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Abstract

Based on a recent improvement of the inclusion-exclusion principle,
we present a new approach to network reliability problems. In par-
ticular, we give a new proof of a result of Shier, which expresses the
reliability of a network as an alternating sum over chains in a semilat-
tice, and a new proof of a result of Provan and Ball, which provides
an algorithm for computing network reliability in pseudopolynomial
time. Moreover, some results on k-out-of-n systems are established.

1. Introduction to network reliability

We consider both directed and undirected networks in which nodes are perfectly re-
liable and edges fail randomly and independently with known probabilities. For such
networks, a large variety of reliability measures exists. The two-terminal reliability ,
for instance, is the probability that a message can pass from a distinguished source
node s to a distinguished terminal node t along a path of operating edges. More
generally, the source-to-T -terminal reliability is the probability that a message can
pass from s to each node of some specified set T along a path of operating edges. For
a unified treatment of the different concepts, we prefer to use the general notion of a
coherent binary system:

A coherent binary system is a couple Σ = (E, φ) consisting of a finite set E and
a function φ from the power set of E into {0; 1} such that φ(∅) = 0, φ(E) = 1 and
φ(X) ≤ φ(Y ) for any X, Y ⊆ E with X ⊆ Y . E and φ are respectively called the
component set and the structure function of Σ.

At any instant of time, each component e of Σ assumes randomly and indepen-
dently one of two states, operating or failing , with probabilities pe and qe = 1 − pe,
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respectively. Σ is said to be operating resp. failing if φ applied to the set of operating
components gives 1 resp. 0. The reliability of Σ is the probability that Σ is operating.
Since this quantity is determined by Σ and p = (pe)e∈E, it is abbreviated to RelΣ(p).

A key role in calculating RelΣ(p) is played by the minpaths and mincuts of Σ: A
minpath of Σ is a minimal set P ⊆ E such that φ(P ) = 1; that is, φ(P ) = 1 and
φ(Q) = 0 for any proper subset Q of P . A mincut of Σ is a minimal set C ⊆ E such
that φ(E \ C) = 0; that is, φ(E \ C) = 0 and φ(E \D) = 1 for any proper subset D
of C.

To illustrate the preceding definitions, consider the reliability measures introduced
at the beginning of this section: An appropriate model for two-terminal reliability
is a coherent binary system Σ = (E, φ), where E is the edge-set of the network and
φ(X) = 1 if and only if X contains the edges of an s, t-path. For source-to-T -terminal
reliability we take Σ = (E, φ), where E is the edge-set of the network and φ(X) = 1
if and only if X contains the edges of an s, T -tree (= minimal set of edges includ-
ing an s, t-path for any t ∈ T ). Note that for two-terminal reliability, the minpaths
and mincuts of the system correspond to the s, t-paths and s, t-cutsets of the net-
work, respectively, whereupon for source-to-T -terminal reliability they respectively
correspond to the s, T -trees and s, T -cutsets (= minimal sets of edges including an
s, t-cutset for some t ∈ T ) of the network.

A common way to compute the reliability of a network makes use of the well-
known inclusion-exclusion principle. In the next section, we present a new approach
which is based on a recent improvement of this principle. By this new approach,
we obtain a new proof of a result of Shier [4, 5], which expresses the reliability of a
network as an alternating sum over chains in a semilattice, as well as a new proof of
a result of Provan and Ball [3], which provides an algorithm for computing network
reliability in pseudopolynomial time. Finally, we draw some conclusions to k-out-of-n
systems.

2. The new inclusion-exclusion approach

The following improvement of the inclusion-exclusion principle, which was discovered
by the author [2] by generalizing Whitney’s broken circuit theorem [6], offers much
shorter expansions than the classical counterpart. (The referee recommends the proof
as an “excellent exercise”.)

Proposition 2.1. Let (Ω,A,Pr) be a probability space, F a finite poset, {AF}F∈F
⊆ A and X a set of non-empty subsets of F such that for any X ∈ X,⋂

X∈X

AX ⊆ AF (1)

for some lower bound F of X which is not contained in X . Then

Pr

( ⋃
F∈F

AF

)
=
∑
I∈I
I6=∅

(−1)|I|−1 Pr

( ⋂
I∈I

AI

)
, (2)
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where

I := { I ⊆ F | I 6⊇ X for any X ∈ X} . (3)

In the sequel, capitals in roman, calligraphic and Fraktur style such as M ,M and
M relate to objects of the following three types:

M a set of components
M a set of sets of components
M a set of sets of sets of components

For any set-system M we use
⋃
M to denote the union of all sets in M.

From Proposition 2.1 we now deduce the main result of this paper:

Theorem 2.2. Let Σ = (E, φ) be a coherent binary system, whose set of minpaths
resp. mincuts F is equipped with a partial ordering relation. Further, let X be a set
of nonempty subsets of F such that for any X ∈ X,

F ⊆
⋃
X (4)

for some lower bound F of X which is not contained in X . Then

RelΣ(p) =
∑
I∈I
I6=∅

(−1)|I|−1
∏
e∈
⋃
I

pe , (5)

respectively

1− RelΣ(p) =
∑
I∈I
I6=∅

(−1)|I|−1
∏
e∈
⋃
I

qe , (6)

where in both cases I is defined as in Eq. (3).

Proof. For any F ∈ F , let AF denote the event that all components in F are
operating resp. failing. Then we have

RelΣ(p) = Pr

( ⋃
F∈F

AF

)
resp. 1−RelΣ(p) = Pr

( ⋃
F∈F

AF

)
. (7)

It is easy to see that Eq. (1) holds if and only if Eq. (4) holds and that

Pr

( ⋂
I∈I

AI

)
=

∏
e∈
⋃
I

pe resp. Pr

( ⋂
I∈I

AI

)
=

∏
e∈
⋃
I

qe . (8)

From Eq. (7), Proposition 2.1 and Eq. (8) the result immediately follows.
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Corollary 2.3. Let Σ = (E, φ) be a coherent binary system, whose set of minpaths
resp. mincuts F is partially ordered such that for any F1, F2 ∈ F , F ⊆ F1 ∪ F2 for
some lower bound F of F1 and F2. Then

RelΣ(p) =
∑

I∈chains(F)
I6=∅

(−1)|I|−1
∏
e∈
⋃
I

pe , (9)

respectively

1− RelΣ(p) =
∑

I∈chains(F)
I6=∅

(−1)|I|−1
∏
e∈
⋃
I

qe , (10)

where chains(F) denotes the set of chains in F .

Proof. By setting X equal to the set of all unordered pairs of incomparable
elements of F , Corollary 2.3 is deduced from Theorem 2.2.

Remark. The formulae in Corollary 2.3 are due to Shier [4, 5]. However, Shier
additionally requires the maximality of each lower bound F and the convexity of
each set Fe = {F ∈ F : e ∈ F}. In fact, these requirements are needed by a recursive
scheme, on which Shier’s proof (which is entirely different from ours) is based. This
recursive scheme was first established in a less general form by Provan and Ball [3] (see
also [1]) and later generalized by Shier [4, 5]. We now deduce Shier’s generalization
from Corollary 2.3.

Corollary 2.4. Let Σ = (E, φ) be a coherent binary system, whose set of minpaths
resp. mincuts F is partially ordered such that for any F1, F2 ∈ F , F ⊆ F1 ∪ F2 for
some lower bound F of F1 and F2, and such that for any e ∈ E, {F ∈ F : e ∈ F} is
a convex subset of F . Then

RelΣ(p) =
∑
F∈F

Λ(F,p) ,

respectively

1−RelΣ(p) =
∑
F∈F

Λ(F,q) ,

where Λ is defined recursively by

Λ(F,x) :=
∏
e∈F

xe −
∑
G≺F

Λ(G,x)
∏

e∈F\G

xe .

Proof. By induction on the height of F in F we first establish that

Λ(F,x) =
∑

I∈chains(F)
I6=∅,max I=F

(−1)|I|−1
∏
e∈
⋃
I

xe . (11)
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Obviously, this identity holds if F is the minimum of F . Otherwise, assume that the
induction hypothesis is valid for all G ≺ F . It easily follows that

Λ(F,x) =
∏
e∈F

xe −
∑
G≺F

∑
I∈chains(F)
I6=∅,max I=G

(−1)|I|−1
∏
e∈
⋃
I

xe
∏

e∈F\G

xe .

By convexity,
⋃

(I ∪ {F}) is the disjoint union of
⋃
I and F \G. Therefore,

Λ(F,x) =
∏
e∈F

xe −
∑
G≺F

∑
I∈chains(F)
I6=∅,max I=G

(−1)|I|−1
∏

e∈
⋃

(I∪{F})

xe

=
∏
e∈F

xe −
∑

I∈chains(F)
I6=∅,max I≺F

(−1)|I|−1
∏

e∈
⋃

(I∪{F})

xe

=
∑

I∈chains(F)
I6=∅,max I=F

(−1)|I|−1
∏
e∈
⋃
I

xe .

Now, Corollary 2.4 immediately follows from Corollary 2.3 and Eq. (11).

Remarks. By the technique of dynamic programming, the above scheme can
be transformed into an algorithm whose space complexity is O(|F ]) and whose time
complexity is O (|E| · |F|2); see Shier [4] for details. Thus, the algorithm is pseu-
dopolynomial, that is, its computation time is bounded by a polynomial in the size
of the network and the number of minpaths resp. mincuts.

In order to apply the results to network reliability problems, an appropriate partial
ordering relation must be chosen first. The following partial ordering relations on the
set of s, t-cutsets and s, t-paths are adapted from Shier [4, 5]:

(i) For s, t-cutsets X and Y of an arbitrary network define

X � Y :⇔ N(X) ⊆ N(Y ) ,

where N(X) is the set of nodes reachable from s after removing X.

(ii) For s, t-paths X and Y of a planar network define

X � Y :⇔ X lies below Y .

In each case, it is easy to see that a lattice structure is induced and that the greatest
lower boundX∧Y and the least upper boundX∨Y are included by X ∪ Y . Moreover,
both partial ordering relations satisfy the convexity condition of Corollary 2.4. We
conclude that Corollary 2.3 and Corollary 2.4 can be applied to networks whose s, t-
cutsets resp. s, t-paths are ordered as just described. For further details, the reader
is referred to Shier [4, 5].

In general, it is hard to find a partial ordering relation on the set of s, t-paths or
s, T -cutsets of a directed network such that the requirements of Corollary 2.4 are sat-
isfied, since otherwise we would have an algorithm for computing two-terminal resp.
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source-to-T -terminal reliability whose time complexity is bounded by a polynomial
in the network size and the number of s, t-paths resp. s, T -cutsets. By a result of
Provan and Ball [3], such an algorithm cannot exist unless P = NP .

For complete networks, however, we easily find a partial ordering relation on the
set of s, T -cutsets that satisfies the requirements of Corollary 2.4:

(iii) For s, T -cutsets X and Y of a complete network define X � Y as in (i).

This partial ordering relation induces a ∧-semilattice, and it is easy to verify that the
convexity condition holds. By contradiction, we prove that X ∧Y ⊆ X ∪Y : Assume
that there is an edge e ∈ (X ∧ Y ) \ (X ∪ Y ), linking some node a to some node b.
Since X ∧ Y is an s, T -cutset, we find that a ∈ N(X ∧ Y ) and b /∈ N(X ∧ Y ). Since
N(X ∧ Y ) ⊆ N(X) ∩ N(Y ), we have a ∈ N(X) ∩ N(Y ), and since e /∈ X ∪ Y , we
also have b ∈ N(X)∩N(Y ). Let Z be the set of all edges from N(X ∧Y )∪{b} to its
complement. Because the network is complete, N(Z) = N(X∧Y )∪{b} and therefore,
N(Z) ⊆ N(X)∩N(Y ). Since X is an s, T -cutset, T 6⊆ N(X) and hence, T 6⊆ N(Z).
Therefore, Z includes an s, T -cutset, and because the network is complete, Z must
be an s, T -cutset itsself. From N(Z) ⊆ N(X) ∩N(Y ) we conclude that Z ≤ X ∧ Y .
On the other hand, X ∧ Y < Z, since N(X ∧ Y ) ⊂ N(X ∧ Y ) ∪ {b} ⊆ N(Z).

We remark that for s, t-cutsets of arbitrary networks, the recursive scheme is due
to Provan and Ball [3], whereupon for s, T -cutsets of complete networks, it is a special
case of a result of Ball and Provan [1].

We finally draw some conclusions to k-out-of-n systems. By definition, a k-out-
of-n system is a coherent binary system (E, φ) where |E| = n and for any X ⊆ E,
φ(X) = 1 if and only if |X| ≥ k. Note that the minpaths and mincuts of (E, φ) are
the k-subsets and (n− k + 1)-subsets of E, respectively.

Now, let E be totally ordered, and for k-subsets X and Y of E define

X � Y :⇔ x ≤ y for all x ∈ X, y ∈ Y \X . (12)

Thus, a partial ordering relation on the set of k-subsets of E is established. The
following figure shows the Hasse diagram for E = {1, . . . , 6} and k = 3:

123

124

125

126

134

135

136

145

146 156

234

235

236

245

246 256

345

346 356 456

Again, it is easy to see that the convexity condition holds; moreover, X ∧ Y ⊆ X∪Y ,
since X ∧ Y consists of the k smallest elements of X ∪ Y . Therefore, the minpath
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versions of Corollary 2.3 and Corollary 2.4 can be applied to k-out-of-n systems
whose k-subsets are ordered as in Eq. (12). We conclude that for fixed k, the time
and space complexity of the pseudopolynomial algorithm, when applied to k-subsets,
is O(n2k+1), respectively O(nk).

For k-out-of-n systems (E, φ) we now consider the number of terms on the right-
hand side of Eq. (9), that is, the number of non-empty chains in the poset of k-subsets
of E. We prove that this number is equal to 2f(n− k)− 1, where f(0) := 1 and

f(t) := 1 +
t−1∑
i=0

(
t− i+ k − 1

k − 1

)
f(i) (t = 1, . . . , n− k) . (13)

Note that f(t) depends on k. For any k-subset P of E, let c(P ) denote the number
of chains extending upward from P . Then, the total number of chains is 2c(0̂) where
0̂ denotes the minimum of the poset. It remains to show that c(0̂) = f(n− k). More
generally, by induction on t we prove that h(P ) = n − k − t entrains c(P ) = f(t),
where h(P ) denotes the height of P . For t = 0 this is clear, since n − k is the
maximum height. Now let the height of P be n−k− t where t > 0. By the induction
hypothesis we find that

c(P ) = 1 +
t−1∑
i=0

∑
Q�P

h(Q)=n−k−i

c(Q) = 1 +
t−1∑
i=0

∑
Q�P

h(Q)=n−k−i

f(i) = 1 +
t−1∑
i=0

s(P, i)f(i)

where s(P, i) := |{Q � P | h(Q) = n − k − i}| (i = 0, . . . , t − 1). We conclude that
s(P, i) = s(P, i+ 1)(t− i+ k − 1)/(t− i), where s(P, t) := 1, and therefore,

s(P, i) =

(
t− i+ k − 1

k − 1

)
, c(P ) = 1 +

t−1∑
i=0

(
t− i+ k − 1

k − 1

)
f(i) = f(t) .

In order to compare the number of terms in Eq. (9) with the number of terms in
the classical inclusion-exclusion expansion for given n and k, consider the ratio

rk(n) :=
2f(n− k)− 1

2(nk) − 1
.

By Eq. (13) and since
(
t−i+k−1
k−1

)
≤ kt−i we have

f(t) ≤ 1 +
t−1∑
i=0

kt−if(i) (t = 0, . . . , n− k) ,

and therefore,

f(t) ≤ 1 + k

t−1∑
i=0

(2k)i = 1 + k
1− (2k)t

1− 2k
(t = 0, . . . , n− k) .
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Hence, for fixed k, there are constants c1 and c2 depending only on k such that

rk(n) ≤ c1
(2k)n

2(nk)
∼ c12c2n−n

k

.

For k > 1 we finally conclude that rk(n) → 0 as n → ∞. For n = 5, . . . , 10 the
numerical values of r2(n) are

6.5× 10−2, 7.0× 10−3, 3.8× 10−4, 1.0× 10−5, 1.3× 10−7, 9.0× 10−10 .
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