
An Infinite Antichain of Permutations

Daniel A. Spielman
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, MA 02139

spielman@math.mit.edu

Miklós Bóna
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Abstract

We constructively prove that the partially ordered set of finite permutations ordered
by deletion of entries contains an infinite antichain. In other words, there exists an
infinite collection of permutations no one of which contains another as a pattern.

1 Introduction

When considering a partially ordered set with infinitely many elements, one should wonder

whether it contains an infinite antichain (that is, a subset in which each pair of elements

are incomparable). It is well known that all antichains of Nk (where (x1, x2, · · · , xk) ≤
(y1, y2, · · · , yk) if and only if xi ≤ yi for 1 ≤ i ≤ k ) are finite. (See p. 135 of [1]). Another

basic result is that all antichains of the partially ordered set of the finite words of a finite

alphabet are finite, where x < y if one can delete some letters from y to get x. (This result

is due to Higman and can be found in [1], pp. 106–107).

In this paper we examine this question for the partially ordered set P of finite permu-

tations with the following < relation: if m is less than n, and p1 is a permutation of the

set {1, 2, · · · ,m} and p2 is a permutation of the set {1, 2, · · · , n}, then p1 < p2 if and only
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if we can delete n −m elements from p2 so that when we re-name the remaining elements

according to their rank, we obtain p1. In the well-known terminology of

pattern-avoidance, this amounts to saying that p1 < p2 if and only if p1 is a pattern of

p2. For example, 1 3 2 < 2 4 5 3 1 as we can delete 4 and 1 from the latter to get 2 5 3, which

becomes 1 3 2 after re-naming. Another way to view this relation is that p1 < p2 if there are

n−m elements of p2 that we can delete so that the i-th smallest of the remaining elements

precedes exactly bi elements, where bi is the number of elements preceded by i in p1. In other

words, the i-th smallest remaining entry of p2 precedes the j-th one if and only if i precedes

j in p1. In short, p1 < p2 if p1 is “contained” in p2, that is, there is a subsequence in p2 in

which any two entries relate to each other as the corresponding entries in p1.

We would like to point out that any answer to this question would be somewhat surprising.

If there were no infinite antichains in this partially ordered set, that would be surprising

because, unlike the two partially ordered sets we mentioned in the first paragraph, P is

defined over an infinite alphabet and the “size” of its elements can be arbitrarily large. On

the other hand, if there is an infinite antichain, and we will find one, then it shows that this

poset is more complex in this sense than the poset of graphs ordered by the operations of

edge contraction and vertex deletion. (That this poset of graphs does not contain an infinite

antichain is a famous theorem of Robertson and Seymour [2, 3]). This is surprising too, as

graphs are usually much more complex than permutations.

2 The infinite antichain

We are going to construct an infinite antichain, {ai}. The elements of this antichain will

be very much alike; in fact, they will be identical at the beginning and at the end. Their

middle parts will be very similar, too. These properties will help ensure that no element is

contained in another one.

Let a1 = 13, 12, 10, 14, 8, 11, 6, 9, 4, 7, 3, 2, 1, 5. We view a1 as having three parts: a de-

creasing sequence of length three at its beginning, a long alternating permutation starting

with the maximal element of the permutation and ending with the entry 7 at the fifth posi-

tion from the right (In this alternating part odd entries have only even neighbors and vice

versa. Moreover, the odd entries and the even entries form two decreasing subsequences so

that 2i is between 2i+ 5 and 2i+ 3), and a terminating subsequence 3 2 1 5.
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To get ai+1 from ai, simply insert two consecutive elements right after the maximum

element m of ai, and give them the values (m − 4) and (m − 1). Then make the necessary

corrections to the rest of the elements, that is, increment all old entries on the left of m (m

included) by two and leave the rest unchanged (see Figure 1).

Thus the structure of any ai+1 is very similar to that of ai—only the middle part becomes

two entries longer.
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Figure 1: The pattern of ai

We claim that the ai form an infinite antichain. Assume by way of contradiction that

there are indices i, j so that ai < aj. How could that possibly happen? First, note that

the rightmost element of aj must map to the rightmost element of ai, since this is the only

element in aj preceded by four elements less than itself. Similarly, the maximal element of

aj must map to the maximal element of ai, since, excluding the rightmost element, this is

the only element preceded by three smaller elements. This implies that the first four and

the last six elements of aj must be mapped to the first four and last six elements of ai, thus

none of them can be deleted.

Therefore, when deleting elements of aj in order to get ai, we can only delete elements

from the middle part, Mj . We have already seen that the maximum element cannot be

deleted. Suppose we can delete a set

D of entries from Mj so that the remaining pattern is ai. First note that D cannot
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contain three consecutive elements, otherwise every element before those three elements

would be larger than every element after them, and ai cannot be divided in two parts with

this property. Similarly, D cannot contain two consecutive elements in which the first is

even. Thus D can only consist of separate single elements (elements whose neighbors are

not in D) and consecutive pairs in which the first element is odd. Clearly, D cannot contain

a separate single element as in that case the middle part of resulting permutation would

contain a decreasing 3-subsequnce, but the middle part, Mi, of ai does not. On the other

hand, if D contained two consecutive elements x and y so that x is odd, then the odd element

z on the right of y would not be in D as we cannot have three consecutive elements in D,

therefore z would be in the remaining copy of ai and z wouldn’t be preceded by two entries

smaller than itself. This is a contradiction as all odd entries of Mi have this property.

This shows that D is necessarily empty, thus we cannot delete any elements from aj to

obtain some ai where i < j.

We have shown that no two elements in {ai} are comparable, so {ai} is an infinite

antichain. So there exists an infinite collection of permutations no one of which contains

another as a pattern. 3
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