{(k-2) / 3} 0^{3} & \text { if } k \equiv 2(\bmod 6) ; \\ 1\left(0^{3} 1^{3}\right)^{(k-3) / 6} 0^{2}\left(0^{3} 1^{3}\right)^{(k-3) / 6} 0^{3} & \text { if } k \equiv 3(\bmod 6) ; \\ 1\left(0^{3} 1^{3}\right)^{(k-4) / 6} 0^{3} 1\left(0^{3} 1^{3}\right)^{(k-4) / 6} 0^{3} & \text { if } k \equiv 4(\bmod 6) ; \\ 1\left(0^{3} 1^{3}\right)^{(k-2) / 3} 0^{3} & \text { if } k \equiv 5(\bmod 6)\end{cases}
$$

Proof: Routine verification!

Now it is time to impose the extra condition that $\sum_{i=1}^{n} z_{i}=k(=(w+n) / 2)$. With Case I we get a contradiction of the applicable range of w, but Case II yields that $w=\frac{n+2(s+1)}{12 s+11}$, which is a local minimum for n sufficiently large. Case III gives a local minimum when $k \equiv 0,1(\bmod 6)$. Hence

The Local Minima Are:

$$
\begin{cases}Z_{s}:=0^{4 w_{s}}\left(1^{6 w_{s}-1} 0^{6 w_{s}-1}\right)^{\frac{s}{2}} 1^{6 w_{s}-3}\left(0^{6 w_{s}-1} 1^{6 w_{s}-1}\right)^{\frac{s}{2}} 0^{w_{s}+1} & \text { for } 0 \leq s<\infty\left(\text { where } w_{s}:=\frac{n+2(s+1)}{12 s+11}\right) \\ Z_{\infty}^{0}=1\left(0^{3} 1^{3}\right)^{k / 6} 1^{2}\left(0^{3} 1^{3}\right)^{(k-6) / 6} 0^{3} & \text { for } w=0 \text { and } k \equiv 0(\bmod 6), \text { and } \\ Z_{\infty}^{1}=1\left(0^{3} 1^{3}\right)^{(k-1) / 6} 01^{3}\left(0^{3} 1^{3}\right)^{(k-7) / 6} 0^{3} & \text { for } w=0 \text { and } k \equiv 1(\bmod 6)\end{cases}
$$

A routine calculation $[\mathrm{R}]$ shows that for $0 \leq s<\infty$

$$
F\left(Z_{s}\right)=\frac{12 s+8}{16(12 s+11)} n^{2}+O(n)
$$

which is strictly increasing in s. An easy calculation shows $F\left(Z_{\infty}^{0}\right)=F\left(Z_{\infty}^{1}\right)=(1 / 16) n^{2}+O(n)$.
...And The Winner Is: $\quad Z_{0}=0^{4 n / 11} 1^{6 n / 11} 0^{n / 11}$ setting the world-record of $(1 / 22) n^{2}+O(n)$.
Note: Tomasz Schoen[S], a student of Tomasz Luczak, has independently solved this problem.
An Extension: Here we note that our result implies a good lower bound for the general r-coloring of the first n integers; if we r-color the integers (with colors $C_{1} \ldots C_{r}$) from 1 to n then the minimum number of monochromatic Schur triples is bounded above by

$$
\frac{n^{2}}{2^{2 r-3} 11}+O(n)
$$

This comes from the following coloring:

$$
\begin{cases}\operatorname{Color}(i)=C_{j} & \text { if } \frac{n}{2^{j}}<i \leq \frac{n}{2^{j-1}} \quad \text { for } 1 \leq j \leq r-2 \\ \operatorname{Color}(i)=C_{r-1} & \text { if } 1 \leq i \leq \frac{4 n}{2^{r-2} 11} \text { or } \frac{10 n}{2^{r-2} 11}<i \leq \frac{n}{2^{r-2}} \\ \operatorname{Color}(i)=C_{r} & \text { if } \frac{4 n}{2^{r-2} 11}<i \leq \frac{10 n}{2^{r-2} 11}\end{cases}
$$

REFERENCES

[GRR] R. Graham, V. Rödl, and A. Rucinski, On Schur properties of random subsets of integers, J. Number Theory 61 (1996), 388-408.
[R] A. Robertson, On the asymptotic behavior of Schur triples, [www.math.temple.edu/~aaron].
[S] T. Schoen, On the number of monochromatic Schur triples, in preparation, [wtguest3@informatik. unikiel.de].

