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Abstract

A bivariate symmetric backwards recursion is of the form d[m,n] = w0(d[m−
1, n]+d[m,n−1])+ω1(d[m−r1, n−s1]+d[m−s1, n−r1])+· · ·+ωk(d[m−rk, n−sk]
+d[m− sk, n− rk]) where ω0, . . . ωk are weights, r1, . . . rk and s1, . . . sk are pos-
itive integers. We prove three theorems about solving symmetric backwards
recursions restricted to the diagonal band x+ u < y < x− l. With a solution
we mean a formula that expresses d[m,n] as a sum of differences of recursions
without the band restriction. Depending on the application, the boundary con-
ditions can take different forms. The three theorems solve the following cases:
d[x+u, x] = 0 for all x ≥ 0, and d[x− l, x] = 0 for all x ≥ l (applies to the exact
distribution of the Kolmogorov-Smirnov two-sample statistic), d[x + u, x] = 0
for all x ≥ 0, and d[x− l+ 1, x] = d[x− l+ 1, x− 1] for x ≥ l (ordinary lattice
paths with weighted left turns), and d[y, y − u + 1] = d[y − 1, y − u + 1] for
all y ≥ u and d[x − l + 1, x] = d[x − l + 1, x − 1] for x ≥ l. The first theorem
is a general form of what is commonly known as repeated application of the
Reflection Principle. The second and third theorem are new; we apply them to
lattice paths which in addition to the usual North and East steps also make two
hook moves, East-North-North and North-East-East. Hook moves differ from
knight moves (covered by the first theorem) by being blocked by any piece of
the barrier they encounter along their three part move.

Submitted: September 9, 1997; Accepted: June 15, 1998
AMS Subject Classification: 0A15

1 Introduction

Finding the number of lattice paths inside a band can sometimes be achieved by
solving a recursion with boundary conditions. The conditions do not only depend
on the position of the band; it is also important how the paths interact with the
boundaries. Suppose we want to count lattice paths which in addition to the unit
steps upwards and to the right, → and ↑, can also make the two knight moves up-

right-right
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a a a

a a��* and right-up-up,
a a

a

a

a

a

��� (vizier+knight moves). Formulas for the number
of such symmetric moves restricted by boundaries parallel to the diagonal (diagonal
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boundaries) are elegantly derived by applying the Reflection Principle, if we assume
that crossing a boundary means for a knight to start and end at different sides of
a boundary. Reflection is more difficult if steps like the above knight moves cannot
temporarily slide over the boundary during the move. We call such a move a hook;

the hooks
a

a a a- and
a a

a

a

6 differ from the knight moves only when they encounter a
barrier.

� �

�

⊗ �

�

no
a a

a

a

6- move from ⊗ to �

(1)

The recursion for calculating the number of paths is the same for both problems, but
the initial values change. Instead of a diagonal line of zeroes along the boundary,
we have to pick up values from the previous row – we call them recursive initial
values (Section 2.5). Solving recursive initial value problems arising from a diagonal
band is the main goal of this paper. However, I do not believe in pursuing a general
method that will eventually cover all kinds of lattice path problems. Only one type
of recursive initial values is considered in this paper; the approach can be modified
to work with closely related problems.

1.1 Statement of Results

A board [d] = [d[m,n]]m,n≥0 is a matrix whose elements can be recursively calculated,
except for certain initial values. We are primarily interested in d[m,n] for nonnegative
integers m and n (the first quadrant, the board), but the recurrence relation may
allow us to find entries for other quadrants. In that way we obtain an extended board
[d[m,n]]m,n∈Z, which we also call an extension array. The extended board follows the

same recursion on Z
2 as the original board on N

2 . A 0-left board can be calculated
assuming that d[m,n] = 0 for negative n, and m ≥ 0.

In this paper we will use brackets for matrices; d[m,n] is the number of (restricted)
paths from the origin to the lattice point (n,m). The indices are switched when we
use n,m as Euclidean coordinates instead of row and column indices of a matrix.

Definition 1 Let r := {rk,1, rk,2 | k = 1, . . . , ρ} be a finite set of ordered pairs with
positive integer components. Together with a vector τ := (τ0, τ1, . . . , τρ) of weights the
set r defines a linear backwards recurrence relation (r, τ) on [d] via

d[m,n] = τ0d[m− 1, n] + τ0d[m,n− 1] +

ρ∑
k=1

τkd[m− rk,1, n− rk,2]

=

(
τ0E

−1
1 + τ0E

−1
2 +

ρ∑
k=1

τkE
−rk,1
1 E

−rk,2
2

)
d[m,n]
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for all d[m,n] which are not initial values. The recursion (r, τ) is symmetric, if for
any k ∈ {1, . . . , ρ} either rk,1 = rk,2, or there is a unique (rl,1, rl,2) such that rk,1 = rl,2
and rk,2 = rl,1 and τk = τl.

Note that the pairs (steps) (1, 0) and (0, 1) are special; they are the only steps
that have a zero component. For the rest of this paper the word recursion will always
mean backwards recursion, and all boards will be backwards recursive; we will not
consider any others.

Definition 2 Let [d] be an extension array and a and integer. The translation op-
erators Ea

1 and Ea
2 are defined by

Ea
1d[m,n] := d[m+ a, n]

Ea
2d[m,n] := d[m,n+ a]

for all integers m and n. The operators ∇1 := 1−E−1
1 and ∇2 := 1−E−1

2 are called
backwards difference operators. If [d] is a 0-left board we write ∇−1

2 or 1
1−E−1

2

for∑
j≥0 d[m,n− j] (see Section 2.5 for details).

For positive integers u and l, the lines y = x+ u and y = x− l enclose a diagonal
band of width u+l. The following three theorems show how to solve certain symmetric
recursions, restricted to that band, under three different combinations of boundary
conditions.

Theorem 3 (zeroes along both boundaries) Let u and l be positive integers, defin-
ing a diagonal band of width W = u + l. Suppose the 0-left board [v0] follows a
symmetric recursion, and has initial values

v0[n− l, n] = 0 for n ≥ l.

Let [d] be a board for the same symmetric recursion which agrees with [v0] in the
rectangle 0 ≤ m < u, 0 ≤ n < W , and satisfies the two diagonal boundary conditions

d[m,m− u] = 0 for all m ≥ u, d[n− l, n] = 0 for all n ≥ l.

Then [d] can be written as a sum of shifted and transposed [v0] boards,

d[m,n] =
1

1− EW
1 E−W2

v0[m,n]−
Eu

1E
−u
2

1− EW
1 E−W2

v0[n,m].

The Theorem is proved in Section 3.
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Theorem 4 (recusrsive initial values at the bottom) Let u and l be positive
integers, defining a band of width W = u + l. Suppose the 0-left board [v0] follows
a symmetric recursion, has polynomial columns v0[m,n] of degree n if m ≥ n, and
satisfies the recursive initial conditions

v0[n− l + 1, n] = v0[n− l + 1, n− 1] for all n ≥ l.

If the board d[m,n] follows the same symmetric recursion, satisfies the boundary con-
ditions

d[m,m− u] = 0 for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l,

and coincides with [v0] in the rectangle 0 ≤ m < u, 0 ≤ n < W , then [d] can be
expanded as

d[m,n] =
1

1−EW−1
1 E−W+1

2 ∇1∇
−1
2

(v0[m,n]− v0[n+ u,m− u]).

The proof will be given in Section 4.

Theorem 5 (recursive initial values along both boundaries) Let u and l be
positive integers, defining an exterior band of width W := u + l, and an interior
band width w := W − 2. Suppose the 0-left board [v0] follows a symmetric recursion,
has polynomial columns d[m,n] of degree n if m ≥ n, and satisfies the recursive initial
conditions

v0[n− l + 1, n] = v0[n− l + 1, n− 1] for all n ≥ l

If the board d[m,n] follows the same symmetric recursion, satisfies the boundary con-
ditions

d[m,m− u+ 1] = d[m− 1,m− u+ 1] for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l,

and coincides with [v0] in the rectangle 0 ≤ m < u, 0 ≤ n < W , then [d] can be
expanded as

d[m,n] =
1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
v0[m,n]−∇−1

2 ∇1v
0[n+ u− 1,m− u+ 1]

)
.

See Section 5 for the proof.
The binomial coefficient

(
n
k

)
will frequently occur when the above Theorems are

applied. It is usually obvious from the context when
(
n
k

)
has to be interpreted as

0 for negative n. In a few instances, however, we find it necessary to reinforce this
convention by writing

(
n
k

)
+
.
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1.2 Examples

In Section 2 we develop some very elementary algebraic operations on boards that
mimic the Reflection Principle. Most examples which we will use later are introduced
in that section. The following table is an index to formulas occurring in the examples.

Equation # barrier
and symbol Steps Name lower upper

(10)
[
P̂
]
→, ↑ ordinary path, vizier zeroes

(21) moves zeroes zeroes
(22) – given initial values zeroes zeroes

(5) [N ]
a a

a

a

a

a

��� ,
a

a a a

a a��* knight moves unrestricted

(11) [N̂ ] zeroes
(23) zeroes zeroes

(5) [H]
a a

a

a

6,
a

a a a- hook moves unrestricted

(12) [Ĥ] zeroes
(24) zeroes zeroes
(3) [S] →, ↑,↗ king moves unrestricted

(9) [Ŝ] Schröder path zeroes
(13) zeroes
(20) zeroes zeroes

(7) →, ↑,
↑

→ µ ordinary path unrestricted
(14) with µ-weighted zeroes
(16) left turns recursive
(30) recursive zeroes

(4) →, ↑,
a a

a

a

a

a

��� ,
a

a a a

a a��* vizier+knight moves unrestricted

(31) →, ↑,
a

a

a a-
,

a a a

a

6 vizier+hook moves recursive recursive

or →, ↑,
a

a a a- ,
a a

a

a

6

(17) →, ↑,
a a

a

a

a

a

��� ,
a a a

a

6 vizier+knight+hook recursive

(29) or →, ↑,
a a

a

a

a

a

��� ,
a

a a a- recursive zeroes

(2) [K] →, ↑,↗,
a a

a

a

a

a

��� ,
a

a a a

a a��* king+knight unrestricted

(8) [K̂] moves zeroes
(19) zeroes zeroes

1.3 Notes

There is no universally accepted catalog for naming lattice paths. Fairy Chess [2] is
better regulated, and can serve as a reference for certain “unusual” moves. However,
all step vectors in this paper have only nonnegative components, and therefore take
only half of the possible moves of the corresponding fairy chess piece. Hence, a vizier
(arabic wazir) moves→ and ↑, a king moves→, ↑ and↗, etc. Ordinary lattice paths
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that stay above the diagonal are often called ballot paths. A ballot path that ends on
the diagonal is a Catalan path or (rotated) Dyck path [8]. A generalized ballot path
with steps →, ↑ and ↗ (king moves) is also called a Schröder path [14], [16].

The number of ordinary paths (10) above (or below) a diagonal boundary is usually
attributed to André [1]. Takács [17] gives an excellent review of the history of lattice
path counting. André does not use the Reflection Principle in his paper. The principle
appears to be much older, and is sometimes referred to as d’Alembert’s Reflection
Principle in Physics. For example, it has been used by Marjan Smoluchowski1 [15,
p. 419 - 421] in 1913 to find the distribution of Brownian motion between parallel
reflecting walls, a continuous version equivalent to the asymptotic distribution of the
Kolmogorov-Smirnov test. The exact number of ordinary paths between diagonal
bounds, (21), appears much later in a paper by Koroljuk [5] in 1955 (centered band),
and Fray and Roselle [3] in 1971 (general case). S. G. Mohanty’s book is a general
reference to Lattice Path Counting and Applications [9]. C. Jordan’s book Calculus
of Finite Differences [4] is a classical reference to the power of differencing.

A survey on the enumeration of lattice paths with weighted turns can be found in
[6], which contains proofs based on two-row arrays for (14) and (16). For polynomial
enumeration by turns of lattice paths above or below non-diagonal lines see [10].

I want to thank the referee for the careful reading of this paper, and the many
insightful comments, which led to substantial improvements.

2 Recursive Boards

Recursive boards are very simple mathematical objects. Still we found it beneficial
to get a better understanding of the role of initial values. In the next two subsections
we provide some technical lemmas which are necessary for the following sections, but
could be skipped on first reading.

2.1 Initial Values and Extensions

Definition 6 The row-depth drow of the recursion r is the max {1, r1,1, r2,1, . . . , rρ,1}.
The column depth dcol is analogously defined.

In an extended (r, τ)-board [d] every element d[m,n] is determined by the elements
below and to the left. If we calculate the board column by column, we need a border
of dcol initial left columns , and an initial value in all other columns to fill the table
recursively.

Frequently it is assumed that d[m,n] = 0 for negative n (or m), cutting down on
the number of initial values on the board. A 0-left board can be calculated assuming
that d[m,n] = 0 for negative n, and m ≥ 0; in a 0-bottom board d[m,n] = 0 for

1I am indebted to L. Takács for this reference.
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negative m, and n ≥ 0.

3 0 0 0 * * * *
2 0 0 0 * * * *
1 0 0 0 * * * *
0 0 0 0 * * * *
-1
-2 ? ?
-3
m↑
n→ -3 -2 -1 0 1 2 3

A 0-left board

We call [b[m,n]]m,n∈Z an extension array of the board [d] if both agree in the first
quadrant. The board [d] and an extension array [b] follow the same recursion, but
extensions are not unique.

Lemma 7 Suppose [a] and [b] are extended boards which follow the same recursion.
(Column version:) If [a] and [b] agree in dcol columns and in at least one entry in

every column to the right, then they are identical everywhere to the right of the given
dcol columns.

(Row version:) If [a] and [b] agree in drow rows and in at least one entry in every
row above, then they are identical everywhere above the given drow rows.

Proof. Without loss of generality we can assume that the arrays agree in column
0, . . . , dcol−1, and that for someN ≥ dcol holds a[m, k] = b[m, k] for all k = 0, . . . , N−
1, and all integers m. If τ0 = 0 then column N is a sum of entries from previous
columns, and the lemma is trivial. Suppose τ0 6= 0. We know that the array d[m,n] :=
a[m,n]− b[m,n] has a zero entry in every column. Suppose, d[M,N ] = 0. From

d[M,N ] = τ0d[M − 1, N ] + τ0d[M,N − 1] +

ρ∑
j=1

τjd[M − rj,1, N − rj,2]

= τ0d[M − 1, N ]

follows by induction that d[m,N ] = 0 for all m ≤ N . In the same way we find that
d[M + 1, N ] = τ0d[M,N ], and by induction d[m,N ] = 0 for all m > N .

Note: It is essential for the above proof that r2,j > 0 for all j.
0-left and 0-bottom boards will play a major role in the following. In general,

there is more than one extension of a given board. However, there is a “canonical”
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extension for certain boards.

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 2, n− 1] + d[m− 2, n− 2]

2 0 0 0 0 1 4 9 15 22
1 0 0 0 0 1 2 3 4 5
0 0 0 0 0 1 1 1 1 1
-1 0 0 0 0 0 0 0 0 0
-2 0 0 0 1 -1 1 -1 1 -1
-3 0 0 -1 2 -3 4 -5 6 -7
-4 0 1 -2 3 -5 8 -12 17 -23
m↑
n→ -4 -3 -2 -1 0 1 2 3 4

0 0 0 0 1 4 9 15
0 0 0 0 1 2 3 4
0 0 0 0 1 1 1 1
1 -1 1 -1 1 -1 1 -1
-2 1 0 0 1 -2 3 -4
5 -3 1 0 0 -1 3 -6
-2 0 0 1 -3 5 -6 5

-4 -3 -2 -1 0 1 2 3
Canonical Extension Noncanonical Extension

The canonical row extension produces the largest amount of leading zeroes, row
by row. The following Theorem is peripheral to the topic of this paper, and we omit
the proof.

Theorem 8 A 0-left board [d] can be extended with leading zeroes: In every row m
there is an index km such that d[m,n] = 0 for all n < km.

Analogously, there exists a canonical column extension for 0-bottom boards.

Example 9 (King+Knight) The weighted number K[m,n] of moves of the

king+knight combination →, ↑, ↗,
a a

a

a

a

a

��� ,
a

a a a

a a��* is given by the recurrence relation
({(1, 1), (1, 2), (2, 1)} , (τ0, κ, ν, ν))

K[m,n] = τ0K[m− 1, n] + τ0K[m,n− 1] + κK[m− 1, n− 1]

+ ν(K[m− 1, n− 2] +K[m− 2, n− 1])

and the initial conditions K[0, n] = K[m, 0] = 1, K[−1, n] = K[m,−1] = 0 for
nonnegative integers m and n. We have ρ = 3 and drow = 2. The forward recursion
is νK[m,n] = K[m+ 2, n+ 1]− τ0K[m+ 1, n+ 1]− τ0K[m+ 2, n]− κK[m+ 1, n]−
νK[m+ 1, n− 1].

K[m,n] = K[m− 1, n] +K[m,n− 1] + κK[m− 1, n− 1]
+ν(K[m− 1, n− 2] +K[m− 2, n− 1])

3 . . . 0 0 0 1 4 + 3κ+ 2ν 10 + · · ·+ 9ν
2 . . . 0 0 0 1 3 + 2κ+ ν 6 + · · ·+ 4ν
1 . . . 0 0 0 1 2 + κ 3 + 2κ+ ν
0 . . . 0 0 0 1 1 1
−1 . . . 0 0 0 0 0 0
−2 . . . 0 0 1/ν 0 0 0
−3 . . . 0 −ν−2 −κν−2 −ν−1 0 0
−4 . . . ν−3 ν−2 + 2κν−3 κ2ν−3 + ν−2 2κν−2 ν−1 0
... . . .

...
...

...
...

...
...

m↑
n→ . . . −3 −2 −1 0 1 2
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It follows from elementary counting arguments that there are

K[m,n] =
∑
i,j,k≥0

τm+n−2k−3i−3j
0 κkνi+j

(
m+ n− k − 2i− 2j

k, i, j,m− k − 2i− j, n− k − i− 2j

)
(2)

possible moves to reach (n,m) from (0, 0). The summation runs over all indices that
result in nonnegative arguments of the multinomial coefficients. If we let ν = 0 and
τ0 = 1 we obtain the number S[m,n] of (directed) king moves,

S[m,n] =
∑
k≥0

κk
(

m+ n− k

k,m− k, n− k

)
. (3)

Without the diagonal steps (κ = 0) the king+knight moves become vizier+knight
moves. Their weighted count is∑

s≥0

τm+n−3s
0 νs

∑
i≥0

(
m+ n− 2s

i, s− i,m− s− i, n− 2s+ i

)
=
∑
s≥0

τm+n−3s
0 νs

(
m+ n− 2s

m− s

)∑
i≥0

(
m− s

i

)(
n− s

s− i

)
=
∑
s≥0

τm+n−3s
0 νs

(
m+ n− 2s

m− s

)(
m+ n− 2s

s

)
+

. (4)

If there are no barriers, knight moves
a a

a

a

a

a

��� ,
a

a a a

a a��* , and hook moves
a a

a

a

6,
a

a a a-
are counted

the same way. We get the number of such moves from (4) if τ0 = 0,

ν(m+n)/3

(
(m+ n)/3

(2n−m)/3

)
(5)

for m ≤ 2n ≤ 4m and m+ n divisible by 3.

d[m,n] = d[m− 1, n− 2] + d[m− 2, n− 1]

7 4 10
6 1 6 5
5 3 4
4 1 3 1
3 2 1
2 1 1
1 1
0 1
m↑
n→ 0 1 2 3 4 5 6 7 8 9

The knight board [N ] and hook board [H] are isomorphic to the ordinary lattice paths
board [P ] (“Pascal’s triangle”) where P [i, j] = N [2i + j, 2j + i] = H[2i+ j, 2j + i] =(
i+j
i

)
.
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Lemma 10 Let c be a nonnegative integer. If the 0-left board [t] has a constant first
column above c, t[m, 0] constant for all m ≥ c, then the board [a] with entries

a[m,n] = t[m+ c+ 1, n+ 1]− t[m+ c, n+ 1]

= ∇1t[m+ c+ 1, n+ 1]

is a 0-left board following the same recursion as [t].

A row version of the above Lemma follows from transposition of [t] and [a].
Proof. Because of linearity, [a] follows the same recursion as [t]. Let m ≥ 0. If

n < −1 then t[m + c + 1, n+ 1] and t[m + c, n + 1] are both zero, and so is a[m,n].
If n = −1 then

a[m,−1] = t[m+ c+ 1, 0]− t[m+ c, 0] = 0.

Lemma 11 Suppose, [a] and [b] are (r, τ)-boards with initial conditions a[mn, n] = αn
and b[mn+c, n] = βn, where c and mn are non-negative integers, αn and βn are initial
values, n = 0, 1, . . . (βn = 0 for negative n). If [b] is a 0-left board then d[m,n] :=
a[m,n] + b[m,n− c] is an (r, τ)-board with initial conditions d[mn, n] = αn + βn−c for
all n ≥ 0, coinciding with a[m,n] for the first c columns.

Proof. The linearity of the recurrence implies that d[m,n] follows the same
recurrence as [a] and [b]. Because of b[m,n − c] = 0 for m ≥ 0, n < c, we get
d[m,n] = a[m,n] for those columns.

The “row version” of the above Lemma follows.

Lemma 12 Suppose, [a] and [b] are (r, τ)-boards with initial conditions a[m,nm] =
αm and b[m,nm+c] = βm, where c and nm are non-negative integers, αm and βm are
initial values, m = 0, 1, . . . (βm = 0 for negative m). If [b] is a 0-bottom board then
d[m,n] := a[m,n] + b[m − c, n] is an (r, τ)-board with initial conditions d[m,nm] =
αm + βm−c for all m ≥ 0, coinciding with a[m,n] for the first c rows.

2.2 Eventually Polynomial Boards

Polynomials can be a great tool for handling certain two dimensional recursions under
side conditions, because the calculus of polynomials is well developed. Unfortunately
there are already very elementary problems which do not give rise to polynomials, as in
the following example of vizier+knight moves. Both tables show the number of paths
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from (0, 0) to (n,m) for the same recursion, but under different initial conditions.

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 2, n− 1] + d[m− 1, n− 2]

5 1 10 49 170 474 1136
4 1 8 32 94 226 474
3 1 6 19 46 94 170
2 1 4 10 19 32 49
1 1 2 4 6 8 10
0 1 1 1 1 1 1
m↑
n→ 0 1 2 3 4 5

5 1 8 27 56 70 0
4 1 6 14 18 0 −71
3 1 4 5 0 −17 −62
2 1 2 0 −6 −9 −51
1 1 0 −1 −8 12 . . .
0 1 −2 2 −14 . . . . . .
m↑
n→ 0 1 2 3 4 5

Neither row nor column polynomials Columns are polynomials of degree n

In both tables we start with d[m, 0] = 1, and d[m,−1] = 0 for m ≥ 0. In the first
table we let d[1, n] = 1 and d[−1, n] = 0 for n ≥ 0, which gives us the “unrestricted”
vizier+knight moves. The n-th column in that table is obviously not obtainable in
the form d[m,n] = dn(m), where dn is a polynomial of degree n. This is the case for
the table to the right, where we required the initial values d[n, n] = δ0,n, counting the
number of paths staying strictly above the diagonal after their start at the origin. In
order for the column polynomials to appear we have to extend the initial conditions
d[m, 0] = 1, and d[m,−1] = 0 to negative values of m.

A formula for the entries in the left table can be found by elementary combinatorial
arguments. The polynomials in the right table are easily constructed by algebraic
methods like the Umbral Calculus [11],

d[m,n] = dn(m) =
n∑
l=0

m− n

n− 2l +m

(
n− 2l +m

l

)(
n− 2l +m

n− l

)
.

This paper is about non-polynomials tables. In the last two sections, however, we need
the assumptions that the columns are (eventually) polynomial above the diagonal, as
it is the case in the left table.

The backwards difference operator ∇ lowers the degree of any polynomial by 1.
Therefore, the differencing of 0-left (0-bottom) boards in Lemma 10 can be repeated,
if the columns (rows) d[m,n] are polynomials of degree n (m). A slightly stronger
result can be shown.

Corollary 13 Let c be a nonnegative integer. Suppose that the columns t[m,n] of
the 0-left board [t] are values of polynomials of degree n for m ≥ n + c, and that
t[m, 0] 6= 0 for m ≥ c. For all k ≥ 0,

[
∇k

1t[m+ k + c, n+ k]
]
m,n≥0

is a 0-left board

where the columns ∇k
1t[m+ k + c, n+ k] are values of polynomials of degree n for all

m ≥ n, with constant nonzero first column.

There is of course also a row version of this corollary, by transposition of the board
[t].

Proof. The statement is true for k = 0. Suppose it holds for some k − 1 ≥ 0.
Let a[m,n] := ∇k−1

1 t[m + k − 1 + c, n + k − 1]. By Lemma 10, ∇k
1t[m + k + c, n +
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k] = ∇1a[m + 1, n + 1] is a 0-left board. By induction, the columns a[m,n + 1] are
polynomials of degree n+ 1 for m ≥ n+ 1. Hence, the columns of ∇1a[m+ 1, n+ 1]
are values of polynomials of degree n for m ≥ n + 1. The first column is a nonzero
constant because it is the backwards difference of a polynomial of degree 1.

2.3 Symmetric Backwards Recursions

For symmetric backwards recursions (r, τ) holds

ρ∑
k=1

τkd[m− rk,1, n− rk,2] =

ρ∑
k=1

τkd[m− rk,2, n− rk,1] (6)

(see Definition 1). Note that symmetry of the recursion does not imply symmetry of
the board! The latter will depend on the choice of initial values.

Example 14 (weighted left turns) The recursion ((1, 1) , (1, γ)) occurs in the enu-
meration of lattice paths, d[m,n] = d[m− 1, n] + d[m,n− 1] + γd[m− 1, n− 1]. The
paths take horizontal, vertical, and diagonal steps (a king). If we write γ = µ − 1,
then this recurrence enumerates lattice paths with horizontal (East → direction) and

vertical (North ↑) unit steps, where the left turns
↑

→ ◦ have weight µ.

↑
◦ → ◦ → ◦ → µ
↑

→ µ
Lattice Path with Weight µ2

By elementary counting arguments one finds the total weight

d[m,n] =
∑
d≥0

(
m

d

)(
n

d

)
µd (7)

of all paths reaching the point (n,m). This board has both polynomial columns and
polynomial rows, and they are equal by symmetry.

2.4 Initial Zeroes along a Barrier

Suppose we want to count the number of some kind of paths from (0, 0) to (n,m)
which stay strictly above the boundary y = x − c. For ordinary lattice paths this
problem is usually solved by applying the Reflection Principle. In the language of
recursions the ‘mirror’ is a boundary of initial values which are zero.

Lemma 15 Suppose, [a] is a 0-bottom board for a symmetric recursion, and c is some
positive integer constant. Then

d[m,n] := a[m,n]− a[n− c,m+ c]

is the board for the same recursion with boundary values d[n− c, n] = 0 for all n ≥ c.
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Proof. It is straightforward to check that [d] has the required boundary values.
Let (r, τ) denote the recursion. Because of symmetry, both a[m,n] and a[n,m] are
(r, τ)-recursive. By linearity, [d] is also (r, τ)-recursive.

The above Lemma has to be applied with caution to enumeration problems. It
must be carefully checked whether the condition d[n − c, n] = 0 really suffices to
describe the effect of the lower boundary. For a counter example see Section 2.5.

Example 16 (asymmetric board) Lemma 15 does not require that the board [a]
must be symmetric - only the recursion needs symmetry. Here is an example for an
unsymmetrical 0-bottom board satisfying d[m,n] = d[m − 1, n] + d[m,n − 1] and the
boundary condition d[n− 2, n] = 0.

d[m,n] = d[m− 1, n] + d[m,n− 1]

5 ? 11 29 68− 1 143− 9 275− 45 492− 396
4 ? 7 18 39− 1 75− 8 132− 36 217− 121

3 ? 5 11 21− 1 36− 7 57− 28 85− 85

2 ? 3 6 10− 1 15− 6 21− 21 28− 57

1 ? 2 3 4− 1 5− 5 6− 15 7− 36

0 ? 1 1 1− 1 1− 4 1− 10 1− 21
−1 ? 0 0 0− 1 0− 3 0− 6 0− 11
m↑
n→ −1 0 1 2 3 4 5

Oridinary paths above y = x− 2 when column 0 lists all primes

The board [d] above is explicitly written in the form a[m,n]−a[n−2,m+2], displaying
[a] as the nonnegative entries in the table. The board [a] is easy to find if we have a
table of primes to determine a[i, 0], because

a[m,n] =
m∑
i=0

a[i, 0]

(
m+ n− i− 1

m− i

)
(by combinatorial arguments or calculus of differences [4]).

Example 17 (king+knight) In example 9 we investigated the king+knight moves

→, ↑,↗,
a a

a

a

a

a

��� ,
a

a a a

a a��* . The symmetric board [K] can be either extended to a 0-left or to
a 0-bottom array. In the board K̂ we want to force all king+knight positions to stay
above the line y = x − l, where l is a positive integer. For calculating K̂ we need
more assumptions about the nature of the knight moves than what is expressed in the
recursion. The knights can jump over the border as long as they start and end above
the barrier. The initial values K̂[m,n] = K[m,n] for all integers m and n = l − 1, l,
and K̂[n− l, n] = 0 for n ≥ l uniquely determine the solution (by Lemma 7).

3 1 4 + 3κ+ 2ν 9 + 12κ+ 3κ2 + 2κν + 9ν 14 + · · ·+ 2ν2 . . .

2 1 3 + 2κ+ ν 5 + 6κ+ κ2 + 4ν 5 + · · ·+ 6ν 0

1 1 2 + κ 2 + 2κ+ ν 0 −4 · · · − 6ν

0 1 1 0 −2− 2κ− ν −5 · · · − 4ν
m↑
n→ 0 1 l = 2 3 4



the electronic journal of combinatorics 5 (1998), #R30 14

The number of such moves (with τ0 = 1) to (n,m) is according to Lemma 15

K̂[m,n] = K[m,n]−K[n− l,m+ l] (8)

=
∑
i,j,k≥0

κkνi+j
(

m+ n− k − 2i− 2j

k, i, j,m+ n− 2k − 3i− 3j

)
×((

m+ n− 2k − 3i− 3j

m− k − 2i− j

)
+

−

(
m+ n− 2k − 3i− 3j

m+ l − k − 2i− j

)
+

)
If we eliminate the knight moves (ν = 0) we obtain

Ŝ[m,n] =
∑
k≥0

κk
(
m+ n− k

k

)((
m+ n− 2k

m− k

)
+

−

(
m+ n− 2k

m+ l − k

)
+

)
(9)

king moves (→, ↑,↗) strictly above the line y = x− l. We obtain the classical Ballot
numbers if we also set γ = 0;

P̂ [m,n]− P̂ [n− l,m+ l] =

(
m+ n

m

)
−

(
m+ n

m+ l

)
(10)

is the number of →, ↑-paths strictly above y = x− l.

Example 18 (knights) The pure knight moves
a a

a

a

a

a

��� ,
a

a a a

a a��* are similar to ordinary
lattice paths (see (5)). Lemma 15 tells us that the number N̂ [m,n] of knight moves
to [m,n] staying above the boundary y = x− l is given by

N̂ [m,n] = N [m,n]−N [n− l,m+ l] =

(
(m+ n)/3

(2n−m)/3

)
−

(
(m+ n)/3

(2n−m− 3l)/3

)
(11)

for n− l < m ≤ 2n ≤ 4m and m+ n divisible by 3.

N̂ [m,n] = N̂ [m− 1, n− 2] + N̂ [m− 2, n− 1]

7 4 5 �

6 1 5 �

5 3 0
4 1 2 �

3 2 �

2 1 0
1 1 �

0 1 �

m↑
n→ 0 1 l = 2 3 4 5 6 7 8 9

Example 19 (hooks) Every time a hook move (
a a

a

a

6,
a

a a a- ) lands on a cell adjacent
to the boundary y = x − l it has no further place to go. We can therefore replace
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the contents of such cells (framed in the table below) by zeroes, and count the knight
moves above y > x− l + 1 instead, using formula (11).

Ĥ[m,n] = Ĥ[m− 1, n− 2] + Ĥ[m− 2, n− 1]

8 1 9 5
7 4 5 �

6 1 5 �

5 3 2 �

4 1 2 �

3 2 �

2 1 1 �

1 1 �

0 1 �

m↑
n→ 0 1 2 l 4 5 6 7 8 9 10

Ĥ[m,n] =

( 1
3
(m+ n)

1
3
(2n−m)

)
−

( 1
3
(m+ n)

1
3
(2n−m)− l + 1

)
(12)

for n− l + 1 < m ≤ 2n ≤ 4m and m+ n divisible by 3.

There is also a “row version” of the lemma 15 for 0-left boards [a] with symmetric
recursions, i.e., d[m,n] := a[m,n]− a[n+ c, n− c] is the array for the same recursion
with boundary values d[m,m− c] = 0 for all m ≥ 0.

Example 20 (kings and left turns below barrier) The number of king moves
strictly below the line y = x + u can be obtained from K[m,n] − K[n + u,m − u]
with ν = 0, ∑

k≥0

κk
(
m+ n− k

k

)((
m+ n− 2k

m− k

)
+

−

(
m+ n− 2k

m− u− k

)
+

)
. (13)

We saw in Example 14 that replacing κ by µ− 1 counts the ordinary →, ↑-paths with
weighted left turns∑

k≥0

(µ− 1)k
(
m+ n− k

k

)((
m+ n− 2k

m− k

)
+

−

(
m+ n− 2k

m− u− k

)
+

)
.

Instead of expanding (µ− 1)k we can apply the row version of Lemma 15 directly to
(7) and get ∑

d≥0

µd
((

m

d

)(
n

d

)
−

(
m− u

d

)(
n+ u

d

))
. (14)

This result is well known (see for example [6]). It follows that
∑

k≥0

(
m−u
k

)(
n+u
k

)
µk

is the total weight of the paths from the origin that reach (n,m) after reaching the
line y = x + u. However, we cannot specialize the result (9) for the number of king
moves above y = x− l to weighted left turns, because the initial values d[n− l, n] = 0
are not valid for weighted left turns. Instead, we need the recursive initial condition
d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l.



the electronic journal of combinatorics 5 (1998), #R30 16

2.5 Recursive Initial Values along a Barrier

There are many situations when a lower boundary y = x− l cannot be described by
0 values along the barrier. In Example 17 we assumed that a knight can temporarily
cross a barrier during a jump that starts and ends above the barrier. If such a
temporary crossing is forbidden, the initial values d[n− l, n] = 0 for all n ≥ l must be
replaced by complicated recursive initial values. Instead of trying a general approach
covering a wide range of possible recursions on initial values, we investigate only one

special situation arising from the hook moves
a a

a

a

6and
a

a a a- . It is left to the reader
to check how the method applies to different problems. The same kind of recursive
initial values occur already in the easier problem of →, ↑-paths with weighted left
turns, where a left turn is a right-up move that cannot touch the barrier y = x− l. It
follows, that the position [n− l + 1, n] (right above the barrier) can only be reached
from the left, and therefore d[n− l + 1, n] = d[n− l + 1, n− 1].

If [a] is a 0-bottom board and [b] is a 0-left board then the expressions∑
i≥0

E−i1 a[m,n] =
∑
i≥0

a[m− i, n] and
∑
j≥0

E−j2 b[m,n] =
∑
j≥0

b[m,n− j]

are finite, and we write

∇−1
1 a[m,n] =

1

1− E−1
1

a[m,n] =
∑
i≥0

E−i1 a[m,n]

∇−1
2 b[m,n] =

1

1− E−1
2

b[m,n] =
∑
j≥0

E−j2 b[m,n].

Note that

∇1∇
−1
1 a[m,n] = a[m,n],

supporting the choice of notation.

Lemma 21 Suppose, [t] is a 0-bottom board for a symmetric recursion, with constant
first row, and l is some positive integer constant. The board [d] which equals [t] for
n = 0, . . . , l − 1 and satisfies the same recursion and the recursive initial conditions

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l

can be expanded in terms of [t],

d[m,n] = t[m,n]−∇−1
1 ∇2t[n− l + 1,m− 1 + l]

for all m,n ≥ 0.

Proof. It is straightforward to check that d[n,m] follows the recursion and satis-
fies the required boundary conditions. However, we want to show how to construct
the answer. We start with an ‘Ansatz’ of the form

d[m,n] = t[m,n]− q[n− l,m− 1]
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and try to determine the 0-bottom (r, τ)-array [q[m,n]], guaranteeing that [d] and
[t] agree in the first l columns (the symmetry of (r, τ) is necessary so the right hand
side of the above equation will follow the correct recursion). We first determine the
difference w[m,n] := ∇1q[m,n] which must have initial values

w[n, n] = q[n, n]− q[n− 1, n]

= t[n+ 1, n+ l]− d[n+ 1, n+ l]− t[n+ 1, n+ l − 1] + d[n+ 1, n+ l − 1]

= t[n+ 1, n+ l]− t[n+ 1, n+ l − 1]. (15)

[∇2t[m+ 1, n+ l]]m,n≥0 is a 0-bottom board by Lemma 10, and has the required initial
values (15). Therefore w[m,n] := ∇2t[m+ 1, n+ l] for all m,n ≥ 0, and

q[m,n] = ∇−1
1 w[m,n] = ∇−1

1 ∇2t[m+ 1, n+ l].

Example 22 (left turns) As we already have pointed out, the µ-weighted left turns
↑

→ ◦ cannot slide along the barrier y = x − l where l is a positive integer. The left
turn recursion

t[m,n] = t[m− 1, n] + t[m,n− 1] + (µ− 1)t[m− 1, n− 1]

can be written as

µt[m− 1, n− 1] = ∇1∇2t[m,n],

which simplifies the application of Lemma 21:

d[m,n] = t[m,n]−∇−1
1 ∇2t[n− l + 1,m− 1 + l]

= t[m,n]−∇−1
1 ∇2∇1∇2t[n− l + 2,m+ l]/µ

= t[m,n]−∇2
2t[n− l + 2,m+ l]/µ.

Substitute

t[m,n] =
∑
d≥0

(
m

d

)(
n

d

)
µd

(see (7)) and get

d[m,n] =
∑
d≥0

µd
((

m

d

)(
n

d

)
−

(
m− 2 + l

d− 1

)(
n− l + 2

d+ 1

)
+

)
. (16)

Two other proofs of this result can be found in [7].

Example 23 (vizier+knight+hook) The symmetric recursion
({(1, 2), (2, 1)} , (1, ν, ν)) is another subcase of the king+knight moves. Suppose, the

step (1, 2) belongs to the knight move
a a

a

a

a

a

��� , but (2, 1) belongs to the hook move
a a a

a

6
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, unable to even temporarily cross the barrier y = x − l. The bold entries in the
left table below are the recursive initial values d[n− l+ 1, n] which are obtained from
d[n− l + 1, n− 1]. The right table shows the king+knight moves for comparison.

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 2, n− 1] + d[m− 1, n− 2]

5 1 10 49 168 447 953 1570
4 1 8 32 92 203 339 339
3 1 6 19 44 75 75 �

2 1 4 10 17 17 �

1 1 2 4 4 �

0 1 1 1 �

m↑
n→ 0 1 2 3 4 5 6

1 10 49 169 458 1012 1785
1 8 32 93 212 379 461

1 6 19 45 82 100 0

1 4 10 18 22 0

1 2 4 5 0

1 1 1 0

0 1 2 3 4 5 6

a a a

a

6 cannot jump over the barrier The knights
a a

a

a

a

a

��� ,
a

a a a

a a��* pass by the barrier

The unrestricted counts (see (4))

t[m,n] =
∑
s≥0

τm+n−3s
0 νs

(
m+ n− 2s

m− s

)(
m+ n− 2s

s

)
+

are the same for hooks and knights. From Lemma 21 we get the following formula for
the number of this kind of vizier+knight+hook moves above y = x− l

d[m,n] = t[m,n]−∇−1
1 ∇2

∑
k≥0

τm+n−3k
0 νk

(
m+ n− 2k

n− l + 1− k

)(
m+ n− 2k

k

)
+

(17)

for m > n− l + 1.

Suppose, b[m,n] is the number of vizier+knight+hook moves with steps →, ↑,
a a

a

a

a

a

��� ,

and
a

a a a-
from (0, 0) to (n,m) staying strictly above y = x− l. It is easy to verify that

b[m,n] is also given by (17) for m > n− l + 1, and b[n− l + 1, n] = b[n − l + 1, n−
1] + b[n− l, n− 2].

3 Two Barriers of Zeroes

Frequently, the problem of finding the number of paths inside a diagonal band can
be formulated as a boundary value problem with zeroes on both diagonal bound-
aries. D’Alembert’s Reflection Principle has been successfully applied to such pairs
of boundaries; however in view of the next section we want to show how an ‘inclusion-
exclusion’ of boards can be used to prove Theorem 3 in Section 1.1. The Reflection



the electronic journal of combinatorics 5 (1998), #R30 19

Principle is implicitly still present, in the form of transposition of boards.

7 0 0
6 0 0
5 0 0
4 0 0
u 0 0
2 0
1 0
0 0
m↑
n→ 0 1 2 3 4 l 6 7 W 9 10 11 12

Boundaries represented by zeroes

For easier reference, we state Theorem 3 again, in an equivalent formulation.

Let u and l be positive integers, defining a diagonal band of width W = u + l.
Suppose the 0-left board [v0] follows a symmetric recursion, and has initial values

v0[n− l, n] = 0 for n ≥ l.

Let [d] be a board for the same symmetric recursion which agrees with [v0] in the
rectangle 0 ≤ m < u, 0 ≤ n < W , and satisfies the two diagonal boundary conditions

d[m,m− u] = 0 for all m ≥ u, d[n− l, n] = 0 for all n ≥ l.

Then [d] can be written as an alternating sum of shifted and transposed [v0] boards,

d[m,n] =
∑
i≥0

(
v0[m+ iW, n− iW ]− v0[n+ u+ iW,m− u− iW ]

)
Proof of Theorem 3. The following proof contains more details than absolute

necessary, because it serves as a model for the proof of Theorem 4 and Theorem
5 where the technical details are less transparent. Let (r, τ) denote the symmet-
ric recursion. The board [d] is obtained from an “inclusion – exclusion” of (r, τ)-
boards, v0−h0 + v1−h1 + . . . , which is schematically presented in the picture below.
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0
u+ 3W 0 −h3

16 0
15 0 v3

14 0 0
13 0 0

u+ 2W 0 −h2 0
11 0 0
10 0 v2 0
9 0 0
8 0 0

u+W 0 −h1 0
6 0 0
5 0 v1 0
4 0 0
3 0 −h0 0
u 0 0
1 0
0 v0 0
m↑
n→ 0 1 2 l 4 W 6 7 8 9 2W 11 12 13 14 3W 16

The partial sums of this series are a sequence of approximating boards[
d̂0
]
,
[
d0
]
,
[
d̂1
]
,
[
d1
]
, . . .

where
[
d̂k
]

agrees with [d] inside the rectangle 0 ≤ m < u+ kW, 0 ≤ n < (k + 1)W ,

and satisfies the initial condition d̂k[n− l, n] for all n ≥ l. Each
[
dk
]

agrees with [d]
inside the rectangle 0 ≤ m < u+(k+1)W, 0 ≤ n < (k+1)W , and satisfies the initial
condition dk[m,m− u] for all m ≥ u.

d̂0[m,n] = v0[m,n] for 0 ≤ m < u and 0 ≤ n < W

u ? ? ? ? ? ? ? ? 0
2 0 ?
1 v0[m,m] 0 ?
0 0 ?
m↑
n→ 0 1 2 3 4 l 6 7 W . . .

Starting the construction

We begin with the (r, τ)-board
[
d̂0
]

:= [v0]. Inside the rectangle 0 ≤ m < u and

0 ≤ n < W we have d̂0[m,n] = d[m,n], and for all n ≥ l holds d̂0[n − l, n] = 0. Let
h0[m,n] := v0[n + u,m]. The board [h0] is 0-bottom extendable, because [v0] is a
0-left board. The board with entries

d0[m,n] := d̂0[m,n]− h0[m− u, n]
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equals 0 on the boundary m = n+ u for all m ≥ u,

d0[m,m− u] = d̂0[m,m− u]− h
0[m− u,m− u] = v0[m,m− u]− v0[m,m− u] = 0,

and is (r, τ)-recursive because of Lemma 12. Therefore, d[m,n] = d0[m,n] inside the
rectangle 0 ≤ m < u+W, 0 ≤ n < W .

d0[m,n] = v0[m,n]− h0[m− u, n]
for 0 ≤ m < u+W, 0 ≤ n < W

u+W ? ? ? ? ? ? ? ? 0
10 0 ?
9 0 ?
8 0 ?
7 0 ?
6 0 ?
5 0 ?
4 0 −h0[m− u, n] ?
u 0 ?
2 0 ?
1 v0[n,m] 0 ?
0 0 ?
m↑
n→ 0 1 2 3 4 l 6 7 W

For n ≥W the lower boundary values

d0[n− l, n] = d̂0[n− l, n]− h0[n− l − u, n] = 0− h0(n− l − u, n)

are no longer 0 in general. We correct that in the next step. Let v1[m,n] := h0[n,m+
l]. The board [v1] is 0-left extendable, because we have switched row and column
indices again. h0[m− u, n]− v1[m,n−W ] vanishes on the boundary x = y + l,

h0[n− l − u, n]− v1[n− l, n−W ] = h0[n− l − u, n]− h0[n− l − u, n] = 0

for all n ≥ 0. This together with Lemma 11 shows that

d̂1[m,n] := d0[m,n] + v1[m,n−W ]

agrees with [d] in the rectangle 0 ≤ m < u+W, 0 ≤ n < 2W , and vanishes along the
lower boundary.
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d̂1[m,n] = v0[m,n]− h0[m− u, n] + v1[m,n−W ]
for 0 ≤ m < u+W, 0 ≤ n < 2W

u+W ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0
10 0 0 ?
9 0 0 ?
8 0 +v1[m,n−W ] 0 ?
7 0 0 ?
6 0 0 ?
5 0 0 ?
4 0 −h0[m− u, n] 0 ?
u 0 0 ?
2 0 ?
1 v0[n,m] 0 ?
0 0 ?
m↑
n→ 0 1 2 3 4 l 6 7 W 9 10 11 12 13 14 15 2W

The entries in the top row will be determined in the next step
We have enlarged both sides of the original rectangle 0 ≤ m < u + 0 · W, 0 ≤

n < 1 ·W by W , to the new rectangle 0 ≤ m < u + 1 ·W, 0 ≤ n < 2 ·W . This
construction can be repeated indefinitely: If we define hk[m,n] := vk[n + u,m] and
vk[m,n] := hk−1[n,m+ l] then

dk[m,n] = d̂k[m,n]− hk[m− u, n]

= dk−1[m,n] + vk[m,n− w]− hk[m− u, n]

=
k∑
i=0

(
vi[m,n− iW ]− hi[m− u− iW, n]

)
(18)

agrees with d[m,n] inside the rectangle 0 ≤ m < u + (k + 1)W, 0 ≤ n < (k + 1)W .
The recursion

vk[m,n− kW ] = hk−1[n− kW,m+ l] = vk−1[m+W,n− kW ]

= · · · = v0[m+ kW, n− kW ]

finishes the proof.
In the few cases where lattice paths between diagonal boundaries of zeroes have

been counted in the literature, the summation in Theorem 3 is usually written as a
sum over all integers. This is possible if d[m,n] is assumed to be zero for m < 0,
0 ≤ n < l, and 0 ≤ m < u, n < 0.

Corollary 24 Let u and l be positive integers, defining a band of width W := u+ l.
Suppose, [d] follows a symmetric recursion and satisfies the two diagonal boundary
conditions

d[m,m− u] = 0 for all m ≥ u, d[n− l, n] = 0 for all n ≥ l.

Let [a] be a symmetric board for the same recursion that can be extended to a 0-left
board. If d[m,n] = a[m,n] on the rectangle 0 ≤ m < u, 0 ≤ n < l then it can be
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expanded for 0 ≤ n− l ≤ m ≤ n+ u as

d[m,n] =
∑
s∈Z

(a[m+ sW, n− sW ]+ − a[m+ sW + l, n− sW − l]+)

where a[j, i]+ = 0 for negative i or j.

Proof. Because [a] is a symmetric, it also has an extension to a 0-bottom board
which we call [a′]; we denote the 0-left extension again by [a]. Both extensions agree
in the first quadrant. A slight generalization of Lemma 15 shows that

v0[m,n] := a[m,n]− a′[n− l,m+ l]

can serve as the 0-left board in Theorem 3. On the first quadrant holds v0[m,n] =
(1−El

1E
−l
2 )a[m,n] by symmetry. According to Theorem 3, d[m,n] equals

1− El
1E
−l
2

1−EW
1 E−W2

a[m,n]−
Eu

1E
−u
2 (1−El

1E
−l
2 )

1− EW
1 E−W2

a[n,m]

=
1−El

1E
−l
2

1− EW
1 E−W2

a[m,n]−
E−u1 Eu

2 (1−E−l1 El
2)

1−E−W1 EW
2

a[m,n]

=

(
1− El

1E
−l
2

1− EW
1 E−W2

+
1−El

1E
−l
2

1− E−W1 EW
2

E−W1 EW
2

)
a[m,n]

=
(
1−El

1E
−l
2

)(∑
k≥0

EkW
1 E−kW2 a[m,n] +

∑
j≥1

E−jW1 EjW
2 a[m,n]

)
for 0 ≤ n− l ≤ m ≤ n+ u.

Example 25 (king+knight) We found in Example 9 the weighted count K[m,n]
of king+knight moves. The board [K] has a 0-left extension; according to Corollary 24
the weighted count of such moves strictly inside the band x − l < y < x + u is given
by ∑

s∈Z

(K[m+ sW, n− sW ]−K[m+ sW + l, n− sW − l])

=
∑
i,j,k≥0

κkνi+j
(

m+ n− k − 2i− 2j

k, i, j,m+ n− 2k − 3i− 3j

)
×

∑
s∈Z

((
m+ n− 2k − 3i− 3j

m+ sW − k − 2i− j

)
+

−

(
m+ n− 2k − 3i− 3j

m+ sW + l − k − 2i− j

)
+

)
(19)

Again, we allowed the knights to jump over the barriers as long as they start and land
inside the band.

Special cases: Lattice paths with steps→, ↑, and κ-weighted diagonal steps↗ (king
moves) are obtained from the above by setting ν = 0. There are∑

k≥0

κk
(

m+ n− k

k,m+ n− 2k

)∑
s∈Z

((
m+ n− 2k

m+ sW − k

)
+

−

(
m+ n− 2k

m+ sW + l − k

)
+

)
(20)
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such weighted paths strictly inside the band x− l < y < x+u (with width W = l+u).

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 1, n− 1]

4 0 30 116 306 663 1251 2039 2468 0
u 0 6 24 62 128 229 359 429 0
2 1 5 13 25 41 60 70 0
1 1 3 5 7 9 10 0
0 1 1 1 1 1 0
m↑
n→ 0 1 2 3 4 l 6 7 W 9

King moves inside a band

Without diagonal steps (κ = 0) this simplifies to the well known number of ordinary
lattice paths inside a diagonal band,∑

s∈Z

((
m+ n

m+ sW

)
−

(
m+ n

m+ sW + l

))
. (21)

Example 26 (asymmetric starting values) The above example is based on a 0-
bottom and 0-left board [a] so that Corollary 24 can be applied. This example is about
ordinary paths (vizier moves) on a 0-left board with given initial values d[0, n] = αn
for all n = 0, . . . , l−1, and α0 6= 0. Let [a] be a 0-left board for the same recursion and
initial values as [d] (up to column l − 1), but without the restrictions imposed by the
band. Because of the simple recursion, [a] has polynomial columns, a[m,n] = an(m)
for some polynomial sequence {an(x)}n≥0. It can be shown in many ways (e.g. [11,
equation (2)]) that

a[m,n] =
n∑
j=0

αj

(
n− j − 1 +m

n− j

)
,

where αj = a[0, j] for all j ≥ 0.

d[m,n] = d[m− 1, n] + d[m,n− 1]

4 0 62 306 1005 2432 4587 6742 6742 0
u 0 10 62 244 699 1427 2155 2155 0
2 1 10 52 182 455 728 728 0
1 1 9 42 130 273 273 0
0 1 8 33 88 143 0
m↑
n→ 0 1 2 3 4 l 6 7 W 9

Ordinary paths with given bottom inputs inside a band

In the above board αj := 10−2j
10

(
j+9
j

)
and therefore

a[m,n] = an(m) = m+10−2n
m+10

(
n+m+9

n

)
. According to [11, equation (6)],

v0[m,n] =
l−1∑
k=0

ak(k − l)
m− n+ l

m− k + l

(
n+m− 2k + l − 1

n− k

)
. (22)
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In the sample board above, l = 5 and u = 3. By Theorem 3,

d[m,n] =
∑
i≥0

4∑
k=0

5− k

k + 5

(
2k + 4

k

)
m− n+ 5 + 16i

m− k + 5 + 8i

(
n+m− 2k + 4

n− k − 8i

)

−
∑
i≥0

4∑
k=0

5− k

k + 5

(
2k + 4

k

)
m− n+ 11 + 16i

n− k + 8 + 8i

(
n+m− 2k + 4

m− k − 3− 8i

)

Example 27 (knights) For the knight moves
a a

a

a

a

a

��� ,
a

a a a

a a��* inside a diagonal band there
always exists an isomorphic board counting ordinary lattice paths inside a band with
the same width. Alternatively, we can apply Corollary 24 to the unrestricted knight
moves (5) and get the number of knight moves to (n,m) inside the band x− l < y <
x+ u as ∑

s∈Z

((
(m+ n)/3

1
3
(2n−m)− sW

)
−

(
(m+ n)/3

1
3
(2m− n) + sW + l

))
(23)

for n− l < m ≤ 2n ≤ 4m < 4(n+ u) and m+ n divisible by 3.

Example 28 (hooks) We saw already in Example 19 that the hook moves
a a

a

a

6and

a

a a a- reach dead ends adjacent to the lower boundary y = x− l. Similarly, they reach
dead end position adjacent to the upper boundary. Replace the contents of those cells
(framed in the board below) by zero, and obtain an equivalent problem for knight moves
in the band x− l + 1 < y < x+ u− 1.

d[m,n] = d[m− 1, n− 2] + d[m− 2, n− 1]

8 � 4 4

7 � 2 4 �

6 � 4 �

5 � 2 2 �

4 � 1 2 �

u = 3 � 2 �

2 1 1 �

1 1 �

0 1 �

m↑
n→ 0 1 2 l = 3 4 5 6 7 8 9 10

d[m,n] =
∑
s∈Z

((
(m+ n)/3

1
3
(2n−m)− sw

)
−

(
(m+ n)/3

1
3
(2m− n) + sw + l − 1

))
(24)

where w = u + l − 2 and n − l + 1 < m ≤ 2n ≤ 4m < 4n + 4u − 4, and m + n is
divisible by 3.
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4 Recursive Initial Values at the Bottom of the

Band

For weighted left turns inside a band only the lower boundary requires recursive initial
values; the upper boundary can be represented by zeroes.

5 0 ε ε �

4 0 δ δ �

u 0 γ γ �

2 β β �

1 α α �

0 �

m↑
n→ 0 1 2 3 4 l 6 7 W 9 10 11 12

Mixed types of initial values

Theorem 4 (Section 1.1) deals with this situation for symmetric backwards recursions
in general:

Let u and l be positive integers, defining a band of width W = u+ l. Suppose the
0-left board [v0] follows a symmetric recursion, has polynomial columns v0[m,n] of
degree n if m ≥ n, and satisfies the recursive initial conditions

v0[n− l + 1, n] = v0[n− l + 1, n− 1] for all n ≥ l.

If the board d[m,n] follows the same symmetric recursion, satisfies the boundary
conditions

d[m,m− u] = 0 for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l,

and coincides with [v0] in the rectangle 0 ≤ m < u, 0 ≤ n < W , then [d] can be
expanded as

d[m,n] =
1

1−EW−1
1 E−W+1

2 ∇1∇
−1
2

(v0[m,n]− v0[n+ u,m− u]).

We give two proofs for this theorem; the first is a verification of the recurrence
and initial values. That can be done in a few lines, but gives little guidance to the
solution of related enumeration problems. The second proof constructs the solution
and can be adopted to other recursive initial values.

Proof of Theorem 4 by verification. Because of Corollary 13 and Lemma 15
the board [d] follows the same recursion as [v0] and vanishes along the upper barrier
y = x+ u. It is also obvious that d[m,n] = v0[m,n] for 0 ≤ m < u and 0 ≤ n < W .
It remains to show that E1−l

1 ∇2d[m,n] = 0 when m = n ≥ l. From

E1−l
1 ∇2d[m,n] =

1

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

(E1−l
1 ∇2v

0[m,n]− Eu
1E

1−l−u
2 ∇1v

0[n,m])

=
E1−l

1 ∇2

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

(v0[m,n]−EW−1
1 E1−W

2 ∇1∇
−1
2 v0[n,m])
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follows E1−l
1 ∇2d[n, n] = E1−l

1 ∇2v
0[n, n] which is 0 for all n ≥ l.

Proof of Theorem 4 by construction. The proof of this theorem is a variation
of the proof of Theorem 3, constructing a sequence [v0] , [h0] , [v0] , [h1] , . . . of boards

whose alternating partial sums
[
d̂0
]
, [d0] ,

[
d̂1
]
, [d1] , . . . are approximations of [d],

covering an increasing part of the lattice. We start again with the 0-left board
[
d̂0
]

:=

[v0], which agrees with [d] in the rectangle 0 ≤ m < u and 0 ≤ n < W , and has
recursive initial values along the whole lower barrier. Let [d−1] ≡ [0], and suppose[
dk−1

]
and

d̂k[m,n] = dk−1[m,n] + vk[m,n− kW ]

have already been constructed such that

•
[
dk−1

]
= [d] in the rectangle 0 ≤ m < u+ kW , 0 ≤ n < kW , and dk−1[m,m −

u] = 0 for all m ≥ u.

•
[
d̂k
]

= [d] in the rectangle 0 ≤ m < u + kW , 0 ≤ n < (k + 1)W , and

E1−l
1 ∇2d̂

k[n, n] = 0 for all n ≥ l.

Let hk[m,n] := vk[n+ u,m], and

dk[m,n] = d̂k[m,n]− hk[m− u− kW, n] (25)

as before. From

dk[m,m− u] = d̂k[m,m− u]− hk[m− u− kW,m− u]

= dk−1[m,m− u] = 0

for all m ≥ 0 follows that
[
dk
]

= [d] inside the rectangle 0 ≤ m < u+ (k + 1)W, 0 ≤
n < (k+1)W . However, for enlarging the rectangle to 0 ≤ m < u+(k+1)W, 0 ≤ n <
(k + 2)W we must define vk+1[m,n] such that vk+1[m,n] = 0 for negative n (0-left
board), and such that

d̂k+1[m,n] := dk[m,n] + vk+1[m,n− (k + 1)W ]

has the recursive initial values d̂k+1[n−l+1, n] = d̂k+1[n−l+1, n−1] for all n ≥ l. By

induction
[
d̂k
]

already satisfies this boundary condition. We only have to determine[
vk+1

]
such that

vk+1[n− l + 1, n− (k + 1)W ]− hk[n− (k + 1)W + 1, n]

= vk+1[n− l + 1, n− 1− (k + 1)W ]− hk[n− (k + 1)W + 1, n− 1],

i.e.,

∇2v
k+1[n− l + 1, n− (k + 1)W ] = ∇1h

k[n− (k + 1)W + 1, n]

= ∇1v
k[n+ u, n− (k + 1)W + 1].
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Hence

vk+1[m,n] := ∇−1
2 ∇1v

k[m+W − 1, n+ 1]. (26)

has the required recursive initial values for all n ≥ l. The construction of
[
d̂k+1

]
from[

d̂k
]

is finished.

We calculate
[
vk
]

recursively,

vk[m,n] = ∇−1
2 ∇1E

W−1
1 E1

2v
k−1[m,n] = · · · = ∇−k2 ∇

k
1E

k(W−1)
1 Ek

2v
0[m,n]. (27)

By Corollary 13
[
vk
]

is a 0-left board. Substitute first for [hi] then for [vi] in equation
(25) to get

dk[m,n] =
k∑
i=0

(
vi[m,n− iW ]− vi[n+ u,m− u− iW ]

)
=

k∑
i=0

E−iW2

(
vi[m,n]− vi[n+ u,m− u]

)
=

k∑
i=0

E−iW2 ∇−i2 ∇
i
1E

i(W−1)
1 Ei

2

(
v0[m,n]− v0[n+ u,m− u]

)
. (28)

Similar to Corollary 24 we have the following result.

Corollary 29 Let u and l be positive integers, defining a band of width W := u+ l.
Suppose, [d] follows a symmetric recursion and satisfies the two diagonal boundary
conditions

d[m,m− u] = 0 for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l.

Let [a] be a symmetric board for the same recursion that is 0-left extendable and has
polynomial columns a[m,n] of degree n if m ≥ n. If d[m,n] = a[m,n] on the rectangle
0 ≤ m < u, 0 ≤ n < l then d[m,n] can be expanded as∑

k∈Z

(
EW−1

1 E−W+1
2 ∇1∇

−1
2

)k
(a[m,n]+ − a[m− u, n+ u]+)

for n− l < m ≤ n+ u (a[j, i]+ = 0 for negative i or j).

Proof. As in Corollary 24 we call the extension of [a] to a 0-bottom board [a′], and
denote the 0-left extension again by [a]. Both extensions agree in the first quadrant.
A slight generalization of Lemma 21 shows that

v0[m,n] = a[m,n]−∇−1
1 ∇2a

′[n− l + 1,m− 1 + l]
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can serve as the 0-left board [v0] in Theorem 4. In the first quadrant holds v0[m,n] =(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[m,n]. Hence, d[m,n] equals

1

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

(v0[m,n]− v0[n+ u,m− u])

=
1

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

(
(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[m,n]

− Eu
1E
−u
2

(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[n,m])

=
1−∇−1

2 ∇1E
1−l
2 El−1

1

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

a[m,n]−
Eu

2E
−u
1

(
1−∇−1

1 ∇2E
1−l
1 El−1

2

)
1−EW−1

2 E−W+1
1 ∇2∇

−1
1

a[m,n]

=
1−∇−1

2 ∇1E
1−l
2 El−1

1

1− EW−1
1 E−W+1

2 ∇1∇
−1
2

a[m,n] +
1−∇−1

2 ∇1E
1−l
2 El−1

1

1−EW−1
2 E−W+1

1 ∇2∇
−1
1

∇−1
1 ∇2E

1−W
1 EW−1

2 a[m,n]

=
∑
k∈Z

(
EW−1

1 E−W+1
2 ∇1∇

−1
2

)k (
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[m,n]

for n− l < m ≤ n+ u.

Example 30 (vizier+knight+hook) Suppose, the moves are →, ↑, and
a a

a

a

a

a

��� ,
a a a

a

6.

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 2, n− 1] + d[m− 1, n− 2]

5 0 98 352 829 1415
4 0 22 80 189 323 323
3 0 5 18 43 74 74 �

2 1 4 10 17 17 �

1 1 2 4 4 �

0 1 1 1 �

m↑
n→ 0 1 2 3 4 5 6

1 10 49 170 474 1136 2431
1 8 32 94 226 474 899
1 6 19 46 94 170 282
1 4 10 19 32 49 70
1 2 4 6 8 10 12
1 1 1 1 1 1 1

0 1 2 3 4 5 6

a a a

a

6 must stay away from lower barrier Unrestricted moves
become eventually polynomial

The unrestricted board [a] has been calculated in (4) as

a[m,n] =
∑
k≥0

νk
(
m+ n− 2k

m− k

)(
m+ n− 2k

k

)
.

It has polynomials columns for m ≥ m. From Corollary 29 follows that

d[m,n] =
∑
k∈Z

(
EW−1

1 E−W+1
2 ∇1∇

−1
2

)k
(a[m,n]+ − a[m− u, n+ u]+) (29)

for n− l < m ≤ n+ u.

Example 31 (weighted left turns inside band) We saw in (7) that

a[m,n] =
∑
d≥0

µd
(
m

d

)(
n

d

)
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unrestricted →, ↑-paths with µ-weighted left turns
↑

→ ◦ reach the point (n,m). The
paths with weighted left turns follow a very special recursion,

∇1∇2a[m,n] = µE−1
1 E−1

2 a[m,n],

which tremendously simplifies the formula in Theorem 4, because it follows that

∇−i2 a[m,n] = µ−iEi
1E

i
2∇

i
1a[m,n]

for 0 ≤ i ≤ min(m,n). We substitute this into (28) and obtain the total weight d[m,n]
of all paths strictly between x+ u < y < x− l,∑

k∈Z

(
EW−1

1 E−W+1
2 ∇1∇

−1
2

)k
(a[m,n]− a[m− u, n+ u])

=
∑
k∈Z

(
EW−1

1 E−W+1
2 ∇1

)k
µ−kEk

1E
k
2∇

k
1 (a[m,n]− a[m− u, n+ u])

=
∑
k∈Z

EkW
1 E−kw2 ∇2k

1 µ
−k(a[m,n]− a[m− u, n+ u])

where w := u + l − 2, the interior band width. Note that ∇2k
(
x
j

)
=
(
x−2k
j−2k

)
. Hence

d[m,n] =∑
k≥0

∑
j≥2k

µj−k[

(
m+ kw

j − 2k

)
+

(
n− kw

j

)
+

−

(
m+ kw − u

j − 2k

)
+

(
n− kw + u

j

)
+

=
∑
k∈Z

∑
j≥k

µj
((

m+ kw

j − k

)
+

(
n− kw

j + k

)
+

−

(
m+ kw − u

j − k

)
+

(
n− kw + u

j + k

)
+

)
.

(30)

This result is equivalent to Theorem 3.4.4 in [6], where lattice paths with weighted
right turns are counted. More references on earlier work on this problem are also
given in [6].

It is easy to check that disregarding the count of left turns (µ = 1) gives formula
(21). Replacing µ by κ− 1 transforms the left-turn recursion into the King recursion
(Example 9). Because of the recursive initial values, no diagonal steps are allowed
alongside the barrier.

� �

⊗ �

�

No ↗- move from ⊗ to �

There is an interesting special case when the sum over k in (30) simplifies. The
following proposition is equivalent to the identities∑
k∈Z

((
n+ 2 + 2k

j − k

)
+

(
n− 2k

j + k

)
+

−

(
n+ 3 + 2k

j − k

)
+

(
n− 1− 2k

j + k

)
+

)
=

(
n+ 1

2j − n

)
∑
k∈Z

((
n+ 1 + 2k

j − k

)
+

(
n− 2k

j + k

)
+

−

(
n+ 3 + 2k

j − k

)
+

(
n− 2− 2k

j + k

)
+

)
=

(
n+ 1

2j − n+ 1

)
for all integers j, n ≥ 0.
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Proposition 32 If u = 3 and l = 1 in Theorem 30, then

d[n+ 1, n] =
∑
j≥0

(
n+ 1

n+ 1− 2j

)
µn−j and d[n+ 2, n] =

∑
j≥0

(
n+ 1

n− 2j

)
µn−j

for all n ≥ 0.

Proof. True for n = 0. Suppose true for n− 1.

d[n+ 1, n] = d[n, n] + d[n+ 1, n] + (µ− 1)d[n, n− 1]

= d[n+ 1, n− 1] + µd[n, n− 1]

=
∑
j≥0

(
n

n− 1− 2j

)
µn−1−j +

∑
j≥0

(
n

n− 2j

)
µn−j

=
∑
j≥0

(
n+ 1

n+ 1− 2j

)
µn−j

d[n+ 2, n] = d[n+ 1, n] + d[n+ 2, n− 1] + (µ− 1)d[n+ 1, n− 1]

= d[n+ 1, n] + (µ− 1)d[n+ 1, n− 1]

=
∑
j≥0

(
n+ 1

n+ 1− 2j

)
µn−j + (µ− 1)

∑
j≥0

(
n

n− 1− 2j

)
µn−1−j

=
∑
j≥0

[(
n+ 1

n+ 1− 2j

)
+

(
n

n− 1− 2j

)
−

(
n

n+ 1− 2j

)]
µn−j

=
∑
j≥0

[(
n

n− 2j

)
+

(
n

n− 1− 2j

)]
µn−j =

∑
j≥0

(
n+ 1

n− 2j

)
µn−j

5 Recursive Initial Values Along Both Barriers

Finally, we consider the case of recursive initial values at both boundaries of the
band. The example below shows how such a situation arises from vizier+hook moves
between barriers.

d[m,n] = d[m− 1, n] + d[m,n− 1] + d[m− 2, n− 1] + d[m− 1, n− 2]

5 � 73 312 770 1335
4 � 17 73 180 312 312
u � 4 17 42 73 73 �

2 1 4 10 17 17 �

1 1 2 4 4 �

0 1 1 1 �

m↑
n→ 0 1 2 l 4 5 6

� 90 312 770 1335
� 21 73 180 312 385

� 5 17 42 73 90 �

1 4 10 17 21 �

1 2 4 5 �

1 1 1 �

0 1 2 l 4 5 6

Steps: →, ↑,
a

a

a a-
, and

a a a

a

6 Steps: →, ↑,
a a

a

a

6, and
a

a a a-
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We will continue the example at the end of this section, after we have proved Theorem
5 from Section 1.1:

Let u and l be positive integers, defining an exterior band of width W := u+l, and
an interior band width w := W −2. Suppose the 0-left board [v0] follows a symmetric
recursion, has polynomial columns d[m,n] of degree n if m ≥ n, and satisfies the
recursive initial conditions

v0[n− l + 1, n] = v0[n− l + 1, n− 1] for all n ≥ l

If the board d[m,n] follows the same symmetric recursion, satisfies the boundary
conditions

d[m,m− u+ 1] = d[m− 1,m− u+ 1] for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l,

and coincides with [v0] in the rectangle 0 ≤ m < u, 0 ≤ n < W , then [d] can be
expanded as

d[m,n] =
1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
v0[m,n]−∇−1

2 ∇1v
0[n+ u− 1,m− u+ 1]

)
.

Proof of Theorem 5 by verification. Verification of recursion and initial values
of [d] follows the same line as in the first proof of Theorem 4. We verify only the
recursive initial values along the lower boundary. From

E1−l
1 ∇2d[m,n] =

1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
E1−l

1 ∇2v
0[m,n]− E1−l

2 ∇1∇
−1
2 ∇1v

0[n+ u− 1,m− u+ 1]
)

=
1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
E1−l

1 ∇2v
0[m,n]−Eu−1

1 E−w2 ∇
−1
2 ∇

2
1v

0[n,m]
)

= E1−l
1 ∇2

1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
v0[m,n]−Ew

1 E
−w
2 ∇

−2
2 ∇

2
1v

0[n,m]
)

follows E1−l
1 ∇2d[n, n] = E1−l

1 ∇2v
0[n, n] = 0 for all n ≥ l.

Proof of Theorem 5 by construction. This proof is another variation of the

construction introduced to prove Lemma 3. Let [d−1] ≡ [0], and
[
d̂0
]

:= [v0], which

agrees with [d] in the rectangle 0 ≤ m < u and 0 ≤ n < W , and has the right
recursive initial values along the whole lower boundary. Suppose

[
dk−1

]
and

d̂k[m,n] = dk−1[m,n] + vk[m,n− kW ]

have already been constructed such that

•
[
dk−1

]
= [d] in the rectangle 0 ≤ m < u+ kW , 0 ≤ n < kW , and

E1−u
2 ∇1d

k−1[m,m] = 0 for all m ≥ u,
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•
[
d̂k
]

= [d] in the rectangle 0 ≤ m < u + kW , 0 ≤ n < (k + 1)W , and

E1−l
1 ∇2d̂

k[n, n] = 0 for all n ≥ l.

We must find a board
[
hk
]

such that

dk[m,n] := d̂k[m,n]− hk[m− u− kW, n]

satisfies the condition

E1−u
2 ∇1d

k[m,m] = 0 for all m ≥ u.

This will be the case iff

E1−u
2 ∇1d

k[m,m] = E1−u
2 ∇1

(
dk−1[m,m] + vk[m,m− kW ]− hk[m− u− kW,m]

)
equals 0 when n = m ≥ u. By induction E1−u

2 ∇1d
k−1[m,m] = 0; the above equation

has the trivial solution

hk[m− u− kW, n] = vk[m,n− kW ]

which gives
[
dk
]

=
[
dk−1

]
, without improving the approximation, and the nontrivial

solution where

E1−u
2 ∇1v

k[n,m− kW ] = E1−u
2 ∇1h

k[m− u− kW, n],

i.e.,

hk[m,n] = Eu−1
1 ∇−1

2 E1−u
2 ∇1v

k[n,m+ u] = ∇−1
2 ∇1v

k[n+ u− 1,m+ 1].

With this choice of
[
hk
]

we have dk[m,n] = d[m,n] for all 0 ≤ m < u + (k + 1)W ,
0 ≤ n < (k + 1)W . Next we must find a board

[
vk+1

]
such that

d̂k+1[m,n] := dk[m,n] + vk+1[m,n− (k + 1)W ]

satisfies the condition

E1−l
1 ∇2d̂

k+1[n, n] = 0 for all m ≥ u.

The equation

E1−l
1 ∇2d̂

k+1[n, n] = E1−l
1 ∇2

(
d̂k[n, n]− hk[n− u− kW, n] + vk+1[n, n− (k + 1)W ]

)
= 0

gives the nontrivial solution

E1−l
1 ∇2v

k+1[m,n−W ] = E1−l
1 ∇2h

k[n− u,m].
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Hence

vk+1[m,n−W ] = El−1
2 ∇

−1
1 E1−l

1 ∇2h
k[n− u,m].

The board
[
d̂k+1

]
equals [d] inside the rectangle 0 ≤ m < u + (k + 1)W, 0 ≤ n <

l + (k + 2)W , and from here on the construction repeats itself.
Recursively we find

vk[m,n] = ∇−1
1 ∇2h

k−1[n+ 1,m+ l − 1]

= Eu−1
1 ∇−2

2 E1−u
2 ∇2

1v
k−1[m+ l − 1, n+ u+ 1]

= ∇−2
2 ∇

2
1v
k−1[m+W − 2, n+ 2]

= ∇−2k
2 ∇2k

1 v
0[m+ kW − 2k, n+ 2k]

= Ekw
1 E2k

2 ∇
−2k
2 ∇2k

1 v
0[m,n]

which is indeed a 0-left board with constant first column by Corollary 13 (here we
need the assumption that w ≥ 2). Similarly,

hk[m,n] = ∇−1
2 ∇1v

k[n+ u− 1,m+ 1]

= Ekw
1 E2k

2 ∇
−2k−1
2 ∇2k+1

1 v0[n+ u− 1,m+ 1]

can be verified as a 0-bottom board with constant first row by the row version of
Corollary 13. Hence

d[m,n] =
∑
i≥0

(
vi[m,n− iW ]− hi[m− u− iW, n]

)
=
∑
i≥0

Eiw
1 E2i

2 ∇
−2i
2 ∇

2i
1 (v0[m,n− iw]−∇−1

2 ∇1v
0[n+ u− 1,m− u+ 1− iW ])

=
∑
i≥0

(
E−w2 ∇

−2
2 Ew

1 ∇
2
1

)i (
v0[m,n]−∇−1

2 ∇1v
0[n+ u− 1,m− u+ 1]

)
=

1

1−E−w2 ∇
−2
2 Ew

1 ∇
2
1

(
v0[m,n]−∇−1

2 ∇1v
0[n+ u− 1,m− u+ 1]

)
.

In the same way as for the previous two theorems we get the following corollary.

Corollary 33 Let u and l be positive integers, defining a band of width W := u+ l.
Suppose, [d] follows a symmetric recursion and satisfies the two diagonal boundary
conditions

d[m,m− u+ 1] = d[m− 1,m− u+ 1] for all m ≥ u,

d[n− l + 1, n] = d[n− l + 1, n− 1] for all n ≥ l.

Let [a] be a symmetric board for the same recursion that is 0-left extendable and has
polynomial columns a[m,n] of degree n if m ≥ n. If d[m,n] = a[m,n] on the rectangle
0 ≤ m < u, 0 ≤ n < l then d[m,n] can be expanded as∑

j∈Z

(−1)jE
(jw)|2
1 E

−(jw)|2
2 ∇j

1∇
−j
2 a[m,n]



the electronic journal of combinatorics 5 (1998), #R30 35

for n−l < m < n+u, where (jw)|2 equals jw/2 if j is even, and equals bj/2cw+l−1
if j is odd.

Note that for symmetric bands (u = l) the expression (jw)|2 can be replaced by
jw/2.

Proof. We saw in the proof of Corollary 29 that
v0[m,n] =

(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[m,n] inside the first quadrant. Hence, d[m,n]

equals

1

1− Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
v0[m,n]−∇−1

2 ∇
1
1v

0[n+ u− 1,m− u+ 1]
)

=
1

1−Ew
1 E
−w
2 ∇

2
1∇
−2
2

(
(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[m,n]

−Eu−1
1 E−u+1

2 ∇−1
2 ∇1

(
1−∇−1

2 ∇1E
1−l
2 El−1

1

)
a[n,m])

=
1−∇−1

2 ∇1E
1−l
2 El−1

1

1−Ew
1 E
−w
2 ∇

2
1∇
−2
2

a[m,n]−
Eu−1

2 E−u+1
1 ∇−1

1 ∇2

(
1−∇−1

1 ∇2E
1−l
1 El−1

2

)
1−E−w1 Ew

2 ∇
−2
1 ∇

2
2

a[m,n]

=
1−∇−1

2 ∇1E
1−l
2 El−1

1

1−Ew
1 E
−w
2 ∇

2
1∇
−2
2

a[m,n] +
1−∇−1

2 ∇1E
1−l
2 El−1

1

1− E−w1 Ew
2 ∇

−2
1 ∇

2
2

∇−2
1 ∇

2
1E
−w
1 Ew

2 a[m,n]

=
∑
k∈Z

(
Ew

1 E
−w
2 ∇

−2
2 ∇

2
1

)k (
1− El−1

1 E1−l
2 ∇1∇

−1
2

)
a[m,n]

=
∑
k∈Z

(
Ew

1 E
−w
2 ∇

2
1∇
−2
2

)k
a[m,n]−

∑
k∈Z

E
−(kw+l−1)
2 ∇−2k−1

2 Ekw+l−1
1 ∇2k+1

1 a[m,n]

for n− l < m < n+ u.

Example 34 (vizier+hook between barriers ) Continuing the vizier+knight ex-
ample from the beginning of this section we see that we must replace a[m,n] by (4)
in ∑

j∈Z

(−1)jE
(jw)|2
1 E

−(jw)|2
2 ∇j

1∇
−j
2 a[m,n] (31)

to get the number of vizier+hook walks with steps →, ↑,
a

a

a a-
, and

a a a

a

6between the
barriers x− l < y < x+u from the origin to the point (n,m) where n− l < m < n+u.
Except at the positions (n− l + 1, n) and (m,m− u− 1) the vizier+hook walks with

steps →, ↑,
a a

a

a

6, and
a

a a a- have the same number of choices. Formula (31) holds for
them whenever n− l + 1 < m < n+ u− 1.
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[7] Krattenthaler, C. and Niederhausen, H. (1997) Lattice paths with weighted left
turns above a parallel to the diagonal. To appear in Congressus Numeratium.

[8] Labelle, J., and Yeh, Y.-N. (1990). Generalized Dyck paths, Discrete Math. 82,
1-6.

[9] Mohanty, S.G. (1979). Lattice Path Counting and Applications. Academic Press,
New York.

[10] Niederhausen, H. (1997) Recursive initial values. To appear in Discrete Math.

[11] Niederhausen, H. (1997) Lattice path enumeration and Umbral Calculus, Ad-
vances in Combinatorial Methods and Applications to Probability and Statistics
(Ed.: N. Balakrishnan), 15-27, Boston, Birkhäuser.
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Einfluß äußerer Kräfte, Extrait du Bulletin de L’Académie des Sc. de Cracovie,
Série A, 1913, pp.418

[16] Sulanke, R.A. (1989) A recurrence restricted by a diagonal condition, Fibonacci
Q. 27, 33-46
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