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Abstract

We consider a graph G and a covering G̃ of G and we study the relations of
their eigenvalues and heat kernels. We evaluate the heat kernel for an infinite
k-regular tree and we examine the heat kernels for general k-regular graphs. In
particular, we show that a k-regular graph on n vertices has at most

(1 + o(1))
2 log n

kn log k

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
spanning trees, which is best possible within a constant factor.

1 Introduction

We consider a weighted undirected graph G (possibly with loops) which has a vertex
set V = V (G) and a weight function w : V × V → R satisfying

w(u, v) = w(v, u) and w(u, v) ≥ 0.
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If w(u, v) > 0, then we say {u, v} is an edge and u is adjacent to v. A simple graph
is the special case where all the weights are 0 or 1 and w(v, v) = 0 for all v. In this
paper, by a graph we mean a weighted graph unless specified.

The degree dv of a vertex v is defined to be:

dv =
∑
u

w(u, v).

A graph is regular if all its degrees are the same. For a vertex v inG, the neighborhood
N(v) of v consists of all vertices adjacent to v.

This paper is organized as follows: In Section 2, we define a covering of a graph
and give several examples. In Section 3, we give the definitions for the Laplacian,
eigenvalues and the heat kernel of a graph. In Section 4, we consider the relations
between the eigenvalues of a graph and the eigenvalues of its covering. In particular,
we give a proof for determining the eigenvalues and their multiplicities of a strongly
cover-regular graph G from the eigenfunctions of the (smaller) graph covered by G.
In Section 5, we derive the heat kernel of an infinite k-regular tree. Then in Section
6, we consider heat kernels of some k-regular graphs. In Section 7, we consider the
relations between the trace of the heat kernel and the number of spanning trees in a
graph. In Section 8, we focus on an old problem of determining the maximum number
of spanning trees in a k-regular graph. We consider the zeta function of a graph and
we improve the upper and lower bounds for the maximum number of spanning trees
in a k-regular graph on n vertices.

2 The coverings of graphs

Suppose we have two graphs G̃ and G. We say G̃ is a covering of G (or G is covered
by G̃) if there is a mapping π : V (G̃)→ V (G) satisfying the following two properties:

(i) There is an m ∈ R+ ∪ {∞}, called the index of π, such that for

u, v ∈ V (G), we have ∑
x∈π−1(u)
y∈π−1(v)

w(x, y) = m w(u, v).

(ii) For x, y ∈ V (G̃) with π(x) = π(y) and v ∈ V (G), we have∑
z∈π−1(v)

w(z, x) =
∑

z′∈π−1(v)

w(z′, y).

Remark 1: For simple graphs G and G̃, (i) is equivalent to
(i’) For every {u, v} ∈ E(G), we have

|{{x, y} ∈ E(G̃) : π(x) = u, π(y) = v}| = m.
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And (ii) is equivalent to
(ii’) For x, y ∈ V (G̃) with π(x) = π(y), and v adjacent to π(x) in G, we have

|N(x) ∩ π−1(v)| = |N(y) ∩ π−1(v)|.

In other words, π−1 defines a so-called equitable partition of V (G̃) which has been
studied extensively in the literature. The reader is referred to Cvetković, Doob and
Sachs [5], McKay [14], Godsil and McKay [12].

Example 1: Suppose G̃ = C2n, the cycle on 2n vertices and G = Pn+1, the path on
n + 1 vertices. The covering has index 2 since each edge of Pn+1 is covered by two
edges of C2n.

Example 2: A graph G̃ is said to be a regular covering of G if for a fixed vertex v in
V (G) and for any vertex x of V (G̃), G̃ is a covering of G under a mapping πx which
maps x into v. In addition, if π−1

x is just x, we say G̃ is a strong regular covering
of G. A graph G is said to be distance regular if G is a strong regular covering of
a (weighted) path P (with possible non-zero w(v, v)). For example, for a vertex x
in V (G), we can consider a mapping πx so that all vertices y at distance i from x
are mapped to the i-th vertex of P . This definition is equivalent to the definition of
distance regular graphs, given by Biggs [2].

Example 3: Let Tk denote an infinite k-tree. It is not hard to check that Tk is a
covering of a k-regular graph G. More on this will be discussed in Sections 5 and 6.

We note that in a covering G̃ of G, the vertices v in G can have preimages π−1(v)
of different sizes (as in Example 2). In addition, the degrees of vertices in G̃ or G are
not necessarily the same. Nevertheless, there is a certain uniformity in the preimage
of a vertex as illustrated in the following facts:

Fact 1 Suppose G̃ is a covering of G under π with index m. Then for x ∈ π−1(v),
we have

|π−1(v)|
∑

z∈π−1(u)

w(z, x) = mw(u, v).

The proof follows from (i) and (ii). For a simple graph, Fact 1 implies

|π−1(v)| · |N(x) ∩ π−1(u)| = m.

As an immediate consequence, we have

Fact 2 Suppose G̃ is a covering of G under π with edge multiplicity m. Then for
x, y ∈ π−1(v), we have

dx = dy.
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3 The Laplacian and the heat kernel of a graph

For a weighted graph G on n vertices associated with a weight function w, we consider
the combinatorial Laplacian L of G.

L(u, v) =

 dv − w(v, v) if u = v,
−w(u, v) if u and v are adjacent,
0 otherwise.

In particular, for a function f : V → R, we have

Lf(v) =
∑
y

(f(v)− f(u))w(u, v).

Let T denote the diagonal matrix with the (v, v)-th entry having value dv. The
(normalized) Laplacian of G is defined to be

L(u, v) =


1−

w(v, v)

dv
if u = v, and dv 6= 0,

−
w(u, v)√
dudv

if u and v are adjacent,

0 otherwise.

In other words, we have

L = T−1/2LT−1/2.

For a k-regular graph, we have

L = I −
1

k
A

where A is the adjacency matrix.

We denote the eigenvalues of L by 0 = λ0 ≤ λ1 · · · ≤ λn−1 (which are sometimes
called the eigenvalues of G). If G is connected, we have 0 < λ1. The reader is referred
to [7] for various properties of eigenvalues of a graph.

In this paper, we mainly deal with connected graphs. Let g denote an eigen-
function of L associated with eigenvalue λ. It is sometimes convenient to consider
f = T−1/2g, called the harmonic eigenfunction, which satisfies, for every vertex v of
G, ∑

u

(f(v)− f(u))w(u, v) = λdvf(v).

For a graph G, we consider the heat kernel ht, which is defined for t ≥ 0 as follows:
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ht =
∑
i

e−λitPi

= e−tL

= I − tL+
t2

2
L2 − . . . (1)

where Pi denotes the projection into the eigenspace associated with eigenvalue λi. In
particular,

h0 = I.

and ht satisfies the heat equation

∂ht
∂t

= −Lht.

For any two vertices x, y ∈ V , we have

ht(x, y) =
∑
i

e−λitφi(x)φi(y)

where φi’s are orthonormal eigenfunctions of the Laplacian L.

In particular, the trace of ht satisfies

Trht =
∑
x

ht(x, x)

=
∑
i

e−λit.

4 Eigenvalues of a graph and its covering

If G̃ is a covering of G, their eigenvalues are intimately related. Namely, the spectrum
of a large (covering) graph can often be determined from a small (covered) graph.
This provides a simple method for determining the spectrum of certain families of
graphs. Such approaches have long been studied in the literature. Here we will list
several facts which will be used later. The proofs of some of these facts can be found
in Godsil and McKay [12] (in which the definitions involve (0, 1) matrices but the
proofs often can be adapted for general weighted graphs). We will sketch the proofs
here for the sake of completeness.

If G̃ is a covering of G, we can “lift” the harmonic eigenfunction f of G to G̃ by
defining, for each vertex x in G̃, f(x) = f(u) where u = π(x). From definition (ii) of
covering, we have∑

y

(f(x)− f(y))w(x, y) =
∑
v

(f(u)− f(v))w(u, v)

= λdx.

Therefore we have
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Lemma 1 If G̃ is a covering of G, then an eigenvalue of G is an eigenvalue of G̃.

For each x ∈ π−1(v),∑
y

(f(x)− f(y))w(x, y) = λf(x)dx.

By summing over x in π−1(v), we have∑
x∈π−1(v)

∑
y

(f(x)− f(y))w(x, y) = λ
∑

x∈π−1(v)

f(x)dx.

We define the induced mapping of f in G, denoted by πf : V (G)→ R by

(πf)(v) =
∑

x∈π−1(v)

f(x)dx
dv

.

Then, for g = πf , we have∑
u

(g(v)− g(u))w(u, v) = λg(v)dv.

If g is nontrivial, λ is an eigenvalues of G̃. Thus we have shown the following:

Lemma 2 Suppose G̃ is a covering of G and. If a harmonic eigenfunction f of
G̃, associated with an eigenvalue λ, has a nontrivial image in G, then λ is also an
eigenvalue for G.

Lemma 3 Suppose G̃ is a strong regular covering of G. Then, G̃ and G have the
same eigenvalues.

Proof: For any nontrivial harmonic eigenfunction f of G̃ we can choose v to be a
vertex with nonzero value of f . The induced mapping of f in G has a nonzero value
at v and therefore is a nontrivial harmonic eigenfunction for G. From Lemma 2, we
see that any eigenvalue of G̃ is an eigenvalue of G. By Lemma 1, we conclude that G̃
and G have the same eigenvalues. �

Therefore the eigenvalues of a covering graph G̃ can be determined by computing
the eigenvalues of a smaller graph G. However, the multiplicities for the eigenvalues
in G̃ are, in general, different from those in G since, for example, G̃ and G can have
different numbers of vertices. Nevertheless, the multiplicities of eigenvalues of G̃ and
G are related through the relations of their heat kernels.

Lemma 4 Suppose G̃ is a covering of G. Let h̃t and ht denote the heat kernels of G̃
and G, respectively. Then we have∑

x∈π−1(u)

∑
y∈π−1(v)

h̃t(x, y) =
√
|π−1(u)| · |π−1(v)|ht(u, v).



the electronic journal of combinatorics 6 (1999), #R12 7

Proof: We note that the heat kernel ht(u, v) satisfies

ht(u, v) = e−t
∑
r

Sr(u, v)
tr

r!

where Sr is the sum of weights of all walks of length r joining u and v. (Here a walk
pr is a sequence of vertices u0, . . . , ur such that ui = ui+1 or {ui, ui+1} is an edge. The
weight of a walk is the product of w(ui, ui+1)/

√
d(ui)d(ui+1), for i = 0, . . . , r − 1.)

We want to show that the total weights of the paths in G̃ lifted from pr (i.e., whose
image in G is pr) is exactly the weight of pr in G multiplied by

√
|π−1(u0)| · |π−1(ur)|.

Let pr−1 denote the walk u0, . . . , ur−1. Suppose ur−1 6= ur (The other case is easy).
For each path p̃r−1 lifted from pr−1, its extensions to paths lifted from pr has total
weights

w(p̃r−1) ·
∑

z∈π−1(ur)

−w(ur−1, z)√
d(ur−1)d(z)

= w(p̃r−1)
−mw(ur−1, ur)/|π−1(ur−1)|√

md(ur−1)md(ur)/(|π−1(ur−1)| |π−1(ur)|)

= w(p̃r−1)
−w(ur−1, ur)√
d(ur−1)d(ur)

√
|π−1(ur)|

|π−1(ur−1)|
.

By summing over all p̃r−1, we have∑
x∈π−1(u)

∑
y∈π−1(v)

Sr(x, y) =
√
|π−1(u)| · |π−1(v)|Sr(u, v).

Therefore, we complete the proof of Lemma 4. �

As a consequence of Lemma 4, we have

Corollary 1 Suppose G̃ is a strong regular covering of G. Let h̃t and ht denote the
heat kernels of G̃ and G, respectively. For x ∈ π−1(u), we have

∑
y∈π−1(v)

h̃t(x, y) =

√
|π−1(v)|

|π−1(u)|
ht(u, v).

Corollary 2 Suppose G is a distance regular graph which is a covering of a path P
with vertices v0, . . . , vp where p = D(G). Suppose G and P have heat kernels h̃t and
ht, respectively. For any two vertices x and y in G with distance d(x, y) = r, we have

h̃t(x, y) =
√
|π−1(ur)|ht(v0, vr).
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Theorem 1 Suppose G̃ is a strong regular covering of G. Let v denote the vertex
of G with preimage in G̃ consisting of one vertex. Then any eigenvalue λ of G̃ has
multiplicity

n
∑
i

φ2
i (v)

‖φi‖2
,

where n = |V (G̃)| and φi ’s span the eigenspace of λ in G. If the eigenvalue λ has
multiplicity 1 in G with eigenfunction φ, then the multiplicity of λ in G̃ is

nφ2(v)

‖φ‖2
.

Proof: Suppose G̃ has heat kernel Ht and G has heat kernel ht. Since G̃ is a strong
regular covering of G, we have

Tr(h̃t) =
∑

x∈V (G̃)

Ht(x, x)

= nht(v, v)

= n
∑
j

e−tλj
φ2
j(v)

‖φj‖2
.

Therefore, the multiplicity of λj in G̃ is exactly

n φ2
j(v)

‖φj‖2

if the multiplicity of λ in G is 1 and . In general, the multiplicity of λ in G̃ is

n
∑
i

φ2
i (v)

‖φi‖2

where φi ’s span the eigenspace of λ in G. �

As an immediate consequence of Theorem 1, we have the following:

Corollary 3 A distance regular graph G with diameter D has D + 1 distinct eigen-
values λ’s which are the eigenvalues of a weighted path P of length D. (The weight of
edge {vi, vi+1} in P is the number of edges joining a vertex at distance i from x to a
vertex at distance i+ 1 from x for a fixed number x. The weight of the loop {vi, vi} is
twice the number of edges with both endpoints at distance i from x.) The multiplicity
of λ in G is

nφ2(x)

‖φ‖2

where n is the number of vertices in G and φ is the eigenfunction of λ of the Laplacian
of P .
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Example 4: The Petersen graph G is a covering for a path P of 3 vertices. It is easy to
check that P has three eigenvalues 0, 2/3, 5/3 with eigenfunctions φ0 = (

√
3,
√

6,
√

18),
φ1 = (

√
3, 1,−

√
2) and φ2 = (

√
6,−2

√
2, 1), respectively. Using Lemma 8, we see that

eigenvalues 0, 2/3, 5/3 have multiplicities 1, 5, 4 in G, respectively.

5 The heat kernel of k−trees

Let Tk (or k-tree, in short) denote an infinite k−regular tree. Let Tk,l denote an
l−level tree with a root at the 0−th level. The l−th level consists of the k(k − 1)l−1

vertices at distance l from the root. The infinite tree can be viewed as taking the
limit of Tk,l as l approaches infinity.

The heat kernel of Tk plays a central role in examining the spectrum of any k-
regular graph. To determine the heat kernel of Tk, we can use the covering theorem in
the previous section. The study of eigenvalues and eigenfunctions of Tk can be found
in many papers in the literature [1, 3, 9, 17, 19]. Here we will give a self-contained
proof for establishing the explicit formula for the kernel of the k-tree, for k ≥ 3. For
the case of k = 2, T2 is just the infinite path. This special case and its cartesian
products were examined in [6].

Tk can be regarded as a covering of the following weighted path P . The vertex of
P is {0, 1, 2, . . .}. For j > 0, the edge joining j − 1 to j has weight k(k − 1)j−1. the
covering mapping π is defined by assigning all vertices in the j-th level to vertex j in
P . The Laplacian L for the weighted path has entries

L(i, j) =


1 if i = j,
− 1√

k
if (i, j) = (0, 1) or (1, 0),

−
√
k−1
k

if |i− j| = 1, i, j 6= 0,
0 otherwise.

We observe that L is quite close to I −
√
k−1
k
M where M is the cyclic operator with

M(i, i+1) = M(i+1, i) =
√
k−1
k

for i ≥ 0 and 0, otherwise. Intuitively, the eigenvalues
of Tk are just, for a fixed integer l,

1−
2
√
k − 1

k
cos

πj

l
for j = 1, . . . , l − 1

in addition to the eigenvalues 0 and 2.

In order to examine the eigenvalues and eigenfunctions of P explicitly, we consider
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the following l × l matrix L(l), for l ≥ 3:

L(l) =



1 − 1√
k

0 · · · · · · 0

− 1√
k

1 −
√
k−1
k

0 · · · 0

0 −
√
k−1
k

1 −
√
k−1
k

· · · 0

· · · · · · · · · · · · −
√
k−1
k

0

0 · · · · · · · · · 1 −
√

k−1
k

0 · · · · · · · · · −
√

k−1
k

1


where

L(l)(i, j) =



1 if i = j,
− 1√

k
if (i, j) = (0, 1) or (1, 0),

−
√
k−1
k

if |i− j| = 1, 0 < i, j < l,

−
√

k−1
k

if (i, j) = (l − 1, l) or (l, l − 1),

0 otherwise.

The eigenvalues of L(l) are 0, 2 and

1−
2
√
k − 1

k
cos

πj

l
for j = 1, . . . , l − 1.

The eigenfunction φ0 associated with eigenvalue 0 is φ0 = f0/‖f0‖ where f0 is defined
as follows:

f0(0) = 1,

f0(p) =
√
k(k − 1)p−1, for 1 ≤ p ≤ l − 1,

f0(l) =
√

(k − 1)l−1.

The eigenfunction φl associated with eigenvalue 2 is φl = fl/‖fl‖ where fl is defined
as follows:

fl(0) = 1,

fl(p) = (−1)p
√
k(k − 1)p−1, for 1 ≤ p ≤ l − 1,

fl(l) = (−1)l
√

(k − 1)l−1.

The eigenfunction φj, for j = 1, · · · , l−1, associated with eigenvalue 1−2
√
k−1
k

cos πj
l

is fj/‖fj‖ where

fj(0) =

√
k

k − 1
sin

πj

l
,

fj(p) = sin
πj(p+ 1)

l
−

1

k − 1
sin

πj(p− 1)

l
, for 1 ≤ p ≤ l − 1,

fj(l) = −

√
k

k − 1
sin

πj

l
.
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It is easy to compute, for j = 1, · · · , l − 1,

‖fj‖
2 =

lk2

2(k − 1)2
(1−

4(k − 1)

k2
cos2 πj

l
).

Therefore the heat kernel h(l) of P (l) satisfies

h(l)(0, 0) =
l−1∑
j=1

e−t(1−
2
√
k−1
k

cos πj
l

) sin2 πj
l

lk
2(k−1)

(1− 4(k−1)
k2 cos2 πj

l
)

+
1

‖f0‖2
+

1

‖fl‖2
.

When l approaches infinity, the heat kernel h of P satisfies:

ht(0, 0) =
2k(k − 1)

π

∫ π

0

e−t(1−
2
√
k−1
k

cos x) sin2 x

k2 − 4(k − 1) cos2 x
dx.

In general, for a ≥ 1, we have

ht(0, a) =
2
√
k(k − 1)

π

∫ π

0

e−t(1−
2
√
k−1
k

cos x) sinx[(k − 1) sin(a+ 1)x− sin(a− 1)x]

k2 − 4(k − 1) cos2 x
dx.

For the infinite k-tree Tk, its heat kernel is denoted by Ht. For two vertices x, y
in Tk, we will write Ht(x, y) = Ht(0, d(x, y)) where d(x, y) denotes the distance of x
and y in Tk. In particular, Ht(x, x) = Ht(0, 0) for all vertices x. Using Lemma 4 and
the fact that the infinite k-tree is a covering of P , we have the following:

Theorem 2 The heat kernel Ht of the infinite k-tree satisfies

Ht(0, 0) =
2k(k − 1)

π

∫ π

0

e−t(1−
2
√
k−1
k

cos x) sin2 x

k2 − 4(k − 1) cos2 x
dx

Ht(0, a) =
2

π(k − 1)a/2−1

∫ π

0

e−t(1−
2
√
k−1
k

cos x) sin x[(k − 1) sin(a+ 1)x− sin(a− 1)x]

k2 − 4(k − 1) cos2 x
dx.

Corollary 4 The heat kernel Ht(0, 0) of the infinite k-tree can be written as

Ht(0, 0) = e−t
∑
r≥0

r∑
j=0

(
2r

j

)
2r − 2j + 1

2r − j + 1
(k − 1)j(

t

k
)2r

=
2(k − 1)

k

∑
s≥0

(
4(k − 1)

k2
)2s (2s− 1)!!

(2s+ 2)!!

∑
0≤j≤s

t2j

(2j)!

where m!! denotes the product of all numbers less than or equal to m and having the
same parity as m.

We note that the first sum in the corollary above appeared in [15]. We remark
that the heat kernel Ht of the k-tree can be viewed as a basic building block for the
heat kernel of any k-regular graph, which in turn is closely related to many major
invariants of the graph.
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6 The heat kernel of the k-tree and the heat kernel

of a k-regular graph

For a k-regular graph G, there is a natural mapping π from Tk to G so that for each
vertex x in Tk, the neighbors of x are mapped to neighbors of π(x) in G in an one-
to-one fashion. Let Ht denote the heat kernel of Tk. We here abuse the notation by
writing Ht(x, y) = Ht(0, d(x, y)) for two vertices x and y at distance d(x, y) in Tk.

Lemma 5 For a k-regular graph G, there is a covering π from Tk to G and the heat
kernel ht of G satisfies

ht(u, v) =
∑

y∈π−1(u)

Ht(0, d(x, y))

where v = π(x), d(x, y) denotes the distance between x and y in Tk and Ht denotes
the heat kernel of Tk.

In a graphG, a walk of length s is a sequence of vertices (v0, v1, · · · , vs) where {vi, vi+1}
is an edge for i = 0, · · · , s − 1. If v0 = vs, it is called a closed walk rooted at v0.
A walk (v0, v1, · · · , vs) is said to be irreducible if vj 6= vj+2 for j = 0, · · · , s − 2. If
vj = vj+2 for some j, we can reduce the walk by deleting vj and vj+1. A walk is said
to be totally reducible if it can be reduced to a trivial walk of length 0. Let rj denote
the number of totally reducible walk rooted at any vertex. In McKay [15, 16], rj’s
have been extensively examined. From the definition of the heat kernel, we have the
following:

Lemma 6 In a k-regular graph, the number rs of totally reducible walks of length s
rooted at any vertex satisfies

Ht(0, 0) = e−t
∑
j≥0

rj
(t/k)j

j!

where Ht is the heat kernel of the infinite tree Tk.

Proof: We observe that rj is exactly the number of rooted closed walks of length j
in the infinite tree Tk. From the definition of Ht we have

Ht = e−t · eA/k

= e−t(I +A
t

k
+A2 (t/k)2

2!
+ · · · )

where A denotes the adjacency operator. Lemma 6 then follows. �
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Lemma 7 For odd j, rj is zero and for the even case, we have

r2j =
4j+1k(k − 1)j+1

π

∫ π/2

0

sin2 x cos2j x

k2 − 4(k − 1) cos2 x
dx

≤
4jk(k − 1)j+1

2j
√
πj(k − 2)2

.

Proof: The proof follows from Lemma 5 and Lemma 6 which imply:

r2j =
∂2j

∂t2j
(etHt(0, 0))

=
4j+1k(k − 1)j+1

π

∫ π/2

0

sin2 x cos2j x

k2 − 4(k − 1) cos2 x
dx.

Therefore we have

r2j ≤
4j+1k(k − 1)j+1

π(k − 2)2

∫ π/2

0

sin2 x cos2j xdx

=
4j+1k(k − 1)j+1

π(k − 2)2(2j + 1)

∫ π/2

0

cos2j+2 xdx

=
4j+1k(k − 1)j+1

π(k − 2)2(2j + 1)

2j + 1

2j + 2

2j − 1

2j
. . .

1

2

π

4

≤
4j+1k(k − 1)j+1

π(k − 2)2

√
π

8(j + 1)
√
j

=
4jk(k − 1)j+1

2(j + 1)
√
πj(k − 2)2

.

�

We note that a similar upper bound was given in [16] as an asymptotic estimate
for r2j .

Lemma 8 For a k-regular graph G, there is a covering π from Tk to G and the heat
kernel ht(u, v) of G satisfies

ht(u, v) =
∞∑
a=0

caHt(0, a)

where ca denotes the number of irreducible walks from v to u of length a.

7 Spanning trees in a k-regular graph

For a connected graph G, we consider the ζ-function

ζ(s) =
∑
i6=0

1

λsi
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where λi ranges over all nonzero eigenvalues of G.

It can be easily checked that

−ζ ′(0) =
∑
i6=0

log λi = log
∏
i6=0

λi

where log denotes the natural logarithm.

Theorem 3 For a connected graph G, the number τ(G) of spanning trees in G is
equal to ∏

x dx∑
x dx

e−ζ
′(0)

where dx denotes the degree of x.

Proof: Suppose we consider the characteristic polynomial p(x) of the Laplacian L.

p(x) = det(L− xI).

The coefficient of the linear term is exactly

−
∏
i6=0

λi.

On the other hand,

p(x) = detT−1det(L− xT ) = (
∏
x

dx)
−1p1(x).

By the well known matrix-tree theorem, the coefficient of the linear term of p1(x) is
exactly −

∑
x dx times the number of spanning trees of G. �

Thus, the number of spanning trees of a k-regular graph on n vertices satisfies

τ(G) =
kn−1

n
e−ζ

′(0). (2)

In the rest of the paper, we assume that G is k-regular.

The trace function Tr ht of G satisfies

Tr ht =
∑
i

e−tλi .

Therefore the zeta function satisfies

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1(Tr ht − 1)dt (3)

by using the fact that

1

Γ(z)

∫ ∞
0

e−ρttz−1dt =
1

ρz
. (4)
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8 The maximum number of spanning trees in k-

regular graphs

McKay [16] gave the following bounds for the maximum number of spanning trees
over all k-regular graphs Gn on n vertices:

c1
1

n
Cn ≤ max τ(G) ≤ c2

log n

n
Cn

where

C =
(k − 1)k−1

(k2 − 2k)k/2−1

and c1 and c2 depend only on k ( in some complicated formula). He conjectured that
the upper bound is the right order for max τ(Gn). Here we will simplify the upper
bound and prove that indeed it is best possible within a constant factor.

Theorem 4 For k ≥ 3, the number τ(Gn) of spanning trees in a k-regular graph Gn

on n vertices satisfies

τ(Gn) ≤ (1 + o(1))
2 logn

kn log k

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
.

Theorem 5 For k ≥ 8, there are k-regular graphs G on n vertices having the number
τ(Gn) of spanning trees satisfying

τ(G) ≥ (1 + o(1))
logn

kn log k

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
.

We first need to establish the relation between the heat kernels ht and Ht. Let
r′j denote the total number of rooted closed walks of length j which are not totally
reducible. We then have

Tr ht = e−t
∑
j≥0

(nrj + r′j)
(t/k)j

j!

= nHt(0, 0) + e−t
∑
j≥0

r′j
(t/k)j

j!
.

From equation (3), we have

ζ(s) =: ζ0(s) + ζ1(s)

where

ζ0(s) =
n

Γ(s)

∫ ∞
0

ts−1Ht(0, 0)dt
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and

ζ1(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥0

r′j
(t/k)j

j!
− et

)
.

We have

ζ0(s) =
n

Γ(s)

∫ ∞
0

ts−1Ht(0, 0)dt

=
2nk(k − 1)

πΓ(s)

∫ ∞
0

ts−1

∫ π

0

e−t(1−
2
√
k−1
k

cos x) sin2 x

k2 − 4(k − 1) cos2 x
dxdt

=
2nk(k − 1)

π

∫ π

0

1

(1− 2
√
k−1
k

cosx)s
·

sin2 x

k2 − 4(k − 1) cos2 x
dx.

Therefore

ζ ′0(0) = −
2nk(k − 1)

π

∫ π

0

sin2 x

k2 − 4(k − 1) cos2 x
log(1−

2
√
k − 1

k
cosx)dx

= n log
kk/2(k − 2)k/2−1

(k − 1)k−1
. (5)

The above integral is evaluated by using the following formula given in [16]:

k

2π

∫ ω

−ω

(ω2 − x2)1/2

k2 − x2
log(1− γx)dx = − log

(
η(
k − η

k − 1
)k/2−1

)
where |γ| = 1/k < 1/ω, ω = 2

√
k − 1 and η = 1−(1−4(k−1)γ2)1/2

2(k−1)γ2 .

It remains to evaluate ζ ′1(0). We note that

nrj + r′j = TrAj

= kj
∑
i

(1− λi)
j .

So, we have, for odd j,

r′j
kj
≥ 1 +

∑
i6=0

(1− λi)
j .

For the even case,

r′2j
k2j
≥ 1 +

∑
i6=0

(1− λi)
2j −

n4jk(k − 1)j+1

j
√
πj(k − 2)2

. (6)
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For a fixed value β (which will be chosen later), we have

ζ1(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥0

r′j
(t/k)j

j!
− et

)
dt

≥
1

Γ(s)

∫ ∞
0

ts−1e−t

(
−

2β−1∑
j=0

(t/k)j

j!

)
dt

+
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j>2β

(r′j
(t/k)j

j!
−

(t/k)j

j!
)

)
dt.

We note that for j ≥ 1, and

ρ(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t(
tj

j!
)dt

we have

ρ′(0) =
1

j
. (7)

Therefore

ζ ′1(0) ≥ −
2β−1∑
j=1

1

j
+ ζ ′2(0)

≥ − log(2β) + ζ ′2(0) (8)

where we define

ζ2(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥2β

(r′j
(t/k)j

j!
−

(t/k)j

j!
)

)
.

Here, we have

ζ2(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥2β

tj

j!

(∑
i6=0

(1− λi)
j −
∑
j≥β

n4jk(k − 1)j+1

j
√
πj(k − 2)2k2j

))
.

By using equation (7) and inequality (8), we have

ζ ′2(0) ≥
∑
j≥2β

∑
i6=0

(1− λi)
j 1

j
−
∑
j≥β

n4jk(k − 1)j+1

j2
√
πj(k − 2)2k2j

≥ −
∑
j≥β

n4jk(k − 1)j+1

j2
√
πj(k − 2)2k2j

≥ −2
n4βk(k − 1)β+1

β2
√
πβ(k − 2)2k2β

(9)
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by using λi ≤ 2 and the fact that
∑

j≥2β(1− λi)j/j ≥ 0 .

Now, we are ready to prove Theorem 4 and 5.

Proof of Theorem 4:

From (2) and (5), we have

τ(G) =
kn−1

n
e−ζ

′
0(0)−ζ′1(0)

=
kn−1

n

(
(k − 1)k−1

kk/2(k − 2)k/2−1

)n
e−ζ

′
1(0)

=
1

kn

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
e−ζ

′
1(0). (10)

By using the preceding lower bounds of ζ ′1 in (8), we have

τ(G) ≤
2β

kn

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
e−ζ

′
2(0).

We now choose β as:

β = d
log n

log k2

4(k−1)

e.

From (9), we have

ζ ′2(0) ≥ −2
n4βk(k − 1)β+1

β2
√
πβ(k − 2)2k2β

≥ −2
k(k − 1)

β2
√
πβ(k − 2)2

.

Therefore, we have

τ(G) ≤
2β

kn

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
e−ζ

′
2(0)

≤ (1 + o(1))
2 logn

kn log k

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
.

Theorem 4 is proved. �

Proof of Theorem 5:
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For a graph with girth (the length of the smallest cycle) g, we can take β = bg/2c
and we have

ζ1(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥0

r′j
(t/k)j

j!
− et

)
dt

=
1

Γ(s)

∫ ∞
0

ts−1e−t

(
−

g∑
j=0

(t/k)j

j!

)
dt

+
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j>g

(r′j
(t/k)j

j!
−

(t/k)j

j!
)

)
dt.

ζ ′1(0) ≤ −
g−1∑
j=1

1

j
+ ζ ′2(0)

≤ − log g + ζ ′2(0) (11)

where here we will need to use some known results on random k-regular graphs.
Erdős and Sachs [8] proved that with positive probability, say at least 1/2, there is a
k-regular graph on n vertices having girth g satisfying

g = (1 + o(1))
logn

log k

as n approaches infinity. Friedman [10] showed that with probability approaches 1,
the expected number of irreducible walks cj(v) rooted at a vertex v of length j, for
k ≥ 8, is

E(cj(v)) = k(k − 1)j−1(
1

n
+ Errn,j)

where

Errn,j = O

(
(ckj)c(

j2
√
k

n1+
√
k−1/2

+
1

kj/2
)

)
.

We note that in the original paper of Friedman, only the case for even k was treated.
However, the argument of counting irreducible “words” made of letters can be ex-
tended to counting walks on the k-trees for odd k in a similar way.

The expected number of closed walks of length j satisfies (see [10])

kj

(
1 + (n− 1)pj,0 +

j∑
s=1

npj,sErrn,s

)
where pj,s is the probability that a random walk of length j reduces to an irreducible
walk of size s. Hence, the number r′j of not totally reducible walks of length j satisfies

E(
r′j
kj

) = 1− pj,0 +

j∑
s=1

npj,sErrn,s.
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Since pj,s ≤ 2jk−j+s, we have

ζ2(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥2β

(r′j
(t/k)j

j!
−

(t/k)j

j!
)

)

≤
1

Γ(s)

∫ ∞
0

ts−1e−t

(∑
j≥2β

(t/k)j

j!
2j

j∑
s=0

k−j+s(cks)c(
s2
√
k2s

n
√
k−1/2

+
1

(k − 1)s/2
)

)
.

Therefore,

ζ ′2(0) ≤
∑
j≥g

1

j

j∑
s=1

2jk−j+s(cks)c(
s2
√
k2s

n
√
k−1/2

+
1

(k − 1)s/2
)

= o(1).

Using (10) and combining the preceding bounds , we have

τ(G) =
1

kn

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
e−ζ

′
1(0)

≥
g

kn

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
e−ζ

′
2(0)

≥ (1 + o(1))
log n

kn log k

(
(k − 1)k−1

(k2 − 2k)k/2−1

)n
.

This completes the proof of Theorem 5. �
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